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Collective fermionic excitations 
in the quark-gluon plasma 

and cold atom systems



 THE QUARK-GLUON PLASMA

AS A MANY-BODY SYSTEM

- Ideal playground for application, and development, of many-
body and quantum field theoretical techniques (and so are cold 
atom systems)

- Here we focus on high temperature (              ), weak 
interactions (small gauge coupling). [Leave aside issues related to the so-called 
strongly coupled QGP, AdS/CFT, etc]

- Basic degrees of freedom are quarks and gluons (quasiparticles), 
interacting with strength g (long range interactions)

- Various collective phenomena



HIERACHY OF SCALES (AND PHENOMENA)  
AT WEAK COUPLING

       plasma ‘particles’  (hard)

       collective excitations, screening, Landau damping (soft)

       ‘magnetic scale’, hydrodynamical modes (ultra-soft)
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HIERACHY OF SCALES (AND PHENOMENA)  
AT WEAK COUPLING

       plasma ‘particles’  (hard)

       collective excitations, screening, Landau damping (soft)

       ‘magnetic scale’, hydrodynamical modes (ultra-soft)
 

In the rest of this talk, focus on collective phenomena carrying fermionic 
quantum numbers

T

Collective features are ‘natural’ in gluon (boson) sector
But they also appear in quark (fermion) sector



 THE PLASMINO

Gluon (boson) Quark (fermion)



Interactions

Origin of the split dispersion relation



THE «SCHEMATIC MODEL» INTERPRETATION

Note how the smallness of the coupling can be 
overcome by the large number of degrees of 
freedom (N) to produce a large effect even when 
g is tiny



Nature of hard excitation changes from boson to fermion

Soft degree of freedom « oscillates». It can be described as 
oscillation of fermionic mean field 
[see JPB and E. Iancu Phys. Rept. 359 (2002)]

Turning bosons into fermions (and vice versa)

Suggestive of supersymmetry



Ultra-soft fermionic mode analog of hydrodynamic sound ? 
Phonino, ‘quasi-goldstino’ ?

Ultra soft modes

 [Y. Hidaka, D. Satow, T. Kunihiro, 
arXiv1105.0423  (Yukawa theory)]

Indeed the case in simple supersymmetric model (Wess-Zumino model)

V. V. Lebedev and A. V. Smilga, Nucl. Phys. B 318, 669 (1989).
In QED/QCD supersymmetry emerges in the absence of interaction. 

Other effects come into play (chiral symmetry, charge symmetry)

JPB, Daisuke Satow, work in progress



conservation of energy-momentum

24 Chapter 2. Supersymmetry at finite temperature

where p is the pressure and ρ the energy density while

uµ = (1 − "v2)−1/2 (1,"v)

is the four-velocity of the fluid. In equilibrium, we take "v = 0, in other
words, we go to the rest frame of the heat bath.

After a perturbation, fast relaxation processes take place and local ther-
modynamic equilibrium is established. The local deviation from the global
average can be described by two parameters, the temperature ∆T (x, t) and
velocity "v(x, t). In a linear approximation, the components of the energy-
momentum tensor are then given by

〈T00(x, t)〉 =
(

1 + ∆T (x, t)
∂

∂T

)
ρ,

〈T0i(x, t)〉 = vi(x, t)(ρ+ p),

〈Tij(x, t)〉 = δij

(
1 + ∆T (x, t)

∂

∂T

)
p.

Since the energy-momentum tensor is conserved, ∂µTµν = 0, the param-
eters v and ∆T are related by

∂0∆T
∂ρ

∂T
− ∂ivi(x, t)(ρ+ p) = 0,

∂0vi(x, t) (ρ+ p) − ∂i∆T
∂p

∂T
= 0.

By substituting v, one finds the wave equation
(
∂ρ

∂T
∂2

0 − ∂p

∂T
"∂2

)
∆T (x, t) = 0,

describing the propagation of sound waves with the velocity

v2
S =

∂p/∂T

∂ρ/∂T
. (2.4)

Hence, as a consequence of the spontaneous breakdown of Lorentz symmetry
in the thermal bath, perturbations in the energy-momentum tensor prop-
agate as sound waves. Their quanta, the phonons, can be viewed as the
Goldstone bosons associated with the spontaneous symmetry breaking.

Now, let us come to the supersymmetric case. Here, we have the con-
served supercurrent Jµ. Consider a small, space and time dependent su-
persymmetry variation characterized by a parameter ξ(x, t) which leads to
a local deviation of the supercurrent from the global average, δξJµ(x, t).
Since we know that by such a supersymmetry transformation the supercur-
rent is transformed into the energy-momentum tensor, its variation can be
expressed as

δξJµ = −2iγνξ Tµν .

small deviations from local 
equilibrium (measured by local 
temperature T(x,t))
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dispersion relation ω=vs p
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conservation of supercurrent

2.3. Hydrodynamics of the supersymmetric plasma 25

The conservation equation, ∂µJµ = 0, then tells us that also the local vari-
ation of the supercurrent must be conserved, giving

∂µ〈δξJµ(x, t)〉 = −2iγν∂µξ(x, t)〈Tµν(x, t)〉 = 0.

