
G.E. Brown Memorial Conference          Stony Brook University          24 November 2013

 Nuclear Chiral Dynamics and Thermodynamics

Wolfram Weise

European Centre for Theoretical Studies 
in Nuclear Physics and Related Areas,       Trento

and 

Technische Universität München

Gerald E. Brown
1926 - 2013

By OLIVIA WINSLOW  olivia.winslow@newsday.com

Photo credit: Stony Brook University | Theoretical physicist Gerald E. Brown, who lived in East Setauket, died May 31, 2013, at
Stony Brook University Hospital from complications of pneumonia. He was 86. Newsday's obituary for Gerald E. Brown

Theoretical physicist Gerald E. Brown already was a renowned
scientist at Princeton University when the legendary C.N. Yang, a
Nobel Prize winner working to build the physics department at Stony
Brook University, lured him to Long Island in 1968.

Galleries

Newsday.com features

advertisement | advertise on newsday

Hide Toolbar 

Follow us Submit RSS Today's most popular My headlines Register Log in

Theoretical physicist Gerald E. Brown, 86 http://www.newsday.com/long-island/obituaries/theoretical-physicist-gerald-e-brown-86-1.5...

2 of 7 11/20/13 3:54 PM

De!cated to Gerry
wi" deep gratitude



B 48 (1974) 297

B 58 (1975) 300

Memo#es of 
"e  Seventies ... 



∆

N − hole

N − hole

∆



... and  of 
"e  Eighties

60 (1988) 2723

CORE CLOUD



B 200 (1988) 37



ar
X

iv
:1

30
4.

63
50

v1
  [

nu
cl

-th
]  

23
 A

pr
 2

01
3

Nuclear Chiral Dynamics and Thermodynamics

Jeremy W. Holt1, Norbert Kaiser2, Wolfram Weise2,3

1Physics Department, University of Washington, Seattle, WA 98195-1550, USA
2Physik-Department, Technische Universität München, D-85747 Garching, Germany

3ECT∗, Villa Tambosi, I-38123 Villazzano (Trento), Italy

April 24, 2013

Abstract

This presentation reviews an approach to nuclear many-body systems based on the sponta-
neously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and
momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is
realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources
(nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hier-
archy of one- and two-pion exchange processes in combination with Pauli blocking effects in the
nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typi-
cal nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from
a set of low-energy constants associated with these contact terms, the parameters of this theory
are entirely determined by pion properties and low-energy pion-nucleon scattering observables.
This framework (in-medium chiral perturbation theory) can provide a realistic description of both
isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence
determined by the underlying chiral NN interaction. The importance of three-body forces is empha-
sized, and the role of explicit ∆(1232)-isobar degrees of freedom is investigated in detail. Nuclear
chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed.
This includes a successful description of the first-order phase transition from a nuclear Fermi liquid
to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc.
Density functional methods for finite nuclei based on this approach are also discussed. Effective
interactions, their density dependence and connections to Landau Fermi liquid theory are outlined.
Finally, the density and temperature dependence of the chiral (quark) condensate is investigated.

1 Introduction

Almost eight decades ago, Yukawa’s pioneering article [1] introduced the framework for a systematic
approach to the nucleon-nucleon interaction, based on the exchange of a boson identified later as the
pion. In the footsteps of Yukawa’s original work the next generation of Japanese theorists already made
impressive efforts to proceed from the long-range part of the interaction to shorter distances between
nucleons. A cornerstone of these developments was the visionary conceptual design by Taketani et al.
[2] of an inward-bound hierarchy of scales governing the nucleon-nucleon potential, sketched in Fig. 1.
The long distance region I is determined by one-pion exchange. It continues inward to the region II
of intermediate distances dominated by two-pion exchange. The basic idea was to construct the NN
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NUCLEAR MATTER   and  QCD PHASES

momentum scale:
Fermi momentum 

?

?

kF ! 1.4 fm
−1

∼ 2mπ

NN distance:  dNN ! 1.8 fm ! 1.3 m
−1

π

Scales in nuclear matter:

energy per nucleon:  E/A ! −16 MeV

compression modulus: K = (260 ± 30) MeV∼ 2mπ
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Fig. 8. (Left) The multi-Gaussian fit of the central potential VC(r) with NGauss = 5. (Right) The scattering
phase in 1S0 channel in the laboratory frame obtained from the lattice NN potential, together with experimental
data [38].

We solve the Schrödinger equation in the 1S0 channel with this fitted potential VC(r), in order to
calculate the scattering phase shift. Figure 8 (right) shows the scattering phase δ(k) in the laboratory
frame, together with the experimental data [38] for a comparison. A qualitative feature of the experi-
mental data is well reproduced by the lattice potential, though the strength is weaker, most likely due
to the heavier pion mass, mπ ! 701MeV. The scattering length obtained from the derivative of the
phase shift at k = 0 becomes a(1S0) = limk→0 tan δ(k)/k = 1.6(1.1) fm, which is compared to the
experimental value aexp(1S0) ! 20 fm.

