MANY BODY PHYSICS

45 YEARS OF NUCLEAR THEORY at STONY BROOK

A Tribute To Gerald E. Brown Stony Brook November 25, 2013

Jean-Paul Blaízot, IPhT-Saclay

MANY BODY PHYSICS

45 YEARS OF NUCLEAR THEORY at STONY BROOK

A Tribute To Gerald E. Brown Stony Brook November 25, 2013

Jean-Paul Blaizot, IPhT-Saclay

MANY BODY PHYSICS

Collective fermionic excitations in the quark-gluon plasma and cold atom systems

45 YEARS OF NUCLEAR THEORY at STONY BROOK

A Tribute To Gerald E. Brown Stony Brook November 25, 2013

European

Research Council

Jean-Paul Blaízot, IPhT-Saclay

THE QUARK-GLUON PLASMA AS A MANY-BODY SYSTEM

- Ideal playground for application, and development, of manybody and quantum field theoretical techniques (and so are cold atom systems)

- Here we focus on high temperature ($T \gg \Lambda_{QCD}$), weak interactions (small gauge coupling). [Leave aside issues related to the so-called strongly coupled QGP, AdS/CFT, etc]

- Basic degrees of freedom are quarks and gluons (quasiparticles), interacting with strength g (long range interactions)

- Various collective phenomena

HIERACHY OF SCALES (AND PHENOMENA) AT WEAK COUPLING

T plasma 'particles' (hard)

gT collective excitations, screening, Landau damping (soft)

 g^2T 'magnetic scale', hydrodynamical modes (*ultra-soft*)

HIERACHY OF SCALES (AND PHENOMENA) AT WEAK COUPLING

T plasma 'particles' (hard)

gT collective excitations, screening, Landau damping (soft)

 g^2T 'magnetic scale', hydrodynamical modes (*ultra-soft*)

Collective features are 'natural' in gluon (boson) sector But they also appear in quark (fermion) sector HIERACHY OF SCALES (AND PHENOMENA) AT WEAK COUPLING

T plasma 'particles' (hard)

gT collective excitations, screening, Landau damping (soft)

 g^2T 'magnetic scale', hydrodynamical modes (*ultra-soft*)

Collective features are 'natural' in gluon (boson) sector But they also appear in quark (fermion) sector

In the rest of this talk, focus on collective phenomena carrying fermionic quantum numbers

THE PLASMINO

Gluon (boson)

Quark (fermion)

THE «SCHEMATIC MODEL» INTERPRETATION

$$\omega - E_0 = \sum_i \frac{g^2}{\omega - E_i} \approx \frac{Ng^2}{\Delta E} \ln \left| \frac{\omega + \Delta E/2}{\omega - \Delta E/2} \right|$$
$$\omega^2 \approx Ng^2$$

Note how the smallness of the coupling can be overcome by the large number of degrees of freedom (N) to produce a large effect even when g is tiny

Turning bosons into fermions (and vice versa)

Nature of hard excitation changes from boson to fermion

Soft degree of freedom « oscillates». It can be described as oscillation of fermionic mean field $\langle \psi(x) \rangle$ [see JPB and E. lancu Phys. Rept. 359 (2002)]

Suggestive of supersymmetry

Ultra soft modes

[Y. Hidaka, D. Satow, T. Kunihiro, arXiv1105.0423 (Yukawa theory)]

Ultra-soft fermionic mode analog of hydrodynamic sound ? Phonino, `quasi-goldstino' ?

Indeed the case in simple supersymmetric model (Wess-Zumino model)

$$(\omega = \pm p/3)$$

In QED/QCD supersymmetry emerges in the absence of interaction.

V. V. Lebedev and A. V. Smilga, Nucl. Phys. B 318, 669 (1989).

Other effects come into play (chiral symmetry, charge symmetry)

JPB, Daisuke Satow, work in progress

Phonon and phonino $\partial^{\mu}T_{\mu\nu} = 0$ conservation of energy-momentum small deviations from local $\left(\frac{\partial\rho}{\partial T}\partial_0^2 - \frac{\partial p}{\partial T}\,\vec{\partial}^2\right)\Delta T(x,t) = 0$ equilibrium (measured by local temperature T(x,t) $\omega = v_s p$ $v_s^2 = \frac{\partial p / \partial T}{\partial \rho / \partial T}$ dispersion relation $\partial^{\mu}J_{\mu} = 0$ conservation of supercurrent $\partial^{\mu} \langle \delta_{\xi} J_{\mu}(x,t) \rangle = -2i\gamma^{\nu} \partial^{\mu} \xi(x,t) \langle T_{\mu\nu}(x,t) \rangle$ mode equation $\left(\rho \gamma_0 \partial_0 + p \gamma_i \partial_i\right) \xi(x, t) = 0$ $\omega = v_{ss} p$ $v_{SS} = \frac{p}{\rho}$ dispersion relation quasi-goldstino in hot QED/QCD $\text{Re}\omega = p/3$ $\operatorname{Im}\omega = \zeta_q + \zeta_g = O(g^2 T)$ V. V. Lebedev and A. V. Smilga, Nucl. Phys. B 318, 669 (1989).

