45 years of Nuclear Theory @ Stony Brook, Roy A. Lacey, Stony Brook University, Nov. 25, 2013

1

Celebrating Gerry's Life

A few thoughts about Gerry:

- I. "Most people say that it is the intellect which makes a great scientist. They are wrong: it is character."
 - Albert Einstein -
 - II. "The scientist does not study nature because it is useful; he studies it because he delights in it, and he delights in it because it is beautiful." - Henri Poincare -

"Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less."

New insights from flow measurements in heavy ion collisions Roy A. Lacey Stony Brook University

Motivation

□ Introduce acoustic property of anisotropic flow

□ Validate acoustic scaling property

- ✓ Constraints for initial state fluctuations
- \checkmark Extract $\frac{\eta}{s}$ from scaling coefficients

□ Show & discuss beam energy dependence of viscous damping

- \checkmark (*T*, $\mu_{\rm B}$)-dependence of $\frac{\eta}{s}$
- ✓ Critical End Point :(CEP)?

□ Summary

A Current Focus of our Field

Quantitative study of the QCD phase diagram

<u>Interest</u>

- > Location of the critical End point (CEP)
- Location of phase coexistence lines
- Properties of each phase
- All are fundamental to the phase diagram of any substance

Spectacular achievement:

Validation of the crossover transition leading to the QGP → Necessary for the CEP?

A major current focus is the characterization of the QGP produced at RHIC and the LHC, as well as a search for the CEP at RHIC

> 45 years of Nuclear Theory @ Stony Brook, Roy A. Lacey, Stony Brook University, Nov. 25, 2013 4

Current Strategy

Exploit system size and the energy density lever arm

> LHC \rightarrow access to high T and small μ_B

> RHIC → access to different systems and a broad domain of the (µ_B, T)-plane RHIC_{BES} to LHC → ~360 √s_{NN} increase

LHC + BES → access to an even broader domain of the (μ_B,T)-plane

45 years of Nuclear Theory @ Stony Brook, Roy A. Lacey, Stony Brook University, Nov. 25, 2013 5

Essential Questions

- ✓ (*T*, $\mu_{\rm B}$)-dependence of transport coefficients $\langle c_s \rangle$, $\left\langle \frac{\eta}{s} \right\rangle$?
- ✓ The role of system size and fluctuations?
- ✓ Location of phase boundaries?
- ✓ Indications for a CEP?

60 80 100 P (MPa) 200 120 150 S/11(14) 50 20 3.0--0.4 -0.2 0.0 0.2 0.4 0.6 (T-T_CON)/T_CON At the CEP or close to it, anomalies in

A 120

통

 $\frac{T-T_{rep}}{T} \sim 0 - 0.3$

At the CEP or close to it, anomalies in the dynamic properties of the medium can drive abrupt changes in transport coefficients *The acoustic nature of flow leads to specific scaling patterns which :*

- I. Give profound mechanistic insight on viscous damping
- II. Provide constraints for
 - ✓ initial state geometry and its fluctuations
 - ✓ *Extraction of the specific viscosity*
 - ✓ (µ_B, T) dependence of the viscous coefficients
 ♦ Hints for a possible critical point?

 $\frac{n^2 \text{ dependence}}{\frac{v_n(p_T)}{\varepsilon_n}} \propto \exp\left(-\beta' n^2\right)$

 $\frac{v_n \text{ is related to } v_2}{\frac{v_n(p_T)}{v_2(p_T)} = \frac{\varepsilon_n}{\varepsilon_2} \cdot \exp\left(-\beta'(n^2 - 4)\right)}$

System size dependence $\ln\left(\frac{v_n}{\varepsilon_n}\right) \propto \frac{-\beta''}{\overline{R}}$

Each of these scaling expectations has been validated

> A quick review of the data?

45 years of Nuclear Theory @ Stony Brook, Roy A. Lacey, Stony Brook University, Nov. 25, 2013

High precision double differential measurements obtained for higher harmonics at RHIC and the LHC.

arXiv:1305.3341

An extensive set of measurements now span a broad range of beam energies (T, μ_B).

High precision double differential measurements obtained for identified particle species at RHIC and the LHC.

Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Event-by-Event v₂ measurements obtained via 2PC followed by unfolding.

 v₂ described by Bessel-Gaussian distribution: Contribution from mean geometry+fluctuations.

> 45 years of Nuclear Theory @ Stony Brook, Roy A. Lacey, Stony Brook University, Nov. 25, 2013

 $q_{2(Lo)}$

High precision double differential measurements obtained for shape-engineered events at RHIC and the LHC;
 → Sizable variation of v_n at a given centrality due to fluctuations

45 years of Nuclear Theory @ Stony Brook, Roy A. Lacey, Stony Brook University, Nov. 25, 2013

Do the wealth of anisotropy measurements show a consistent scaling pattern?

> What do we learn from these scaling patterns?

Geometric quantities for scaling

- Geometric fluctuations included
- Geometric quantities constrained by multiplicity density.

Geometric quantities for scaling

Characteristic n² viscous damping validated
 Characteristic 1/(p_T)^α dependence of extracted β values validated
 Constraint for η/s and δf

rs of Nuclear Theory @ Stony Brook, Roy A. Lacey, Stony Brook University, Nov. 25, 2013 19

Scaling properties of flow

Acoustic Scaling of shape-engineered events

 Characteristic 1/R viscous damping validated for different event shapes at the same centrality
 A further constraint for initial fluctuations model and η/s

Scaling properties of flow

Acoustic Scaling – Ratios arXiv:1105.3782 (a) (b) 10-20% $(v_3)/(v_2)^{3/2}$ 3 ł 2 $v_n(p_T)$ $= \frac{\varepsilon_n}{\varepsilon_2} \exp\left(-\beta'(n^2 - 4)\right)$ $v_2(p_T$ 0 2 3 2 3 1 P_T (GeV/c) P_T (GeV/c) $v_n(p_T) \propto \left[v_2(p_T)\right]^{n/2}$ p₊ (GeV/c) (d) (c) 0.63 12 4 0.88 Ŧ 1.13 $(v_3)/(v_2)^{3/2}$ N ω 1.63 2 The expected relation 2.15 between v_n and v_2 is 2.75 validated з 1 0 n 100 200 300 100 200 300 N_{part} Npart

45 years of Nuclear Theory @ Stony Brook, Roy A. Lacey, Stony Brook University, Nov. 25, 2013

23

Flow is partonic & Acoustic?

For partonic flow, quark number scaling expected \rightarrow single curve for identified particle species v_n

ers of Nuclear Theory @ Stony Brook, Roy A. Lacey, Stony Brook University, Nov. 25, 2013 24

Acoustic Scaling – Ratios

Extraction of η/s

 $\frac{v_n(p_T)}{2} \propto \cdot \exp\left(-\beta' n^2\right)$ \mathcal{E}_n

Scaling properties of flow

✓ Characteristic $1/\overline{R}$ viscous damping validated across systems → Similar mechanism

Clear system size dependence of $\beta^{"} \rightarrow$ signature of dilute fluid?

45 years of Nuclear Theory @ Stony Brook, Roy A. Lacey, Stony Brook University, Nov. 25, 2013

Summary

Scaling properties of anisotropic flow lend profound mechanistic insights, as well as new constraints for transport coefficients

What do we learn?

Flow is acoustic – "as it should be"

> Obeys the dispersion relation for sound propagation $\sqrt{(n^2 \& 1/\overline{R})}$ > constraints for $4\pi\eta/s$

✓ 4πη/s for RHIC plasma ~ 1.3 ± 0.2
 ✓ 4πη/s for LHC plasma ~ 2.2 ± 0.2
 ✓ Extraction insensitive to initial geometry model

> Characteristic dependence of β on beam energy give constraints for:

✓ (T, μ_B)-dependence η/s
 ✓ Indication for CEP??

45 years of Nuclear Theory @ Stony Brook, Roy A. Lacey, Stony Brook University, Nov. 25, 2013

End

Essential Questions

> LHC \rightarrow access to high T and small μ_B

➢ RHIC → access to different systems and a broad domain of the (µ_B,T)-plane RHIC_{BES} to LHC → ~360 √s_{NN} increase

An Essential Question

> Does the value of $\frac{\eta}{s}$ depend on the initial geometry model or the method of extraction?

Acoustic Scaling – 1/R

37

