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* | find history of physics (almost) as interesting as physics itself. History
involves ideas and people behind the ideas often not found in textbooks or
published papers. The real physics is of course what experiments reveal to
us. The human brain seeks to understand the phenomena and that is what
theorists are trying. Theory is the subject of my talk.

 When does history of nuclear many body problem start? One of the
greatest discoveries was the nuclear shell-model. Liquid drop was the
picture theorists had in mind. Experiments showed nuclear spectra looking
like atomic. So how can one explain the shell-model? Another problem:
nuclear saturation. An explanation: N-N interaction repulsive at short
distances, Jastrow. But how reconcile the strong interactions with a shell-
model. These were the problems some 60 years ago.



| first met Gerry at least 55 years ago but | never worked
directly with him but interacted with him in various ways
over the years. In 1959 he was my opponent at my PHD
defense in Uppsala. Last time we met was, | believe, at
Osnes’ retirement in Oslo (2008). He told me after my talk
that | should have “spruced it up”. I'll try today.

He was a good friend.



Gerry had many collaborators not only among his
own students. He was always able to make others
interested in problems he considered important.
That was one of his strengths.

Most of his publications were with co-authors.

t is not possible to cover more than a small
fraction of his work on many body physics in a
short talk.




One of the great discoveries in Nuclear Theory was the

Nuclear Shell Model.|(Nobel 1963)

How could it be understood knowing that the NN-forces
are strong, consistent with Liquid drop models.
Another unsolved problem:|Nuclear Saturation.

The stage was set for someone to come up with a
many-body theory of nuclear structure.

Gerry Brown’s (and other’s) nuclear structure work was
based on the[Brueckner theory.

| will review this theory briefly.




Related to the shell-model is the optical model from
the 50’s, which pictured nucleons moving in a mean
field. It was successfully explained by Watson as a
multiple scattering problem with elementary
scatterings being via T-matrices.

This idea was picked up by Brueckner. Maybe a nuclear
many body theory for bound states could be built on
the T-matrix, instead of a NN-potential interactions.




But the T-matrix is complex

1 .
T=v+v ——T~esiné
ks —k'“ +in
t seemed to make sense to instead use the
Reactance matrix (R-matrix) which implies a

orincipal value integration

replacing the interaction potential with an
“effective” interaction

V(k)~tano(k)




This idea had some degree of success.

BUT, the R-matrix refers to a scattering problem

with boundary problems different from that of a bound
state. It is fairly easy to show that putting two particles in
a box, square or Harmonic oscillator (Busch) the binding

energy Is

not ~tan o
In the scattering problem one has a continuum set of

states but in the bound state problem one has a discrete
set of states.



“Infinite” nuclear matter still implies a bound state
problem. Summation over a[discrete]set of states no
matter how dense is different from integration over a

continuuml (de Witt, Watson, Newton,1956).

The difference between 6 and tan o is of course
small for small 8. With large scattering lengths and
0 = m/2 it does make a big difference.

The Busch formula expresses the binding energy of
two nucleons in an oscillator well in terms of phase-
shifts.l recently showed that the SHIFT in energy in
this case is also given by 0. (Arxiv 2011)
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Two Particles in a Trap

H. S. Kohler
Physics Department, University of Arizona, Tucson, Arizena 85721, USA

Abstract

The Busch-formula relates the energy-spectrum of two point-like particles interacting in a 3-D isotropic
Harmonic Oscillator trap to the free scattering phase-shifts of the particles. This formula is used to find an
expression for the shift in the spectrum from the unperturbed (non-interacting) spectrum rather than the
spectrum itself. This shift is shown to be approximately A = —d(k) /7 x dE, where dF is the spacing between
unperturbed energy levels. The resulting difference from the Busch-formula is tvpically < %% except for the
lowest energy-state and small scattering length when it is 3%. It goes to zero when the scattering length
—r O0.

The energy shift A is familiar from a related problem, that of two particles in a spherical infinite square-
well trap of radius R in the limit R — oc. The approximation is however as large as 30% for finite values of
R, a situation quite different from the Harmonic Oscillator case.

