HOMEWORK 1, THERMAL PHYSICS (PHY306)

1. (a) Using data from chapter 2, calculate how much energy is needed to make a cup
of tea (.2 kg of water, from T' = 20°C to 100°C).

(b) Assuming world energy production is 10'3W, how much boiling water one can get in
1 year? Visualize it by assuming this water is making a cube of size L: how many meters
such L will be? (1 m? of water weights 103 kg.)

2.exercise (3.3)

3.exercise (3.5)

4.exercise (3.8) (a) and (b)

5. A model for rubber string is a one-dimensional chain of molecules, each with length
a. Molecules are joined at their ends in a way, that the next one can go left or right with
equal probability. If we denote n, the number going to the right and n_ the number going
to the left, they satisfy the relations

ny+n_=N, X=alny—n_)
where N is their total number and X is the length of the chain.
(a) what is the probability of having a given X, denoted by W (X)?
(b) Using Sterling’s formula, calculate the entropy of the chain S = kglog(W)
(c) Calculate the “entropic force”

a8
F — —kaaiX

at small x < Na and large * — Na length of the chain
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Exercises

(3.1) A throw of a regular dic yiclds the numbers 1, 2,
i, each with probability 1/6. Lind the mean,
varianee, and standard deviation of the numbers
obtained
3.2) The mean birth-weight of babies in the UK i about
3.2 kg with a standard deviation of 0.5 k. Convert
these figures into pounds (Ih), given that | kg =
221h

(3.3) This question is about a discrete probability distri-

the Poisson distribution. Let
ble that can take the
50.1.2,.. A quantity  is said to be Poisso

ated if the probability P(x) of obtaining  is

a particular number (which we will show
in part (b) of this exercise is the mean value of ).

(a) Shaw that P(r} is a well-behaved probability
distribution in the sense that

Spei-1

(Why is this condition

mportant?)
(b) Show that the wmean valuc of the probubility

distribution s (z) = Y_xP(z] = m

(34

(¢) The Poisson d
ing very rarc events. which ocenr indep
dently and whose average rale does not ciange
over the period of interest. Examples include

s measured per year, traflic ace
dents at a parcicular junction per vear, mum-
bers of typographical errors on a page, and
the number of activations of a Geiger counter

per minute. ‘The first recorded example of a

ibution is useful for deseril-

birth d
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Further reading

Lhere are many good books on probability theory and statistics. Kocomrmended ones include Papoulis (1954), 3
2003), Wall and Jenkins (2003 and Sivia and Skilling (2006)
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This question is about a diserete probability distri
buticn known as ihe Poisson distribution. Let
 be a ciscrete Tando variahle that can take the
values 0,1,2,. - A quantity z is suid t be Poison
distributed if the probability £(z) of obtaining z is

P =*
where m is o particular suber {which we will shos
in part (b) of this exercise 3s the mean value of

(a) Show that P(x) i
distribut

a well bebaved probability
1 in the sense that

(Wh

i this condition important?)

(b) Show that the wmean value

distribtion i ) — 3P

he probebility

The Poisson distribution is usefl for describ-

which aceur indeper-

.ge Tate does not change
e period of interest, Exemples include
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dents at a particular junction per vear, num-
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Poisson distribution, tho ot which in foet 1o,
tivared Poisson, was connected with the rare
event of someane being kicked o death by
hur: The umber of
Tarse-kick deaths of Prussian military persan-

in the Prussian anny,

fel was recorded for cadls of 10 corps in cach
af 20 years from 1875-1804 and the following
data racorded:

e of desths Observed

frequency

per corps

Tolal 200

Calelute the mean mumber of deaths per
year per corps. Compare the abserved fro-
quency with u calenlated frequency sssuming
the nomber of deaths per v

Poisson distributed with this nean.

e

(3.4] Th about a continuous probalility d
cribution known as the exponential distribution.
Lot b comtimtions ranclam variable that can take
any value &

question i

20, A quantily is said o be exponen
tially dlistributed if it takes valnes hetween  anc
a1 di with probubility

Plalde = de T da,
where A and 4 are constants,

(a) Find the value of A that makes Piz) & well-
defined continous probability distribition so
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30 Ezercises

that [* P(z)dz = 1.
Show that the mean value of the probability
2P(z)dz = A

(b,

distribution is (z) =
o

(c) Find the variance and standard deviation of
this probability distribution. Both the expo-
nential distribution and the Poisson distribu-
tion are used to describe similar processes,
but for the exponential distribution z is the
actual time between, for example, successive
radioactive decays, successive molecular col-
lisions, or successive horse-kicking incidents
(rather than, as with the Poisson distribution,
2 being simply the number of such events in
a specified interval)