4.5. Nuclear force in the odd parity sector and the spin-orbit force in full QCD
In this subsection, we consider the potentials in odd parity sectors. Together with nuclear forces
in even parity sectors, information on odd parity sectors is necessary for studying many-nucleon
systems with Schrödinger equations. In particular, we are interested in the spin-orbit (LS) force,
which gives rise to part of the spin-orbit coupling in the average single-particle potential of nuclei.
It is also expected to induce superfluidity in neutron stars by providing an attraction between two
neutrons in the 3P2 channel [13].
The LS force appear at the NLO of the derivative expansion as

[H0 + VC(r)(S,I ) + VT (r)S12 + VLS(r)L · S]ϕW (r; J−, I ) = EkϕW (r; J−, I ) (4.3)

To obtain the three unknown potentials, VC , VT , and VLS , we need three independent NBS wave
functions. We therefore generalize the two-nucleon source for odd parity sectors, by imposing a
momentum on the composite nucleon fields as

Jαβ(t0; f (i)) ≡ Nα(t0; f (i))Nβ(t0; f (i)∗) for i = ±1, ±2, ±3, (4.4)

where N denotes a composite nucleon source field carrying a momentum,

Nα(t0; f (i)) ≡
∑

x1,x2,x3
εabc(uTa (x1)Cγ5db(x2))qc,α(x3) f (i)(x3), (4.5)

with f (± j)(x) = exp[±2π i x j/L]. The star “*” in the r.h.s. of Eq. (4.4) represents the complex con-
jugation, which is used to invert the direction of the plane wave. A cubic group analysis shows that the
two-nucleon source Eq. (4.4) contains the orbital contribution A+

1 ⊕ E+ ⊕ T−
1 , whose main com-

ponents are S-, D-, and P-waves, respectively. Thus the two-nucleon source Eq. (4.4) covers all the
two-nucleon channels with J ≤ 2.
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Nuclear Forces

Hierarchy of 
SCALES

Early history:   M. Taketani et al.  (1951)

  Chiral Effective 
 Field Theory 

+ 
Lattice QCD

contact terms explicit treatment of 
two-pion exchange

contemporary approaches: 

NN Central Potential
from Lattice QCD

S. Aoki, T. Hatsuda, N. Ishii
 Prog. Theor. Phys. 123 (2010) 89
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Interacting systems of 
PIONS  (light / fast)  and  NUCLEONS  (heavy / slow):   

+ + . . .

π πN N

+

π π

Leff = Lπ(U, ∂U) + LN (ΨN , U, ...)

U(x) = exp[iτaπa(x)/fπ]

CHIRAL  EFFECTIVE  FIELD  THEORY

Construction of Effective Lagrangian: Symmetries
short

distance
dynamics:

contact terms

Systematic framework at interface of QCD and Nuclear Physics



NUCLEAR  INTERACTIONS  from
CHIRAL  EFFECTIVE  FIELD  THEORY  
 Weinberg                Bedaque & van Kolck             Bernard,  Epelbaum,  Kaiser,  Meißner;  . . . 
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Explicit DEGREES of FREEDOM∆(1230)

Large spin-isospin polarizability of the Nucleon

β∆ =
g2
A

f2
π
(M∆ − MN)

∼ 5 fm3

M∆ − MN " 2 mπ << 4π fπ

(small scale)

N N
π

π

∆

strong 3-body 
interaction

N

N

N

π

π

dominance of 

Pionic Van der Waals - type intermediate range central potential
N. Kaiser, S. Fritsch,  W. W. ,  NPA750 (2005) 259 N. Kaiser, S. Gerstendörfer,  W. W. ,  NPA637 (1998) 395

Vc(r) = −

9g2
A

32π2 f2
π

β∆

e−2mπr

r6
P(mπr)

J. Fujita, H. Miyazawa (1957) 

Pieper, Pandharipande, Wiringa, Carlson (2001) 
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N

∆

Figure 4: Left: Total π+p cross section in the region of the ∆(1232) resonance (adapted from [37]).
Right: Difference of polarized Compton scattering cross sections of the proton, σ3/2 and σ1/2, referring
to channels with total angular momentum 3

2 and 1
2 , respectively. Data taken from [38]. Curves represent

dispersion relation and multipole analysis cited in [38].

4.3 Role of Explicit ∆(1232) Degrees of Freedom

The standard version of chiral meson-baryon effective field theory works with pions and nucleons only,
both of which are stable particles with respect to the strong interaction. Effects of the ∆(1232) are
encoded in low-energy constants such as c3 and c4 that are determined either by pion-nucleon scattering
data or by fits to nucleon-nucleon phase shifts.

On the other hand, the mass difference between the ∆(1232) isobar and the nucleon is only about
0.3GeV ! 2mπ, yet another “small” scale compared to the chiral symmetry breaking scale, 4πfπ ∼
1GeV. This suggests incorporating the ∆(1232) as an additional explicit degree of freedom in the
effective field theory. In fact the ∆ isobar is by far the dominant feature in the excitation spectrum of
the nucleon observed in pion and photon scattering measurements. An example is the strong spin-isospin
excitation observed in pion-nucleon scattering (see Fig.4, left). The ∆(1232) is also seen prominently
in polarized Compton scattering on the proton (Fig.4, right).