The square-well results for R — oo led to the use of in-medium (effective) interactions in nuclear matter
calculations that were o« A and known as the phase shift approrimation . Our results indicate that the
validity of this approximation depends on the trap itself, a problem already discussed by DeWitt more than
50 vears ago for a cubical vs spherical trap.

Introduction



The 6 — (phase-shift) approximation of the

effective interaction is good if medium effects
can be neglected.

This is true at low density AND for ‘weak’
interactions for example large angular
momenta, [ = 4 or larger.



What about medium, many body effects. We deal
with a fermion-system. The summation over
intermediate states cannot include occupied states. So
modified effective interaction:

K=v+2vk *_K

This was the second Brueckner approximation.
Note that K now is real. No integration over a pole.
No discrete-continuum controversy.

(Problem at fermi-surface. BCS.)




‘Mean Field Correction ‘

But Brueckner then realized that nucleons move in
a mean field U(k),

consistent with the shell-model,

so that energies would be not

e(k) = k*

but rather

e(k) = k2 + U(k)




Result:IBrueckner Reaction Matrix:

_ Q
K = v+2ve(k)_e(k,)1(

Total energy (first order):
Er =X k*+:YK

Mean field:

U(k) =) K |Brueckner self-consistency:.



What has been achieved?

The interaction[v)with a strong short-ranged
repulsion has been replaced by a ‘smooth’
effective interaction, the Reaction matrix/K ]

Two modifications of the T-matrix were made

1. Pauli-operator
2. Mean field.




The K-matrix sums ladder and mean-field propagations to
all orders. Infinite nuclear matter calculations show
saturation and binding energy remarkable well.
Important physics is included in this first order in K
approximation. Improved results can (in principle) be
obtained by higher orders.

't is a zero-width approximation. Spectral widths are
included Green’s function calculations but show little
difference in calculated values.




Calculations by Brueckner and coworkers for infinite
nuclear matter as well as finite nuclei were very
oromising.

Binding energies and saturation properties were
remarkably well reproduced suggesting that
important physics was included.

Other calculations were made also including higher

order terms.




Typical Energy-diagrams included in first order
K-matrix calculation

“Dispersion Correction”

Finite
System



Correlated pair



An important paper on nuclear matter was Brown
Schappert and Wong in 1964.

Gerry was also much interested in nuclear matter
and compressibility in his work with Hans Bethe
oh supernova explosions.




BINDING ENERGY OF NUCLEAR MATTER

G. E. BROWN' and G. T. SCHAPPERT
Department of Physics, Massachusetts Institute of Technology
and
C. W. WONG

Harvard University
and
University of Minnesota

Received 17 February 1964

Abstract: Various calculations of the binding energy of nuclear matter are discussed. The question
of off-the-energy shell propagation is considered in detail. Numerical approximations made in
the calculations are investigated and it is shown that they are such as to give too much binding
energy, so that the present discrepancy between theoretical and experimental values is worsened.



A SIMPLIFIED EQUATION OF STATE NEAR NUCLEAR DENSITY

H.A. BETHE*
W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA

G.E. BROWN™* and J. COOPERSTEIN**
Physics Department, State University of New York, Stony Brook, New York 11794, USA
and
JAMES R. WILSON***

Lawrence Livermore National Laboratory, Livermore, California 94550, USA
Received 14 December 1982

Abstract: The equation of state near nuclear density influences shock formation in stellar collapse
supernovae. The drop in the adiabatic index below 3 in this region, due to the negative nuclear
pressure, disturbs the homology of the inner core and decreases its size. The initial shock energy
and formation dynamics are particularly sensitive to matter in this regime.

Only matter at low entropies (§ = 1.5) in the unshocked inner core approaches nuclear densities.
We derive a simple equation of state for this material and find that nuclear properties are close
to those at § = 0. The entropv associated with the nuclear surface can be absorbed into an “effective
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CALCULATION OF 'O BINDING ENERGY

R} J. McCARTHY and H. S. KOHLER
Rice University, Houston, Texas?

