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Further reading

There are many good books on probability theory and statistics. Recommended ones include Papoulis (1984), Saha
(2003), Wall and Jenkins (2003), and Sivia and Skilling (2006).

Exercises

(3.1) A throw of a regular die yields the numbers 1, 2,
. . . , 6, each with probability 1/6. Find the mean,
variance, and standard deviation of the numbers
obtained.

(3.2) The mean birth-weight of babies in the UK is about
3.2 kg with a standard deviation of 0.5 kg. Convert
these figures into pounds (lb), given that 1 kg =
2.2 lb.

(3.3) This question is about a discrete probability distri-
bution known as the Poisson distribution. Let
x be a discrete random variable that can take the
values 0, 1, 2, . . . A quantity x is said to be Poisson
distributed if the probability P (x) of obtaining x is

P (x) =
e−mmx

x!
,

where m is a particular number (which we will show
in part (b) of this exercise is the mean value of x).

(a) Show that P (x) is a well-behaved probability
distribution in the sense that

∞
X

x=0

P (x) = 1.

(Why is this condition important?)

(b) Show that the mean value of the probability

distribution is ⟨x⟩ =

∞
X

x=0

xP (x) = m.

(c) The Poisson distribution is useful for describ-
ing very rare events, which occur indepen-
dently and whose average rate does not change
over the period of interest. Examples include
birth defects measured per year, traffic acci-
dents at a particular junction per year, num-
bers of typographical errors on a page, and
the number of activations of a Geiger counter
per minute. The first recorded example of a

Poisson distribution, the one which in fact mo-
tivated Poisson, was connected with the rare
event of someone being kicked to death by a
horse in the Prussian army. The number of
horse-kick deaths of Prussian military person-
nel was recorded for each of 10 corps in each
of 20 years from 1875–1894 and the following
data recorded:

Number of deaths Observed
per year, per corps frequency

0 109
1 65
2 22
3 3
4 1

≥ 5 0

Total 200

Calculate the mean number of deaths per
year per corps. Compare the observed fre-
quency with a calculated frequency assuming
the number of deaths per year per corps are
Poisson distributed with this mean.

(3.4) This question is about a continuous probability dis-
tribution known as the exponential distribution.
Let x be a continuous random variable that can take
any value x ≥ 0. A quantity is said to be exponen-
tially distributed if it takes values between x and
x + dx with probability

P (x) dx = Ae−x/λ dx,

where λ and A are constants.

(a) Find the value of A that makes P (x) a well-
defined continuous probability distribution so
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Figure 1. Problem 1

Problem 2. (a) Using data from chapter 2, calculate how much energy is needed to make
a cup of tea (.2 kg of water, from T = 20oC to 100oC).
(b) Assuming world energy production is 1013W , how much boiling water one can get in
1 year? Visualize it by assuming this water is making a cube of size L: how many meters
such L will be? (1m3 of water weights 103 kg.)
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that
R ∞
0

P (x) dx = 1.

(b) Show that the mean value of the probability

distribution is ⟨x⟩ =

Z ∞

0

xP (x) dx = λ.

(c) Find the variance and standard deviation of
this probability distribution. Both the expo-
nential distribution and the Poisson distribu-
tion are used to describe similar processes,
but for the exponential distribution x is the
actual time between, for example, successive
radioactive decays, successive molecular col-
lisions, or successive horse-kicking incidents
(rather than, as with the Poisson distribution,
x being simply the number of such events in
a specified interval).

(3.5) If θ is a continuous random variable which is uni-
formly distributed between 0 and π, write down an
expression for P (θ). Hence find the value of the
following averages:

(a) ⟨θ⟩;
(b) ⟨θ − π

2
⟩;

(c) ⟨θ2⟩;
(d) ⟨θn⟩ (for the case n ≥ 0);

(e) ⟨cos θ⟩;
(f) ⟨sin θ⟩;
(g) ⟨| cos θ|⟩;
(h) ⟨cos2 θ⟩;
(i) ⟨sin2 θ⟩;
(j) ⟨cos2 θ + sin2 θ⟩.
Check that your answers are what you expect.