In the low-energy expansion of the spin-independent πN scattering amplitude, the strong spin-isospin
response of the nucleon manifests itself in a large “axial” polarizabilty:

α(∆)
A =

g2A
f 2
π(M∆ −MN )

! 5 fm3 . (32)

Here the factor g2A/f
2
π comes from the axial vector coupling of the pion that drives the πN → ∆

transition. The mere magnitude of this polarizability, several times the volume of the nucleon itself,
already illustrates the importance of this effect.

When implemented in the nucleon-nucleon interaction, the ∆ isobar plays an important role in
two-pion exchange processes such as the one shown in Fig.5 (left). This mechanism contributes a large
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 Explicit DEGREES of FREEDOM  (contd.)∆(1230)

Kaiser et al. ,   Ordonez et al. 

Krebs,  Epelbaum,  Meißner  (2007)

Important physics of ∆(1230) promoted to NLO 

Improved convergence 
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Inclusion of chiral πN∆-dynamics
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Fermi Liquid Theory:
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Phys. Rev. C 87 (2013) 014338
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Phase diagram of nuclear matter: summary

T − ρ diagram
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J.W. Holt,  N. Kaiser,  W. W.   
Phys. Rev. C 87 (2013) 014338

NEUTRON  MATTER

In-medium chiral effective field theory (3-loop) with resummation of 
short distance contact terms (large nn scattering length, as = 19 fm)

perfect agreement with sophisticated many-body calculations
(e.g.  Quantum Monte Carlo  computations  (P.  Armani et al., arXiv:1110.0993) )

Neutron matter
behaves almost 
(but not quite) like
a unitary Fermi gas 

Bertsch parameter

ξ =

Ē

EFermi gas
! 0.5
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FIG. 4: (Color online) Energy per particle of neutron matter from chiral and low-momentum two-

and three-body interactions. The cutoff scale associated with the bare chiral nuclear potential is

Λ = 2.5 fm−1, while that of the low-momentum interaction is Λ = 2.1 fm−1. The curve labeled

“APR” is taken from the variational calculations of Akmal et al. [34], and the curve labeled “QMC”

is taken from the quantum Monte Carlo calculations in Refs. [39, 40].

two- and three-nucleon forces. We begin by considering the leading-order (free-space) con-

tribution from both the bare chiral N3LO NN interaction [19] as well as the low-momentum

NN potential Vlow-k [22, 23] obtained by integrating out momenta beyond the cutoff scale of

2.1 fm−1. We use the general formula in Eq. (9) for computing the first-order perturbative

contribution to the quasiparticle interaction as well as the projection formulas in Eq. (7)

for extracting the scalar functions f, g, and h. In Table IV we show the results for neutron T4

matter with a Fermi momentum of kf = 1.7 fm−1 corresponding to a density of ρ0 = 0.166

fm−3. In both cases the Fermi liquid parameters decrease rapidly in magnitude with L for

all channels. For larger values of L the difference between bare and evolved two-neutron

Chiral NN + 3N

V(low-k) + 3N

S. Gandolfi et al.
PRC80 (2009) 045802

Akmal et al. 1998

(T = 0)
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FIG. 1: Curve of constant baryon number nBaryons =
0.15 nnuclear in the Meson-Baryon model (solid black line).
The points with error-bars mark the chemical freeze-out as
obtained from the fits to experimentally measured particle
yields [3]. The red line marks the first order phase transition
to nuclear matter. The dashed and dashed-dotted lines indi-
cate an estimate for the range of applicability of our model.
More specific, in the region to the right of the dashed line the
relative contribution of pions to the pressure is smaller than
20%. In the region to the left of the dashed-dotted line the
baryon density nBaryons is smaller than 1.5 times the nuclear
saturation density nnuclear = 0.153/fm3. In this region no
signs of a phase transition are visible.
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FIG. 2: Number density of baryons as a function of the
temperature for µ = 750 MeV (solid line). Note that the
number of anti-baryons is negligible within the plot resolu-
tion. We also show the number of pions (dashed line). The
dot marks the experimental result for the chemical freeze-
out temperature Tch = 56+9.6

−2.0 MeV corresponding to µch =
760± 22.8MeV.

The computational task concerns then mainly the dif-
ference of the effective meson potential U(σ;T, µ) −
U(σ; 0, µc). This can be done by various methods – for
example one could employ functional renormalization by
adding nucleon degrees of freedom to the setting of ref.
[10]. For our limited purpose a very simple approach
will do. The potential difference is directly related to
difference of pressure for the parameters (σ;T, µ) and
(σ; 0, µc). This can be approximated by a free gas of
nucleons with σ-dependent mass. We can consider σ as
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FIG. 3: Chiral order parameter as a function of the tempera-
ture for µ = 750 MeV. The dot marks the experimental result
for the chemical freeze-out temperature Tch = 56+9.6

−2.0 MeV
corresponding to µch = 760± 22.8MeV.

an additional parameter in thermodynamics. Its value
can be varied by varying the quark mass. If needed, me-
son fluctuations can be added in a similar way. We will
discuss the linear nucleon-meson model in the setting of
ref. [11]. (Our normalization of σ differs by a factor 2
from [11].) Our new results extend the analysis to non-
vanishing temperature.