Y. Hidaka, <u>D. S.</u>, and T. Kunihiro, Nucl. Phys. A 876, 93 (2012) <u>D. S.</u>, PRD 87, 096011 (2013).

One can study some of these issues in cold atom systems

Suggested experimental setup

T. Shi, Y. Yu, and C. P. Sun, PRA 81, 011604(R) (2010)

Two kinds of fermion (**f**, **F**) and their bound state (**b**: boson) on an optical lattice.

(external field adjusted so that **F decouples**)

 $H = H_0 + H_1$ $H_0 = -t \sum_{\langle ij \rangle} (f_i^{\dagger} f_j + b_i^{\dagger} b_j) - \mu_f \sum_i f_i^{\dagger} f_i - \mu_b \sum_i b_i^{\dagger} b_i$ $H_1 = \frac{U_{bb}}{2} \sum_i n_i^b (n_i^b - 1) + U_{bf} \sum_i n_i^b n_i^f$ When $\mu_f = \mu_b$ $U_{bb} = U_{bf}$ the hamitonian is supersymmetric $[H, Q] = 0 \quad \text{with} \quad Q = \sum b_i f_i^{\dagger}$

Supersymmetric algebra (Continuum limit, d=2, no BEC)

Boson and fermion field operators

$$\begin{bmatrix} b(\mathbf{x}), b^{\dagger}(\mathbf{y}) \end{bmatrix} = \delta^{d}(\mathbf{x} - \mathbf{y}) \qquad \{f(\mathbf{x}), f^{\dagger}(\mathbf{y})\} = \delta^{d}(\mathbf{x} - \mathbf{y}) \\ N_{b} = \int d^{d}\mathbf{x} \, b^{\dagger}(\mathbf{x}) b(\mathbf{x}) \qquad N_{f} = \int d^{d}\mathbf{x} \, f^{\dagger}(\mathbf{x}) f(\mathbf{x}) \end{cases}$$

Supercharge $Q \equiv \int d^d \mathbf{x} q(\mathbf{x}) \qquad q(\mathbf{x}) \equiv b(\mathbf{x}) f^{\dagger}(\mathbf{x})$

Algebra
$$\{Q, Q^{\dagger}\} = N, \quad [N, Q] = [N, Q^{\dagger}] = 0, \quad [\Delta N, Q] = Q$$
 $N \equiv N_b + N_f$ $\Delta N = (N_f - N_b)/2$

Supersymmetric hamiltonian [Q, H] = 0

NOTE: supersymmetry is here only an internal symmetry

Supersymmetry and its breaking

$$[Q,H] = 0 = [N,H] = [\Delta N,H]$$

Explicit breaking

$$H_{G} = H - \mu_{f} N_{f} - \mu_{b} N_{b}$$

= $H - \mu N - \Delta \mu \Delta N$
 $\mu \equiv (\mu_{f} + \mu_{b})/2$ $\Delta \mu \equiv \mu_{f} - \mu_{b}$

 $[Q, H_G] = \Delta \mu Q$

Explicit symmetry breaking when $\mu_f \neq \mu_b$

Spontaneous symmetry breaking by matter

Only supersymmetric state is the vacuum ~~Q|0
angle=0

Associated Goldstone mode «Goldstino»

Random Phase Approximation

$$\langle Q^{\dagger}(x)Q(0) \rangle = \bigotimes_{f}^{b} \otimes + \bigotimes_{f} + \cdots$$

$$\omega = \Delta \mu - \alpha p^2$$
 (sp strength is unity)
 $\alpha \equiv \frac{1}{\rho} \left(\frac{4\pi t^2 \rho_f^2}{U\rho} - t(\rho_f - \rho_b) \right)$

This spectrum can be understood in terms of symmetry breaking in a model independent way

[JPB, Y. Hidaka and D. Satow, wotk in progress]

Type-II NG mode (while it is Type-I in relativistic model)

H. Watanabe and H. Murayama, PRL 108, 251602 (2012); Y. Hidaka, PRL 110, 091601 (2013) JPB, Y. Hidaka, D. Satow, work in progress

SOME LEGACIES FROM GERRY

SOME LEGACIES FROM GERRY

Many-body physics is fun, and beautiful

SOME LEGACIES FROM GERRY

Many-body physics is fun, and beautiful

One can learn a lot by looking at, and comparing, different physical systems