Received 13 February 1967

Abstract: The binding energy of 150 has been calculated for the Hamada-Johnston and Brueckner-
Gammel-Thaler potentials using an approximation scheme similar to the reference spectrum
method. A first-order appreximation to the K-matrix is obtained by neglecting both the Pauli
principle and the potential energy in intermediate states. The only correction term calculated is
that due to the Pauli principle but the method can be extended to include a more general energy
spectrum. Harmonic oscillator wave functions are used to describe the single-particle orbitals
and a self-consistent calculation of the K-matrix elements is made for several values of the oscil-



From the energy diagrams the mean field and
effective interaction diagrams are obtained by
first and second order functional derivatives

: OE .. 0 E
U(i) = and | Verr(i,)) = 5107




Mean-field diagrams



Effective Interaction

First order| | Core polarisation |

NI
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ROLE OF CORE POLARIZATION IN TWO-BODY INTERACTION

GEORGE F. BERTSCH 't
Palmer Physical Laboratory, Princeton, New Jersey tt

Received 28 May 1965

Abstract: The correction to the interaction of two valence particles in *O and **Sc, due to pertur-
bations of the closed shell wave functions, is calculated and found to be as large as 30 % of the
first-order interaction. The analitative behaviour of this interaction is: attractive for T = 1.



(a) (b) (c)

Figure 1. Second- and higher-order core polarization diagrams.
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STRUCTURE OF FINITE NUCLEI AND THE FREE NUCLEON-NUCLEON
INTERACTION
An Application to '*0 and '°F

T. T. S. KUO and G. E. BROWN
Palmer Physical Laboratory, Princeton University, Princeton, New Jersey t

Kuo-Brown interaction

Received 4 March 1966

Abstract: The intention of this work is to investigate the applicability of the free nucleon-nucleon
potential determined by the scattering data in the shell-model description of finite nuclei. The
potential is chosen to be that of Hamada and Johnston. We have chosen 0 and **F as our
first numerical calculations. A major part of the work reported here concerns the evaluation of
the shell-model reaction matrix elements. They are evaluated using the separation method for
the singlet-even and triplet-even states and the reference spectrum method for the singlet-odd
and triplet-odd states. The second-order Born term for the triplet-even tensor force is found to

be very important. It can be calculated conveniently and with good accuracy using the closure
I Teee————— e e T T £ —aan : : -
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2.1. THE SEPARATION METHOD

The separation method was first introduced by Moszkowski and Scott for evaluat-
ing the reaction matrix elements in nuclear matter 25-2°), The idea is to divide the
potential Vinto two parts, the short-range part ¥, and the long-range part V. Namely

V=VvVeod-—-r)+ V. 0(r—d), (2.16)

where 0(x) is the step function which equals to one if x > 0 and zero otherwise.
Roughly speaking, the separation distance d is chosen so that the attractive part of
V, balances the repulsive core. Then what remains is essentially V. Let us choose the
approximate reaction matrix and wave operator as

G, =V.—V. LG, (2.17)

€A

Kuo-Brown paper



ANNALS OF PHYSICS: 11, 65-115 (1960)

Nuclear Forces and the Properties of Nuclear Matter™
S. A, Moszrowskl AND B. L. Scorr

UTnzversity of California, Los Angeles, California

The application of the Brueckner theory to the nuclear many-hody prob-
lem can be greatly simplified if one separates the two-nucleon interaction
(for any given state and relative momentum) into a short range part v, and
a long range part »; . The cut is made such that », alone gives no phase shift
for free particle scattering. If the separation is made in this way, then the

L
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78 MOSZKOWSKI AND SCOTT
which gives Dispersion correction, 3-body term
Atoo(D) = 2AUT,, (11-62)
where
Wound-integral I, = f(‘lf" — 1)*dr (1I-63)

for a pair with zero relative momentum.
We sum over the Fermi sea, making the same assumptions as in the calculation

of the Pauli correction. Then:

AE(D)  k/f

T = 4—11_23500(9); (11-64)
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ANNALS OF PHYsICs: 16: 375-386 (1961)

On the Separation Methed for Calculating
the Nuclear Reaction Matrix”

H. 8. KOHLERT

University of California, Los Angeles, California

The separation method for caleulating the nuclear reaction matrix that was
presented by Moszkowski and Scott (7) has been investigated. Estimates are
made which suggest that their dispersion, interference, and Pauli corrections
are underestimated. A modification in the treatment of these terms is presented

that gives considerable improvement. Our treatment also permits good insight

S R U A N I U U 3 M. G Ny FR R Ny S [ J R
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justified to make more exact calculations following the suggestions in this
paper.’