Linear nucleon-meson model

We use an effective model for baryons ψa (a is an
isospin index with ψ1 describing protons and ψ2 neu-
trons), an isospin singlet vector meson ωµ, a scalar meson
σ and pseudo-scalar mesons π0 = π3, π± = 1√

2
(π1± iπ2).

It is convenient to combine the scalars and pseudo-scalars
in the field

φab =

�
1√
2
(σ + iπ0) iπ−

iπ+ 1√
2
(σ − iπ0)

�
. (1)

The effective Lagrangian is of the form

L = ψ̄a iγν(∂ν − i g ων − i µ δ0ν) ψa

+
√
2h

�
ψ̄a

� 1+γ5

2

�
φabψb + ψ̄a

� 1−γ5

2

�
(φ†)abψb

�

+ 1
2φ

∗
ab(−∂µ∂

µ)φab + Umic(ρ,σ)

+
1

4
(∂µων − ∂νωµ)(∂

µων − ∂νωµ) +
1

2
m2

ω ωµω
µ.

(2)

Here we use the chiral invariant scalar field combination
ρ = 1

2φ
∗
abφab and Umic(ρ,σ) is a microscopic form of the

effective potential

Umic(ρ,σ) = Ū(ρ)−m2
πfπσ. (3)

The Lagrangian (2) is invariant under the chiral symme-
try SU(2)V ×SU(2)A×U(1)V ×U(1)A where the nucleon

.

line of 
constant density
ρ = 0.15 ρ0

nuclear liquid-gas
phase transition

chemical freeze-out
CHEMICAL  FREEZE-OUT

Chemical freeze-out  in  baryonic matter at  T < 100 MeV
is not associated with chiral phase transition or rapid crossover

S. Floerchinger,  Ch. Wetterich :  Nucl. Phys.  A 890-891 (2012) 11

A. Andronic, 
P. Braun-Munzinger,

J. Stachel

Phys. Lett. 
B 673 (2009) 142
B 678 (2009) 516

empirical
 freeze-out:

chiral
crossover

Chiral nucleon - meson model  



M. Drews, T. Hell, B. Klein,  W. W.       
arXiv:1307.6973;    Phys. Rev. D (2013),  in print

Chiral nucleon - meson model beyond mean-field
             - Renormalization Group strategies -

Incorporate fluctuations using Wetterich’s RG flow equations

One-loop meson contributions included non-perturbatively (all orders)
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FIG. 1. Liquid-gas phase transition. Dotted curve: mean-field result
of the chiral meson-nucleon model. Solid curve: FRG calculation
including mesonic fluctuations. Dashed curve: in-medium chiral ef-
fective field theory calculation of ref. [? ? ].

temperature dependence of the chiral condensate, the order
parameter of spontaneously broken chiral symmetry.

Consider the nuclear liquid-gas phase transition in the T -µ
diagram. Figure ?? shows the first-order transition bound-
ary. The bending of this curve is understood from a Clausius-
Clapeyron type relation. Along the phase transition, the total
differentials of the effective potential must agree in the liquid
and in the gaseous phases:

∂Uliquid

∂µ
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∂T
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The slope of the transition line is therefore given by the ratio
of differences between baryon number densitites, nliquid−ngas,
and entropy densities, sliquid − sgas, as follows

dT

dµ
= −

nliquid − ngas

sliquid − sgas
. (25)

Comparing the mean-field result of the chiral nucleon-meson
model [? ] (short-dashed curve in Fig. ??) with the RG cal-
culation (solid curve) it is apparent that fluctuations beyond
mean field bend the phase-transition boundary towards higher
chemical potentials as the temperature increases. In the mean-
field approximation without mesonic fluctuations the entropy
is entirely determined by the nucleons. For small temperatures
and a chemical potential below µc = 923 MeV, no Fermi sea
of nucleons exists. For µ > µc the Fermi sphere is filled and
particle-hole excitations around the Fermi surface contribute
to the entropy. Therefore the entropy is larger in the liquid
phase than in the gas phase and since nliquid > ngas, the slope
of the T −µ phase boundary is negative, dT

dµ < 0, as observed.
The curvature of the boundary line is in good agreement

with the χEFT results of Refs. [? ? ]. This is a non-trivial
observation since the two approaches, RG versus χEFT, dif-
fer significantly in their treatment of fluctuations associated
with the pion field and its thermodynamics. The χEFT cal-
culations are based on a perturbative expansion of the free-
energy density up to three-loop order, including all one- and
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two-pion exchange processes in the medium together with
three-body forces and effects from ∆-isobar excitations. The
RG approach involves a non-perturbative resummation of pion
loops but relegates many other effects to the parametriza-
tion of the effective potential U . The RG critical point of
the liquid-gas transition lies at slightly higher temperature
than the one in three-loop χEFT: one finds a critical tem-
perature Tc = 18.3 MeV, compared to the χEFT result,
Tc = 15.1 MeV [? ? ]. This is consistent with estimates from
multi-fragmentation and fission data which place the critical
temperature at Tc � 16 MeV [? ].