In terms of the components of the energy-momentum tensor, this can be
written as

(ρ γ0∂0 + p γi∂i) ξ(x, t) = 0,

which is nothing but the Dirac equation for a massless fermion propagating
with the velocity

vSS =
p

ρ
. (2.5)

Therefore, in a supersymmetric system whose supersymmetry is bro-
ken spontaneously by the thermal bath, there should exist ‘supersymmetric
sound’. Its quanta, interpreted as the Goldstone fermions associated with
the spontaneous symmetry breaking, would naturally be called phoninos.
Of course there is no classical picture of these fermionic waves, but in the
framework of thermal field theory it should be possible to verify the ex-
istence of such a fermionic collective excitation. Just as we expect sound
waves to appear as poles in the correlator 〈Tµν(x)Tρσ(y)〉T , supersymmetric
sound should lead to poles in the correlation function 〈Jµ(x)Jν(y)〉T .

Both of these types of waves have a very characteristic dispersion law. In
the relativistic limit, when the temperature is much higher than the particle
masses, pressure and energy density are related by p = 1

3ρ, and therefore

v2
S = vSS =

1
3
, T $ m. (2.6)

In the non-relativistic limit of a massive theory, we have p = T
mρ, resulting

in
v2
S = vSS =

T

m
, T % m. (2.7)

In the intermediate range, T & m, v2
S and vSS differ by a few percent [9].

So far, the derivation is completely general and model independent. In an
interacting theory, the fluid is of course not perfect and one will in general get
corrections to the dispersion law and also damping. This naturally depends
strongly on the model. In any case, sound and supersymmetric sound waves
can exist only for wavelengths greater than the mean free path so that there
is time to establish local thermodynamic equilibrium. At higher frequencies,
these waves are strongly damped.
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V. V. Lebedev and A. V. Smilga, Nucl. Phys. B 318, 669 (1989).
Y. Hidaka, D. S., and T. Kunihiro, Nucl. Phys. A 876, 93 (2012)
D. S., PRD 87, 096011 (2013).

Imω=ζq+ζg=O(g2T)Reω＝p/3
quasi-goldstino in hot QED/QCD

Phonon and phonino

mode equation

dispersion relation
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One can study some of these 
issues  in cold atom systems



Two kinds of fermion (f, F) and their 
bound state (b: boson) on an optical lattice.

T. Shi, Y. Yu, and C. P. Sun, PRA 81, 011604(R) (2010)

f Fb

Ubb =Ubfµf =µbWhen 

(external field adjusted 
so that F decouples)

Suggested experimental setup

the hamitonian is supersymmetric 
with
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projection operator method [14, 20, 21]. We also estab-
lish the analogy between the goldstino and the magnon in
a ferromagnet. Section III is devoted to derivation of the
generalized kinetic equation corresponding to the RPA,
and the calculation of the goldstino’s dispersion relation.
We summarize this paper and give concluding remarks
in Sec. IV. We give some useful properties of terms ap-
pearing in the Langevin equation in Appendix A.

II. MODEL-INDEPENDENT ANALYSIS

In this section, we obtain the form of the dispersion
relation of the goldstino in a model independent way, by
using Mori’s projection operator method [14, 20, 21]. We
start by providing a short introduction on the supersym-
metry.

A. Momentum dependence of goldstino’s spectrum

In this paper, we consider a system that consists
of single-component bosons and fermions. The anni-
hilation operators for the boson (fermion) are denoted
by b(t,x) (f(x)), and the creation operators by b†(x)
(f†(x)). These operators satisfy the usual equal-time
commutation or anti-commutation relations, respectively
[b(x), b†(y)] = �d(x� y) and {f(x), f†(y)} = �d(x� y),
all other commutators (anticommutators) being zero.
Here, [, ] and {, } denote the commutator and the anti-
commutator, respectively. The operators that count the
total numbers of bosons and fermions are given by

Nb =

Z

ddx b†(x)b(x), Nf =

Z

ddx f†(x)f(x). (2.1)

Central to our discussion is the operator that annihi-
lates one boson and creates one fermion at point x. This
is given by

q(x) ⌘ b(x)f†(x). (2.2)

The spatial integral of q(x), Q ⌘ R

ddx q(x) will be re-
ferred to as the “supercharge”. Together with it conju-
gate, Q†, and the fermion and boson number operators,
they form a closed algebra,

�

Q,Q† = N, [N,Q] = [N,Q†] = 0, [�N,Q] = Q,
(2.3)

where N ⌘ Nb+Nf and �N = (Nf�Nb)/2, and the var-
ious number operators comment among themselves. In
the present context, this algebra is referred to as the su-
persymmetric algebra, with the corresponding operators
being the generators of supersymmetric transformations.
The non trivial transformations are those which involve

the supercharger Q:

�f(x) ⌘ �i[✏Q, f(x)] = �i✏{Q, f(x)} = �i✏b(x),
(2.4)

�b†(t,x) ⌘ �i[✏Q, b†(t,x)]

= �i✏[Q, b†(t,x)] = �i✏f†(t,x), (2.5)

where ✏ is a Grassmann parameter (✏2 = 0). We empha-
size that this supersymmetric transformation is di↵er-
ent from that considered in the context of high-energy
physics, which is related to the spacetime symmetry,
while the SUSY that we consider is not [4]. In fact, the
anticommutator of the supercurrents can be expressed by
using energy-momentum tensor in models that have the
SUSY in high-energy physics, while it is not the case in
models we consider: {Q,Q†} = N .
We assume that the hamiltonian is invariant under

these supersymmetric transformations. That is, H com-
mutes with all the generators above

[Q,H] = 0 = [N,H] = [�N,H]. (2.6)

We are interested in situations where supersymmetry
is broken. In fact only the vacuum state is supersymmet-
ric, i.e., Q|0i = 0. All other states are degenerate. For
instance, let | ni be an eigenstate of H with nb bosons
and no fermion. Since [Q,H] = 0, the state Q| ni, which
contains one fermion and nb � 1 bosons, is also an eigen-
state with the same energy.
This may occur in two ways. First there is a possible

explicit symmetry breaking that occurs when the chemi-
cal potentials for bosons and fermions di↵er. The grand
canonical Hamiltonian can be written as

HG = H � µfNf � µbNb

= H � µN ��µ�N,
(2.7)

where µf (µb) is the fermion (boson) chemical potential
and we set µ ⌘ (µf +µb)/2, and �µ ⌘ µf �µb. By using
Eq. (2.6) and the last of Eqs. (2.3), we obtain

[Q,HG] = �µQ. (2.8)

Therefore HG no longer commutes with the supercharge
whenever �µ 6= 0. This explicit breaking lifts the degen-
eracy of level that occurs when the chemical potentials
are equals. Consider for instance the case where �µ > 0
(i.e., µf > µb). Let | 0

i be the ground state of H � µN .
This is also an eigenstate of HG if �µ 6= 0. It is in this
case degenerate with the state Q†| 

0

i. When �µ 6= 0,
we have HGQ†| 

0

i = (E
0

+�µ)Q†| 
0

i.
In addition to the explicit breaking, supersymmetry

may be broken by the presence of matter, that is when-
ever the expectation value of the number density is non
vanishing. DS: Following to Jean-Paul’s comment,
the following sentence needs to be improved: In-
tuitively, it can be understood by remembering the fact
that the form of the Bose distribution function is di↵erent
from the Fermi one. In this case, we have

h{Q†, q(x)}ieq = ⇢
0

. (2.9)
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state with the same energy.
This may occur in two ways. First there is a possible

explicit symmetry breaking that occurs when the chemi-
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contains one fermion and nb � 1 bosons, is also an eigen-
state with the same energy.
This may occur in two ways. First there is a possible
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projection operator method [14, 20, 21]. We also estab-
lish the analogy between the goldstino and the magnon in
a ferromagnet. Section III is devoted to derivation of the
generalized kinetic equation corresponding to the RPA,
and the calculation of the goldstino’s dispersion relation.
We summarize this paper and give concluding remarks
in Sec. IV. We give some useful properties of terms ap-
pearing in the Langevin equation in Appendix A.
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eracy of level that occurs when the chemical potentials
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and no fermion. Since [Q,H] = 0, the state Q| ni, which
contains one fermion and nb � 1 bosons, is also an eigen-
state with the same energy.
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where µf (µb) is the fermion (boson) chemical potential
and we set µ ⌘ (µf +µb)/2, and �µ ⌘ µf �µb. By using
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ric, i.e., Q|0i = 0. All other states are degenerate. For
instance, let | ni be an eigenstate of H with nb bosons
and no fermion. Since [Q,H] = 0, the state Q| ni, which
contains one fermion and nb � 1 bosons, is also an eigen-
state with the same energy.
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FIG. 2: Similarity between the magnon in the ferromagnet and the goldstino.
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This similarity between the magnon in the ferromagnet and the goldstino results from the fact that only the
commutation relationship among the conserved charge is important in determining the spectrum of NG mode (Fig. 2).

IV. KINETIC EQUATION WHICH IS EQUIVALENT TO THE EQUATION IN RPA

We derive the generalized kinetic equation which is equivalent to the equation for the goldstino propagator Eq (6.1)
in the RPA. We use the method developed in Ref. [3, 4]. The equations of motion for b and f in the continuum limit
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Type-II NG mode (while it is Type-I in relativistic model)
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