(35) If 6 is a continuous random variable which is uni-
formly distributed between 0 and 7, write down an
expression for P(6). Hence find the value of the
following averages:

@ (o)
®) -3

(e) (@)

(d) (0") (for the case n > 0);

(e) (cosh):

(£) (sin6);

(8) (cosl);

(h) (cos?6);

(i) (sin?6):

(G) (cos®6 +sin® 6)

Check that your answers are what you expect
(3.6) In experimental physics, it is important to repeat
ming that errors are random,
show that if the error in making a single measure-
ment of a quantity X is A, the error obtained af-
ter using n measurements is A/y/n. (Hint: af-
ter n measurements, the procedure would be to
take the n results and average them. So you re-
quire the standard deviation of the quantity ¥ =
(X1 4 X2+ -+X,)/n where X;, X X, can be
assumed to be independent, and each has standard
deviation A.)

measurements. Ass

(3.7) (a) Show that the binomial distribution can be
approximated by a Poisson distribution with
mean np when n > 1 but np remains small.
(This therefore represents the case when p <
1 so that “success” is a rare event.)

(b

A harder problem is to show that when n >> 1
and also np(1 — p) > 1 the binomial d
tribution can be approximated by a Gaus
sian distribution with mean np and variance
np(1 — p). Assuming this to be the case, re-
visit the one-dimensional random walk in Ex-
ample 3.10 and assume that the walker takes a

step when time ¢ = n7, where n is an integer
Writing D = L?/2r and using eqns 3.48 and
3.49 show that when ¢ >> 7 the probability of
finding the particle between z and z + dz is
1

Var Dt
[See also Appendix C.12 for an alternative
derivation of eqn 3.50.]

P(z)dz =2/ADE gy

(3.50)

Show that the standard deviation of the distri-

(c

the random walker “diffuses” backwards and
forwards, you could try and define its diffusion
speed by o /t. This gives a speed that is pro-
portional to t~'/? and is clearly nonsense. The
point about diffusion (the behaviour of ran-
dom walkers) is that since o, o< /2 you need
100 times as much time to diffuse a distance
10 times as big. A small molecule in water dif-
fuses at a rate governed by D = 10""m?s ™!
Estimate the time needed for this molecule to
diffuse about (i) 1pm (the width of a bac-
terium) and (i) lem (the width of a test
tube).

(3.8) This question introduces a rather efficient method
for calculating the mean and variance of probability
distributions. We define the moment generating
function M (t) for a random variable z by

M(t) = (). (3.51)
Show that this definition implies that
@™y = M™(0), (3.52)

where M™(t) = d"M/dt" and further that the
mean (z) = M®W(0) and the variance o =
M@ (0) — [M™(0)]2. Hence show that:

(a) for a single Bernoulli trial,

M(t) =pe' +1—p;

(b) for the binomial distribution,
M(t) = (pe' +1—p)"; (3.54)
(c) for the Poisson distribution,
M(t) =™, (3.55)
(d) for the exponential distribution,
M(t) = % (3.56)

Hence derive the mean and variance in each case
and show that they agree with the results derived
earlier.
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(3.8) This question introduces a rather efficient method
for calculating the mean and variance of probability
distributions. We define the moment generating

1]

function M (t) for a random variable = by

M(t) = ('). (3.51)

Show that this definition implies that
/% " M (0), (3.52)
where M'™(t) d"M/dt" and further that the
mean  (a M™(0) and the variance o
M@ (0) — [MV(0)]*. Hence show that
o
(a) for a single Bernoulli trial,
M(t)=pe' +1—p; (3.53
(b) for the binomial distribution,
M(t) = (pe' +1—p)™; (3.54)
(c) for the Poisson distribution,
M(t) =™ 71 (3.55)
(d) for the exponential distribution,

A _
M(t) = — (3.56)
A—t
Hence derive the mean and variance in each case
and show that they agree with the results derived

earlier.
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5. A model for rubber string is a one-dimensional chain of molecules, each with length
a. Molecules are joined at their ends in a way, that the next one can go left or right with
equal probability. If we denote n, the number going to the right and n_ the number going
to the left, they satisfy the relations
ny+n_=N, X=ans—n_)
where NNV is their total number and X is the length of the chain.
(a) what is the probability of having a given X, denoted by W (X)?
(b) Using Sterling’s formula, calculate the entropy of the chain S = kplog(W)
(c) Calculate the “entropic force”
oS
F=—-kT —
" ox
at small x < Na and large z — Na length of the chain
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