The liquid-gas coexistence region plotted in the
temperature-density plane is shown in Fig. 2. It fea-
tures, as in Fig.??, a calculation in mean-field approximation,
the result with fluctuations treated in the FRG framework,
and the χEFT result.

A comparison between the pressure P (µ) resulting from
the model with inclusion of RG effects and from χEFT is
shown in Fig. 3. Since the effective potential is adjusted to
reproduce nuclear observables at µ = µc and T = 0, the
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field approximation without mesonic fluctuations the entropy
is entirely determined by the nucleons. For small temperatures
and a chemical potential below µc = 923 MeV, no Fermi sea
of nucleons exists. For µ > µc the Fermi sphere is filled and
particle-hole excitations around the Fermi surface contribute
to the entropy. Therefore the entropy is larger in the liquid
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with the χEFT results of Refs. [? ? ]. This is a non-trivial
observation since the two approaches, RG versus χEFT, dif-
fer significantly in their treatment of fluctuations associated
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two-pion exchange processes in the medium together with
three-body forces and effects from ∆-isobar excitations. The
RG approach involves a non-perturbative resummation of pion
loops but relegates many other effects to the parametriza-
tion of the effective potential U . The RG critical point of
the liquid-gas transition lies at slightly higher temperature
than the one in three-loop χEFT: one finds a critical tem-
perature Tc = 18.3 MeV, compared to the χEFT result,
Tc = 15.1 MeV [? ? ]. This is consistent with estimates from
multi-fragmentation and fission data which place the critical
temperature at Tc � 16 MeV [? ].

The liquid-gas coexistence region plotted in the
temperature-density plane is shown in Fig. 2. It fea-
tures, as in Fig.??, a calculation in mean-field approximation,
the result with fluctuations treated in the FRG framework,
and the χEFT result.

A comparison between the pressure P (µ) resulting from
the model with inclusion of RG effects and from χEFT is
shown in Fig. 3. Since the effective potential is adjusted to
reproduce nuclear observables at µ = µc and T = 0, the
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FIG. 4. Chiral order parameter versus density at T = 0. The dotted
lines obtained by applying the Maxwell construction. The renormal-
ization group (RG) result is shown in comparison with χEFT [? ?
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equations of state agree very well in both approaches. In par-
ticular, the slope of P (µ) at µc is related to the compressibilty
which is consistent with the empirical compression modulus
in both approaches. The equations of state match also for
larger chemical potentials at T = 0. As the temperature in-
creases some deviations between the RG and χEFT equations
of state appear, although they remain small for temperatures
up to 15-20 MeV. These features reflect the similarity of the
first-order transition lines in the phase diagram, with the ex-
ception of the small relative displacement in the position of the
critical endpoint. Given the different treatments of the pionic
physics in the RG and χEFT approaches, the close similarity
of these results is once again remarkable.

Next, consider the chiral condensate, �q̄q�, as a function of
temperature and baryon density (or chemical potential). In
the chiral nucleon-meson model this condensate is propor-
tional to the expectation value of the σ field. Quite gener-
ally, the Hellmann-Feynman theorem in combination with the
Gell-Mann–Oakes–Renner relation gives the in-medium chi-
ral condensate in the form [? ? ]

�q̄q� (n, T )
�0|q̄q|0� = 1− ∂F(n, T )

f2
π ∂m2

π

, (26)

where F is the free-energy density, F = nF̄ with F̄ the
free energy per particle. The pion-mass dependence of F̄ is
the quantity systematically accessible in χEFT since this de-
pendence is explicitly given in terms of the pion propagators
present in the in-medium loop diagrams.

Figures 4 and 5 show the chiral condensate at zero temper-
ature as functions of the baryon chemical potential µ and den-
sity n, plotted as the ratio of σ versus its vacuum value σ0 =
fπ . The density dependence of the condensate at T = 0 dis-
played in Fig. 4 shows, first, (dotted) the behavior in the pres-
ence of the liquid-gas coexistence region up to the equilibrium
density of normal nuclear matter. At higher densities, correla-
tions and fluctuations beyond mean field tend to stabilize the
chiral condensate against restoration of chiral symmetry in its
Wigner-Weyl realization, at least up to about twice n0, the
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FIG. 5. Chiral order parameter for vanishing temperature T = 0 as
a function of baryon chemical potential. The χEFT results are taken
from [? ? ].

0 20 40 60 80 100 120
0

20

40

60

80

100

T �MeV�

Σ
�MeV

�
RG

mean field

freeze�out

FIG. 6. T -dependence of the chiral condensate at µ = 760 MeV.
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conservative range of applicability of the present investiga-
tion. The presentation of the chiral condensate as a function
of baryon chemical potential (Fig. 5) is particularly instruc-
tive as it demonstrates the impact of the first-order liquid-gas
transition on an order parameter of completely different ori-
gin, manifest in the discontinuity at µ = µc = 923 MeV.
At larger baryon chemical potential there is clearly no ten-
dency towards rapid chiral symmetry restoration. Pionic fluc-
tuations delay the dropping of the condensate. The RG treat-
ment shows an even more pronounced effect at this point than
the 3-loop χEFT calculations, though it is again remarkable
how close the (non-perturbative) RG results and the (pertur-
bative) χEFT results turn out to be.

