SNe Ia: Can Chandrasekhar Mass Explosions Reproduce the Observed Zoo?

Eddie Baron

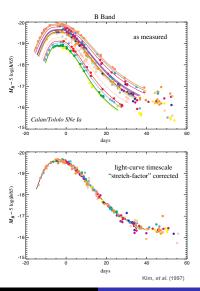
University of Oklahoma, USA

2013-11-26

Collaborators

- Gerry Brown
- Hans Bethe
- Jerry Cooperstein
- Sid Kahana
- Prakash
- David Branch
- Peter Hauschildt
- Peter Höflich
- Mark Phillips
- Eric Hsiao
- Kevin Krisiunas
- Lifan Wang
- Nick Suntzeff
- Alexei Khokhlov

Gerry, Hans, & Me


Eddie Baron

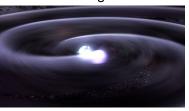
Gerry and me

- I was a problem child
- I failed the first tests with flying colors
- After that I continued to get into trouble
- At the crises Gerry supported me
- Gerry's sense of fair play

Light Curve Shape

Type la Supernovae are "Correctable Candles"

Homogeneity


- Homogeneity derives from Chandrasekhar mass explosion of C+O white dwarf
- Phillips relation variation is due to differing amounts of ⁵⁶Ni produced

Progenitor Systems

Single Degenerate

Double Degenerate

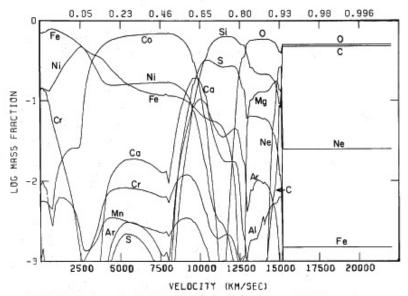
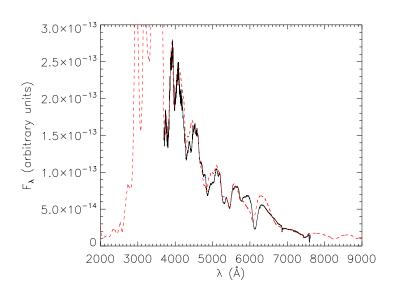
Hydro Models of SNe la

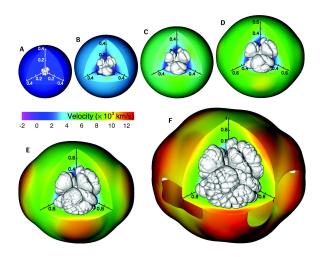
- WD Initial Conditions Unknown
- 100 years before ignition: "smouldering phase", turbulent convection → flame could start at center or in convective plumes
- Flame Starts out as subsonic deflagration
- Pure detonation doesn't reproduce observations: Just ⁴He + ⁵⁶Ni

Deflagration Models

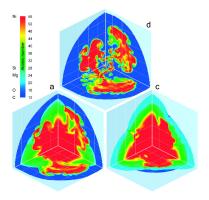
W7
 Parameterized Deflagration Model, Flamespeed altered to produce desired nucleosynthesis.

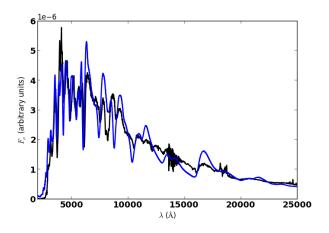
W7 Composition Structure

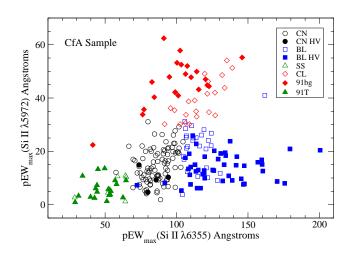




Fig. 2.—The elemental composition of model W7 15 days after the explosion. Interior mass fraction is shown at the top.

W7 NLTE 1994D March 21

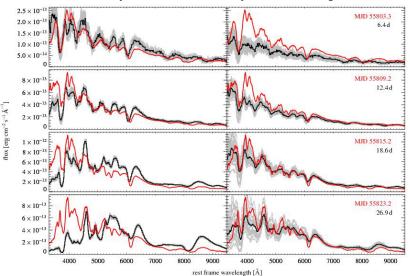

3-D Models: Deflagration


low energy, lots of clumps of unburned material particularly near center (SN lax?)

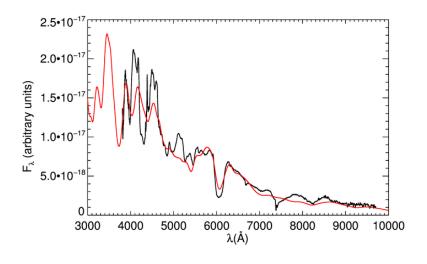

3-D Models: Delayed Detonation Gamezo et al.

Allows star to pre-expand. "Sphericizes" deflagration. Does it happen in unconfined WD? No carbon left?

W vs W Diagram Branch et al. diagram of the Si II pseudo equivalent widths



Diversity


- 2000cx rare, don't follow the Phillips relation, standard rise, very slow decline, high photospheric temperature
- 2006bt Broad light curves like a hot, luminous event spectra at maximum similar to those of low-luminosity SNe Ia.
- 2001ay a BL-HVG event with an extremely slow decline rate but with an apparently modest ⁵⁶Ni yield of 0.6 solar masses.
- 2002cx very narrow lines, low luminosities for the decline rates, but hotter photospheres
- 2002ic SNe la-like events with a strong CSM interaction
- Super-Chandra 2003fg, 2006gz, 2007if, 2009dc on basis of brightness and light curve shape

SN 2011fe Röpke et al. 2012

Pulsating Delayed Detonation SN 2001ay, Max Light, M_V = -19.07 mag

Summary

- Phillips relation implies strong homogeneity
- Chandra mass + Nuclear Physics gives good homogeneity
- How much diversity can fit into the Chandra mass paradigm?

Gerry and Hans