We summarize the approximation for ¥ that we have derived

GV =G 40+ (97 - De(@Q — DS — 1)
+ (27 = ey — (" — 1) + 20Q(%" — 1) + ei(Q/e)e; .

The separation distance should be chosen so that ¢, is small or zero. Still
better results would probably be obtained by following the somewhat more
elaborate approximation scheme in the preceding chapter.

‘nally we wish to point out that the value of an approximation of the k
presented i this paper is not only in its aceuracy but also in the better under-
standing of the problem that 1t makes possible. A treatment of desired accuracy
can nowadays be achieved with enough effort of an electronic computer.

(23)

“Exact results by Monte Carlo. A\CKNOWLEDGEMENTS




A many body problem is always a two-part problem:
1. Interactions between particles e.g. 2-,3- etc interaction

potentials.

2. A many body theory.

The theory of nu
oroblem. (Mach

clear forces has been a long-standing
eidt).It is easy to construct potentials that

fit NN phase-shifts e.g. by inverse scattering and separable
potentials. But that is in general not enough. Off-shell

scattering information is needed in the many-body system.
This was emphasized already in the 1964 paper by G E
Brown,Schappert and Wong.




BINDING ENERGY OF NUCLEAR MATTER

G. E. BROWN'T and G. T. SCHAPPERT
Department of Physics, Massachusetts Institure of Technology
and
C. W. WONG

Harvard University
and
University of Minnesota

Received 17 February 1964

Absiract: Various calculations of the binding energy of nuclear matter are discussed. The gquestion
of off-the-energy shell propagation is considered in detail. Numerical approximations made in
the calculations are investigated and it is shown that they are such as to give too much binding
energy, so that the present discrepancy between theoretical and experimental values is worsened.

1. Imtroduction

Many calculations of the binding energy of nuclear matter have now been carried
out. Since each is done with different methods, they cannot be cross-checked in detail,

- - - - - —— -~ - -



t can however be argued that for low-energy nuclear
oroblems the high energy component of the interaction
should be irrelevant. The low and high energy
components are separated in The Moszkowski-Scott
separation method shown earlier. The effect of high
energy (short-ranged) correlations was contained as a
correction: The ‘dispersion term’, thatis proportional
to the product of ‘correlation volume” and the mean
field.

A comparison with V. & | is of interest.
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.. Low momentum nucleon-nucleon potential
Th|S IS VlOW k and shell model effective interactions

Scott Bogner!, T. T. S. Kuo!, L. Coraggio?, A. Covello? and N. Itaco?
! Department of Physics, SUNY, Stony Brook, New York 11794, USA
2 Dipartimento di Scienze Fisiche, Universita di Napoli Federico II and
Istituto Nazionale di Fisica Nucleare, [-80126 Napoli, Italy
(February 9, 2008)

A low momentum nucleon-nucleon (NN) potential Vigw_ is derived from meson exhange po-
tentials by integrating out the model dependent high momentum modes of Vyn. The smooth
and approximately unique Vis.w—5 is used as input for shell model calculations instead of the usual
Brueckner G matrix. Such an approach eliminates the nuclear mass dependence of the input interac-
tion one finds in the G matrix approach, allowing the same input interaction to be used in different
nuclear regions. Shell model calculations of *0O, " Te and '*°I using the same input Viw_x have
been performed. For cut-off momentum A in the vicinity of 2 fm ™', our calculated low-lying spectra
for these nuclei are in good agreement with experiments, and are weakly dependent on A.

21.60.Cs; 21.30.Fe; 27.80.4j
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Towards a model-independent low momentum
nucleon-nucleon interaction

S.K. Bogner®!, T.T.S. Kuo®?2, A. Schwenk %3,

D.R. Entem ? and R. Machleidt ?

* Department of Physics and Astronomy, State University of New York,
Stony Brook, NY 11794-3800
bDepartment of Physics, University of Idaho, P.O. Box 440903,
Moscow, 1) 83844-0903

Abstract

We provide evidence for a high precision model-independent low momentum nucleon-
nucleon interaction. Performing a momentum-space renormalization group decima-
tion, we find that the effective interactions constructed from various high precision



't is to be expected that high-momentum cut-offs
would not affect nuclear structure results.