(3.6) In experimental physics, it is important to repeat
measurements. Assuming that errors are random,
show that if the error in making a single measure-
ment of a quantity X is ∆, the error obtained af-
ter using n measurements is ∆/

√
n. (Hint: af-

ter n measurements, the procedure would be to
take the n results and average them. So you re-
quire the standard deviation of the quantity Y =
(X1+X2+· · ·+Xn)/n where X1, X2, . . ., Xn can be
assumed to be independent, and each has standard
deviation ∆.)

(3.7) (a) Show that the binomial distribution can be
approximated by a Poisson distribution with
mean np when n ≫ 1 but np remains small.
(This therefore represents the case when p ≪
1 so that “success” is a rare event.)

(b) A harder problem is to show that when n ≫ 1
and also np(1 − p) ≫ 1 the binomial dis-
tribution can be approximated by a Gaus-
sian distribution with mean np and variance
np(1 − p). Assuming this to be the case, re-
visit the one-dimensional random walk in Ex-
ample 3.10 and assume that the walker takes a

step when time t = nτ , where n is an integer.
Writing D = L2/2τ and using eqns 3.48 and
3.49 show that when t ≫ τ the probability of
finding the particle between x and x + dx is

P (x) dx =
1√

4πDt
e−x2/4Dt dx. (3.50)

[See also Appendix C.12 for an alternative
derivation of eqn 3.50.]

(c) Show that the standard deviation of the distri-
bution in eqn 3.50 is given by σx =

√
2Dt. As

the random walker “diffuses” backwards and
forwards, you could try and define its diffusion
speed by σx/t. This gives a speed that is pro-
portional to t−1/2 and is clearly nonsense. The
point about diffusion (the behaviour of ran-
dom walkers) is that since σx ∝ t1/2 you need
100 times as much time to diffuse a distance
10 times as big. A small molecule in water dif-
fuses at a rate governed by D = 10−9 m2 s−1.
Estimate the time needed for this molecule to
diffuse about (i) 1 µm (the width of a bac-
terium) and (ii) 1 cm (the width of a test
tube).

(3.8) This question introduces a rather efficient method
for calculating the mean and variance of probability
distributions. We define the moment generating
function M(t) for a random variable x by

M(t) = ⟨etx⟩. (3.51)

Show that this definition implies that

⟨xn⟩ = M (n)(0), (3.52)

where M (n)(t) = dnM/dtn and further that the
mean ⟨x⟩ = M (1)(0) and the variance σx =
M (2)(0) − [M (1)(0)]2. Hence show that:

(a) for a single Bernoulli trial,

M(t) = pet + 1 − p; (3.53)

(b) for the binomial distribution,

M(t) = (pet + 1 − p)n; (3.54)

(c) for the Poisson distribution,

M(t) = em(et−1); (3.55)

(d) for the exponential distribution,

M(t) =
λ

λ − t
. (3.56)

Hence derive the mean and variance in each case
and show that they agree with the results derived
earlier.

30 Exercises

that
R ∞
0

P (x) dx = 1.

(b) Show that the mean value of the probability

distribution is ⟨x⟩ =

Z ∞

0

xP (x) dx = λ.

(c) Find the variance and standard deviation of
this probability distribution. Both the expo-
nential distribution and the Poisson distribu-
tion are used to describe similar processes,
but for the exponential distribution x is the
actual time between, for example, successive
radioactive decays, successive molecular col-
lisions, or successive horse-kicking incidents
(rather than, as with the Poisson distribution,
x being simply the number of such events in
a specified interval).

(3.5) If θ is a continuous random variable which is uni-
formly distributed between 0 and π, write down an
expression for P (θ). Hence find the value of the
following averages:

(a) ⟨θ⟩;
(b) ⟨θ − π

2
⟩;

(c) ⟨θ2⟩;
(d) ⟨θn⟩ (for the case n ≥ 0);

(e) ⟨cos θ⟩;
(f) ⟨sin θ⟩;
(g) ⟨| cos θ|⟩;
(h) ⟨cos2 θ⟩;
(i) ⟨sin2 θ⟩;
(j) ⟨cos2 θ + sin2 θ⟩.
Check that your answers are what you expect.