B. Chemical freeze-out and chiral phase transition

Abundances of hadronic species produced in heavy-ion col-
lisions are well described in a hadronic resonance gas pic-
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larger chemical potentials at T = 0. As the temperature in-
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of state appear, although they remain small for temperatures
up to 15-20 MeV. These features reflect the similarity of the
first-order transition lines in the phase diagram, with the ex-
ception of the small relative displacement in the position of the
critical endpoint. Given the different treatments of the pionic
physics in the RG and χEFT approaches, the close similarity
of these results is once again remarkable.
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tional to the expectation value of the σ field. Quite gener-
ally, the Hellmann-Feynman theorem in combination with the
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where F is the free-energy density, F = nF̄ with F̄ the
free energy per particle. The pion-mass dependence of F̄ is
the quantity systematically accessible in χEFT since this de-
pendence is explicitly given in terms of the pion propagators
present in the in-medium loop diagrams.

Figures 4 and 5 show the chiral condensate at zero temper-
ature as functions of the baryon chemical potential µ and den-
sity n, plotted as the ratio of σ versus its vacuum value σ0 =
fπ . The density dependence of the condensate at T = 0 dis-
played in Fig. 4 shows, first, (dotted) the behavior in the pres-
ence of the liquid-gas coexistence region up to the equilibrium
density of normal nuclear matter. At higher densities, correla-
tions and fluctuations beyond mean field tend to stabilize the
chiral condensate against restoration of chiral symmetry in its
Wigner-Weyl realization, at least up to about twice n0, the
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conservative range of applicability of the present investiga-
tion. The presentation of the chiral condensate as a function
of baryon chemical potential (Fig. 5) is particularly instruc-
tive as it demonstrates the impact of the first-order liquid-gas
transition on an order parameter of completely different ori-
gin, manifest in the discontinuity at µ = µc = 923 MeV.
At larger baryon chemical potential there is clearly no ten-
dency towards rapid chiral symmetry restoration. Pionic fluc-
tuations delay the dropping of the condensate. The RG treat-
ment shows an even more pronounced effect at this point than
the 3-loop χEFT calculations, though it is again remarkable
how close the (non-perturbative) RG results and the (pertur-
bative) χEFT results turn out to be.

B. Chemical freeze-out and chiral phase transition

Abundances of hadronic species produced in heavy-ion col-
lisions are well described in a hadronic resonance gas pic-
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ture. Using a statistical model a chemical freeze-out boundary
curve in the (T, µ) has been extracted [? ]. For small baryon
chemical potentials the freeze-out temperature turns out to be
very close to the transition temperature of the chiral crossover
as inferred from lattice QCD computations. If such a cor-
respondence between chemical freeze-out and chiral transi-
tion would remain valid also for large chemical potentials, one
would be tempted to conclude that the chiral phase transition
leaks well into the nuclear physics terrain that is properly de-
scribed by the present chiral chiral nucleon-meson model. It is
therefore of interest to explore whether the model as it stands
would support or disprove such an interpretation.

A partial answer has already been given in ref.[? ]. Their
mean-field analysis shows no decreasing chiral condensate
near freeze-out at large chemical potentials. Here we repeat
and extend this computation, now with the effects from ther-
mal pion loops included. As a typical example, the σ field
representing the chiral condensate is plotted as a function of
temperature for a fixed chemical potential µ = 760 MeV
in Fig. 6. At this value of µ the freeze-out point derived
from the statistical model analysis is located at a tempera-
ture T = 56+9.6

−2.0 MeV. If there were a chiral phase transition
nearby, the condensate would change significantly and drop
rapidly to a small value. This is not seen in Fig. 6 where
the sigma field is plotted both at the mean-field level and
with the fluctuations taken into account using the FRG. One
observes that the magnitude of the chiral condensate is still
large up to temperatures around 100 MeV and chiral symme-
try remains spontaneously broken, as already demonstrated
in Fig. 7. Chemical freeze-out and chiral restoration are not
connected or intertwined at baryon chemical potentials char-
acteristic of the nuclear physics region and beyond.

In Fig. 7, the contours of the normalized condensate,
σ/fπ , are plotted for chemical potentials 700 MeV ≤ µ ≤
950 MeV. We see that the condensate stays above 2/3 of its
vacuum value throughout this region. We therefore conclude
that chiral symmetry is not restored and there is no critical
endpoint within the region 700 MeV ≤ µ ≤ 950 MeV and
for temperatures T ≤ 100 MeV.