Compare the cut-off in coordinate space in the
separation method.

The near equivalence of V;,,,—r and the MS separation
method was shown by/J W Holt and Gerry Brown.

A more fundamental approach is EFT originated by
Weinberg. (Phys. Lett. 251B (1990) 288.) Not
surprisingly, Gerry Brown was consulted.




Effect of momentum cut-off

Binding energies in singlet and triplet states will be shown below.
Separable potentials are calculated by inverse scattering using the experimental phase-
shifts and the Deuteron parameters as the only input.

Results of Brueckner calculations are presented as a function of the cut-off in momentum-space.

One finds that the diagonal elements in momentum-space of these potentials (Singlet-S will be shown)
are functions of the cut-off although fitted to the same input.

The potentials are of course in themselves meaning-less in the sense of physics as they are not observables.




Vik,k) [fm]

0 1 2 3 4 5 6 7 8 9 10
k (1/fm)

Separable Potential as a function of cutoff



Potential energies as a function of cut-off

“Dispersion correction”

ﬂ:
S . Singlet
E 1 T i
E 1L ,i T T .« Triplet
E—E’._'I- \\ .
-t No Mean field
T I —— -

2 1 2 3 4 5 B8 7 8 9 10
CUTOFF {1/fm)

FIG. 1. Effects of the selfconsistent mean field {dispersion-correction). There are three sets of curves. The uppermaost set
shows the contribution to the potential energy per particle from the ' 5 state, the middle from the *5) and the bottom includes
all {21) states. In each set of curves the lower curve is without the mean field U7{k) while the upper & with V(&) included in
the caleulation. The difference between these two curves is the dispersion correction, which is seen to decrease as the cutoff A
decreases below A ~ 3.0fm ! and approaches zero as A — kr = 1.35fm L.

Fig. 3 shows the importance of the dispersion correction in providing saturation in a Brueckner calculation of the
binding energy. The separable mmteraction without any cut-off 13 used here. The upper curve 1= the full Brueckner
calculation, while in the lower the selfenergy U7(k) is neglected so that the only many-body effect comes from the

-operator. .
MThie Fect of the Bich maesmentaam c1it-cfF = fhoartbher 1lhastrated B Faoe 4 Wil A 0 &F Fr— 1 8hes nhaerschifis for all




2.0

_ 15 Triplet
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E é‘t
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T 1.0 —_—
A=938 =
=
0.5
Q.0 T d d T
o 1 2 3 4 5
RADIUS (fm)
4
Figure 5: The straight line is the uncorrelated wavefunction @ at & = 0. The lower curve shows the correlated
1Sy while the upper is the correlated 35 wavelinction ¥ for a relative momentum k& = 0, a center of mass
momentum P = 0 and cut-off A = 9.8fm—!. Note the "healing®’. For the singlet case this gives a & = .021 and
for the triplet one gets & = 020 For small radius W — (0 and this is evidence of a short-ranged repulsion.

2.2 Depletion factor «

Singlet and triplet NN-correlations
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Figure 8: The straight line is the uncorrelated wavefunction @ at & = 0. The lower curve shows the correlated
15s and the upper the correlated 2.5, wavefunction ¥ for a relative momentum &k = 0, center of mass momentum
FP =0 and A = 2.0. Compare with the singlet case 1in Fig. for A = 9.8. Here Kk = 015 for the 'S5y less than
the wvalue for A = 9.8 consistent with the independently caleulated average wvalue of & for shown in the Table
below. Compare also with the triplet case in Fig. tor A = 9.8. In this case k.. = 013 There is no evidence of

a short-ranged repulsion for this value of A = 2.0.

Singlet and triplet correlations



In Vi,w—xr One seeks a minimal momentum
cut-oft A.

From the results above one would conclude that
A > 3 fm™! is necessary, otherwise the
correlations, the dispersion term is lost.






Predictive power! Not only reproduce known experimental data.

EFT
DFT?
Microscopic models

No Core
Skyrme — non-local interaction

Mass Formula Macroscopic model

High Density

Tensor component

Quantum Transport



