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Outline

I motivation

I theoretical setup:

- Functional Renormalization Group (FRG)

- analytic continuation from imaginary to real time

I results for the O(4) model at T = 0

I results for the quark-meson model at T > 0 and µ > 0

I summary and outlook

November 24, 2013 | TU Darmstadt | Jochen Wambach | Real Time Spectral Functions from the FRG | 3



Motivation

I FRG well suited for the description of critial phenomena ! phases of QCD matter

I formulated in imaginary time ! no spectral information (Minkowski space-time)

I problem for real-time observables: analytic continuation

- e.g. Lattice QCD: numerical reconstruction of real-time correlation functions (MEM),

difficult if Euclidean data is not dense and precise enough

I we use non-perturbative FRG flow equations for two-point correlation functions

and perform the analytic continuation on the level of the flow equations
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Functional Renormalization Group
a primer
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Functional Renormalization Group
Wilsonian coarse graining

at given resolution scale k split � into low- and high-frequency modes:
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Functional Renormalization Group
flow equation C. Wetterich (1993)

flow equation for the effective action:
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[C. Wetterich, Phys. Lett. B301 (1993) 90]

The average action �k corresponds to an integration over all modes of the quantum fields with
Euclidean momenta larger than the infrared cuto� scale, i.e., q2 > k2. The modified Legendre
transform guarantees that the only di�erence between �k and � is the e�ective IR cuto� �kS
and thus only quantum fluctuations with momenta larger than k are included.

Figure 4.33: The e�ective average action �k as an interpolation between the bare action in the
UV and the full e�ective action � in the IR.

In the limit k � 0, the infrared cuto� is removed and the e�ective average action becomes
the full quantum e�ective action � containing all quantum fluctuations. Thus, for any finite
infrared cuto� k the integration of quantum fluctuations is only partially done. The influence of
modes with momenta q2 < k2 is not considered. This scenario is visualized in Fig. 4.33 where
the k-dependent e�ective average action �k as an interpolation between the bare action in the
ultraviolet and the full e�ective action in the infrared is shown.

In the limit k � � the e�ective average action matches the bare or classical action. In a
theory with a physical UV cuto� �, we therefore associate �k=� with the bare action because no
fluctuations are e�ectively taken into account. As the scale k is lowered, more and more quantum
fluctuations are taken into account. As a consequence, �k can be viewed as a microscope with a
varying resolution whose length scale is proportional to 1/k. It averages the pertinent fields over
a d-dimensional volume with size 1/kd and permits to explore the system on larger and larger
length scales. In this sense, it is closely related to an e�ective action for averages of fields, hence
its denotation as e�ective average action becomes manifest. Thus, for large scale k one has a
very precise spatial resolution, but one also investigates e�ectively only a small volume 1/kd.
For lower k the resolution is smeared out and the detailed information of the short distance
physics is lost. However, since the observable volume is increased, long distance e�ects such as
collective phenomena which play an important role in statistical physics become more and more
visible.

The ’decimation’ idea, presented above, is in close analogy to a repeated application of the
so-called block-spin transformation on a lattice invented by Kadano� et al. [649]. This trans-
formation is based on integrating out the fluctuations with short wavelengths and a subsequent
rescaling of the parameters which govern the remaining long-range fluctuations such as the mass,
coupling constant etc. On the sites of a coarse lattice more and more spin-blocks are averaged
over. Hence, in the language of statistical physics, the e�ective average action can also be
interpreted as a coarse grained free energy with a coarse graining scale k.

189
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O(4) Model
flow equation

effective action: (’Local Potential Approximation’)
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O(4) Model
flow equations for 2-point functions

taking two functional derivatives of the flow equation for �
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approximation:
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and yields Nambu-Golstone boson in the chiral limit
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O(4) Model
analytic continuation

I first solve flow equation for the effective potential, @
k

U

k

I substitute p0 by continuous real frequency !

�(2),R
k ,j (!) = lim

✏!0
�(2),R

k ,j (p0 = �i(! + i✏),~p = 0); for j = ⇡,�

I then solve flow equations Re @
k

�(2),R
k

, Im @
k

�(2),R
k

at global minimum of U

k!0

I finally, spectral functions are given by discontinuity of the propagators, i.e.

⇢
j

(!) = � 1
⇡

Im �(2),R
j

(!)
⇣

Re �(2),R
j

(!)
⌘2

+
⇣

Im �(2),R
j

(!)
⌘2 ; �(2),R

j

(!) = lim
k!0

�(2),R
k ,j (!)

November 24, 2013 | TU Darmstadt | Jochen Wambach | Real Time Spectral Functions from the FRG | 10



Results for O(4) Model in vacuum
Re �(2),R(!) and Im �(2),R(!)
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[K. Kamikado, N. Strodthoff, L. von Smekal and J. Wambach, arXiv:1302.6199 [hep-ph]]
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Results for O(4) Model in vacuum
spectral functions

sigma and pion spectral functions
physical pion mass
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Spectral Functions in a Thermal Medium
Quark-Meson Model

effective action:
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I effective low-energy model for QCD with two flavors

I describes spontaneous and explicit chiral symmetry breaking

I flow equation for the effective action:
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Spectral Functions in the Medium
phase diagram, masses and order parameter
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[R.-A. Tripolt, N. Strodthoff, L. von Smekal and J. Wambach, arXiv:1311.0630 [hep-ph]]
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Spectral Functions in the Medium
flow of the two-point functions

I quark-meson vertices given by �(2,1)
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Results for Quark-Meson Model
spectral functions at µ = 0
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Results for Quark-Meson Model
spectral functions at µ = 0
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Results for Quark-Meson Model
spectral functions at µ = 0
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Results for Quark-Meson Model
spectral functions at µ = 0

0 100 200 300 40010-4

0.01

1

100

@LUV-2 D T=200 MeV

rsrp

3

5

6

0 100 200 300 400 w @MeVD10-4

0.01

1

100

@LUV-2 D
T=250 MeV

rsrp

3

6

1: �0 ! ��

2: �0 ! ⇡⇡

3: �0 !  ̄ 

4: ⇡0 ! �⇡

5: ⇡0⇡ ! �

6: ⇡0 !  ̄ 

[R.-A. Tripolt, N. Strodthoff, L. von Smekal and J. Wambach, arXiv:1311.0630 [hep-ph]]

November 24, 2013 | TU Darmstadt | Jochen Wambach | Real Time Spectral Functions from the FRG | 19



Temperature Evolution
animation
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Results for Quark-Meson Model
spectral functions at finite µ
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Results for Quark-Meson Model
spectral functions at finite µ
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Results for Quark-Meson Model
spectral functions at finite µ
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Results for Quark-Meson Model
spectral functions at finite µ
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Summary and Outlook

I presented a tractable method to obtain hadronic spectral functions

at finite T and µ from the FRG

I involves analytic continuation from imaginary to real frequencies

at level of flow equations for 2-point functions

I results reveal complicated structure for in-medium spectral functions

I inclusion of finite external spatial momenta will allow for

calculation of transport coefficients like shear viscosity
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