It should of course be pointed out that the chiral phase
transition or the crossover itself cannot be reliably addressed
in our model. The effective potential has been adjusted at
the liquid-gas phase transition in a Taylor expansion around
σ = fπ . It is therefore predictive only for values of σ not
too far from fπ , whereas σ changes rapidly in the vicinity of
the phase transition or crossover. It is nonetheless instructive
to extrapolate and examine where the phase transition actually
takes place in the model. In the mean-field approximation, the
condensate is seen to jump discontinuously to zero already at
a chemical potential of µ = 955 MeV which translates to a
density of about 1.5 times saturation density. This restricts the
applicability of the mean-field version to a relatively narrow
range around normal nuclear densities and the liquid-gas tran-
sition. Once thermal fluctuations are properly treated using
the FRG approach, the chiral condensate remains finite up to
a chemical potential µ = 1.15 MeV, or densities beyond 2.5
times nuclear saturation density. While at such large values
of the chemical potential, the field-dependence of the Yukawa
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FIG. 7. Contour plots of σ/fπ . Within the region of applicability of
the chiral nucleon-meson model, the condensate is still non-zero and
chiral symmetry is not restored.

couplings should already be taken into account, the fact that
fluctuations tend to stabilize the hadronic phase of sponta-
neoulsly broken chiral symmetry up to quite high baryon den-
sities emerges as a robust result.

C. Fluctuation effects at the critical endpoint

The thermal fluctuation effects included in the present FRG
calculation are also important for the description of critical be-
havior in the vicinity of the endpoint of the first-order liquid-
gas transition. As already discussed in [? ] for the present
model, a mean-field calculation cannot be expected to be reli-
able close to the phase transition.

To assess the magnitude of these fluctuations, we compare
results for the chiral susceptibility (associated with the mass of
the σ mode) from the FRG calculation to those from a mean-
field calculation. A technically similar calculation [? ] for
the critical region in a quark-meson model found only a rela-
tively narrow region around the critical endpoint (in this case
of the chiral phase transition) in which fluctuations dominate.
Compared to the mean-field calculation, the critical region in
those RG results was much compressed. While the calcula-
tions performed with the quark-meson model were focused
on quark-number susceptibilities, the results guide our expec-
tations also for the present model. In the PQM study [? ], a
smoothing of the observables around the chiral crossover line
appeared once fluctuations were included.

In Figs. 8 and 9, contour lines for the chiral susceptibility,
χσ = m−2

σ , are shown in the T −µ plane. To facilitate a com-
parison, the susceptibilities are normalized to their respective
vacuum expectation values according to χσ(µ, T ) × m2

σ,vac.
Qualitatively similarly to the PQM results in [? ] for the chi-
ral transition, we find in the nucleon-meson model that there is
an extended region above the critical endpoint where the sus-
ceptibility in the mean-field calculation remains large. This
region is elongated along an extrapolation of the first-order
line beyond the critical endpoint. In contrast, the fluctuation-
dominated region in the RG calculation is much more concen-
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 arXiv:1307.6973;  Phys. Rev. D (2013), to appear
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M = 2.01 ± 0.04

Many physically motivated extensions to general relativity (GR) predict sig-
nificant deviations in the properties of spacetime surrounding massive neu-
tron stars. We report the measurement of a 2.01±0.04 solar mass (M⊙) pul-
sar in a 2.46-hr orbit with a 0.172±0.003 M⊙ white dwarf. The high pulsar
mass and the compact orbit make this system a sensitive laboratory of a pre-
viously untested strong-field gravity regime. Thus far, the observed orbital
decay agrees with GR, supporting its validity even for the extreme conditions
present in the system. The resulting constraints on deviations support the use
of GR-based templates for ground-based gravitational wave detectors. Addi-
tionally, the system strengthens recent constraints on the properties of dense
matter and provides insight to binary stellar astrophysics and pulsar recycling.

Neutron stars (NSs) with masses above 1.8 M⊙ manifested as radio pulsars are valuable
probes of fundamental physics in extreme conditions unique in the observable Universe and
inaccessible to terrestrial experiments. Their high masses are directly linked to the equation-
of-state (EOS) of matter at supra-nuclear densities (1, 2) and constrain the lower mass limit
for production of astrophysical black holes (BHs). Furthermore, they possess extreme internal
gravitational fields which result in gravitational binding energies substantially higher than those
found in more common, 1.4 M⊙ NSs. Modifications to GR, often motivated by the desire for
a unified model of the four fundamental forces, can generally imprint measurable signatures in
gravitational waves (GWs) radiated by systems containing such objects, even if deviations from
GR vanish in the Solar System and in less massive NSs (3–5).

However, the most massive NSs known today reside in long-period binaries or other systems
unsuitable for GW radiation tests. Identifying a massive NS in a compact, relativistic binary
is thus of key importance for understanding gravity-matter coupling under extreme conditions.
Furthermore, the existence of a massive NS in a relativistic orbit can also be used to test current
knowledge of close binary evolution.