(3.6) In experimental physics, it is important to repeat
measurements. Assuming that errors are random,
show that if the error in making a single measure-
ment of a quantity X is ∆, the error obtained af-
ter using n measurements is ∆/

√
n. (Hint: af-

ter n measurements, the procedure would be to
take the n results and average them. So you re-
quire the standard deviation of the quantity Y =
(X1+X2+· · ·+Xn)/n where X1, X2, . . ., Xn can be
assumed to be independent, and each has standard
deviation ∆.)

(3.7) (a) Show that the binomial distribution can be
approximated by a Poisson distribution with
mean np when n ≫ 1 but np remains small.
(This therefore represents the case when p ≪
1 so that “success” is a rare event.)

(b) A harder problem is to show that when n ≫ 1
and also np(1 − p) ≫ 1 the binomial dis-
tribution can be approximated by a Gaus-
sian distribution with mean np and variance
np(1 − p). Assuming this to be the case, re-
visit the one-dimensional random walk in Ex-
ample 3.10 and assume that the walker takes a

step when time t = nτ , where n is an integer.
Writing D = L2/2τ and using eqns 3.48 and
3.49 show that when t ≫ τ the probability of
finding the particle between x and x + dx is

P (x) dx =
1√

4πDt
e−x2/4Dt dx. (3.50)

[See also Appendix C.12 for an alternative
derivation of eqn 3.50.]

(c) Show that the standard deviation of the distri-
bution in eqn 3.50 is given by σx =

√
2Dt. As

the random walker “diffuses” backwards and
forwards, you could try and define its diffusion
speed by σx/t. This gives a speed that is pro-
portional to t−1/2 and is clearly nonsense. The
point about diffusion (the behaviour of ran-
dom walkers) is that since σx ∝ t1/2 you need
100 times as much time to diffuse a distance
10 times as big. A small molecule in water dif-
fuses at a rate governed by D = 10−9 m2 s−1.
Estimate the time needed for this molecule to
diffuse about (i) 1 µm (the width of a bac-
terium) and (ii) 1 cm (the width of a test
tube).

(3.8) This question introduces a rather efficient method
for calculating the mean and variance of probability
distributions. We define the moment generating
function M(t) for a random variable x by

M(t) = ⟨etx⟩. (3.51)

Show that this definition implies that

⟨xn⟩ = M (n)(0), (3.52)

where M (n)(t) = dnM/dtn and further that the
mean ⟨x⟩ = M (1)(0) and the variance σx =
M (2)(0) − [M (1)(0)]2. Hence show that:

(a) for a single Bernoulli trial,

M(t) = pet + 1 − p; (3.53)

(b) for the binomial distribution,

M(t) = (pet + 1 − p)n; (3.54)

(c) for the Poisson distribution,

M(t) = em(et−1); (3.55)

(d) for the exponential distribution,

M(t) =
λ

λ − t
. (3.56)

Hence derive the mean and variance in each case
and show that they agree with the results derived
earlier.

Figure 2. Problems 3 and 4

Problem 5. A model for rubber string is a one-dimensional chain of molecules, each with
length a. Molecules are joined at their ends in a way, that the next one can go left or right
with equal probability. If we denote n+ the number of molecules going to the right and n−
the number going to the left, they satisfy the relations

n+ + n− = N, X = a(n+ − n−)

where N is their total number and X is the length of the chain.
(a) show that the probability of having a given length X, denoted by P (X), is given by
binomial distribution
(b) Using Sterling’s formula, calculate the entropy of the chain S(X) = kBlog(P (X))
(c) Calculate the “entropic force”

F = −kbT
∂S(X)

∂X

for small chain |x| � Na and near its maximal strenching |x| → Na.

Figure 3. Sketch of the string for problem 5, with N = 10, n− = 2, n+ =
8, X = 6a.