Results
PSR J0348+0432 & optical observations of its companion PSR J0348+0432, a pulsar spin-
ning at 39 ms in a 2.46-hr orbit with a low-mass companion, was detected by a recent sur-
vey (6, 7) conducted with the Robert C. Byrd Green Bank Telescope (GBT). Initial timing ob-
servations of the binary yielded an accurate astrometric position, which allowed us to identify
its optical counterpart in the Sloan Digital Sky Survey (SDSS) archive (8). The colors and flux
of the counterpart are consistent with a low-mass white dwarf (WD) with a helium core at a dis-
tance of d ∼ 2.1 kpc. Its relatively high apparent brightness (g� = 20.71 ± 0.03 mag) allowed us
to resolve its spectrum using the Apache Point Optical Telescope. These observations revealed
deep Hydrogen lines, typical of low-mass WDs, confirming our preliminary identification. The
radial velocities of the WD mirrored that of PSR J0348+0432, also verifying that the two stars
are gravitationally bound.
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present in the system. The resulting constraints on deviations support the use
of GR-based templates for ground-based gravitational wave detectors. Addi-
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matter and provides insight to binary stellar astrophysics and pulsar recycling.

Neutron stars (NSs) with masses above 1.8 M⊙ manifested as radio pulsars are valuable
probes of fundamental physics in extreme conditions unique in the observable Universe and
inaccessible to terrestrial experiments. Their high masses are directly linked to the equation-
of-state (EOS) of matter at supra-nuclear densities (1, 2) and constrain the lower mass limit
for production of astrophysical black holes (BHs). Furthermore, they possess extreme internal
gravitational fields which result in gravitational binding energies substantially higher than those
found in more common, 1.4 M⊙ NSs. Modifications to GR, often motivated by the desire for
a unified model of the four fundamental forces, can generally imprint measurable signatures in
gravitational waves (GWs) radiated by systems containing such objects, even if deviations from
GR vanish in the Solar System and in less massive NSs (3–5).

However, the most massive NSs known today reside in long-period binaries or other systems
unsuitable for GW radiation tests. Identifying a massive NS in a compact, relativistic binary
is thus of key importance for understanding gravity-matter coupling under extreme conditions.
Furthermore, the existence of a massive NS in a relativistic orbit can also be used to test current
knowledge of close binary evolution.

Results
PSR J0348+0432 & optical observations of its companion PSR J0348+0432, a pulsar spin-
ning at 39 ms in a 2.46-hr orbit with a low-mass companion, was detected by a recent sur-
vey (6, 7) conducted with the Robert C. Byrd Green Bank Telescope (GBT). Initial timing ob-
servations of the binary yielded an accurate astrometric position, which allowed us to identify
its optical counterpart in the Sloan Digital Sky Survey (SDSS) archive (8). The colors and flux
of the counterpart are consistent with a low-mass white dwarf (WD) with a helium core at a dis-
tance of d ∼ 2.1 kpc. Its relatively high apparent brightness (g� = 20.71 ± 0.03 mag) allowed us
to resolve its spectrum using the Apache Point Optical Telescope. These observations revealed
deep Hydrogen lines, typical of low-mass WDs, confirming our preliminary identification. The
radial velocities of the WD mirrored that of PSR J0348+0432, also verifying that the two stars
are gravitationally bound.
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Fig. 9.— The upper panels give the probability distributions for the mass versus radius curves implied by
the data, and the solid (dotted) contour lines show the 2-σ (1-σ) contours implied by the data. The lower
panes summarize the 2-σ probability distributions for the 7 objects considered in the analysis. The left
panels show results under the assumption rph = R, and the right panes show results assuming rph ! R. The
dashed line in the upper left is the limit from causality. The dotted curve in the lower right of each panel
represents the mass-shedding limit for neutron stars rotating at 716 Hz.
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NEUTRON  STAR  MATTER
Equation of State

In-medium Chiral Effective Field Theory up to 3 loops
(reproducing thermodynamics of normal nuclear matter) 

coexistence region:
Gibbs conditions  

n ↔ p + e, µ

3-flavor PNJL model at high densities (incl. strange quarks)

beta equilibrium 

charge conservation 

quark-nuclear
coexistence occurs
(if at all)
at baryon densities  

ρ > 5 ρ0

ChEFT

PNJL, Gv � 0.5G

PNJL, Gv � 0
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realistic
“conventional” EoS

quark - nuclear
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 T. Hell,  W.W. 
 (2013) 

see also:
 K. Masuda, T. Hatsuda, T. Takatsuka

PTEP (2013) 7, 073D01
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Density Profiles

  neutron star 
central density:
  five times ρ0

M(R) =
4π

c2

∫ R

0

dr r
2
E(r)

stiff EoS  
          larger maximum mass   
                           lower central density

relevant quantity: r
2
ρ(r)

 T. Hell,  W.W. 
 (2013) 
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normal nuclear matter:  dilute
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Densities and Scales in Compressed Baryonic Matter

        neutron star core matter:
    compressed but not superdense

recall:
chiral (soliton) model
of the nucleon

      compact
baryonic core

 mesonic  cloud

   . . . treated properly
   in chiral EFT

N. Kaiser,  U.-G. Meißner,  W. W.
Nucl. Phys.  A 466 (1987) 685

〈r2〉1/2
B

# 0.5 fm

〈r2〉1/2
E,isoscalar # 0.8 fm

remember 
the 
Brown-Rho 
Chiral Bag




