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• Gerry played a crucial role for the education of young nuclear 
theorists in Finland 

• A large number moved with Gerry’s help from NORDITA to 
research positions in the US and later got faculty jobs in Finland 



Exploring the QCD phase diagram

• Experiment 
• Lattice QCD 
• Models  
!
• Focus on 
• O(4) transition(?) 
• Chiral vs. deconf 



Fluctuations      phase boundary? 

• Chiral susceptibility: 
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Figure 14: The renormalized two-flavor chiral susceptibility χR for the asqtad and HISQ/tree actions obtained at ml = 0.05ms

and compared with the stout action results [22]. The temperature scale is set using r1 (fK) in the left (right) panels.

V. O(N) SCALING AND THE CHIRAL TRANSITION TEMPERATURE

A. The transition temperature using the p4 action

In this section, we use the universal properties of the chiral transition to define the transition temperature and
its quark mass dependence for sufficiently small quark masses, as discussed in Sec. III. The scaling analysis of the
chiral condensate leads to a parameter free prediction for the shape and magnitude of the chiral susceptibility. In the
vicinity of the chiral limit, the peak in the chiral susceptibility corresponds to the peak in the scaling function fχ(z)
and the quark mass dependence of the pseudocritical temperature Tc is controlled entirely by the universal O(N)
scaling behavior. Keeping just the leading term proportional to a1 in the regular part, the position of the peak in
χm,l is determined from Eq. (16) using

∂
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(

m2
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T 4
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c
= 0 , (35)

which, for zero scaling violation term, i.e., a1 = 0, gives the position of the peak in the scaling function fχ at z = zp
(see Sec. III). The strange quark mass on the left hand side is included only for consistency as the derivative is taken
keeping it constant. For small light quark masses, we can expand fχ(z) around zp:

fχ(z) = fχ(zp) +Ap(z − zp)
2 . (36)

In this approximation, the location of the maximum in the chiral susceptibility varies as

z = zp −
a1t0h0

2Ap
h1−1/δ+1/βδ , (37)

and the variation of the pseudocritical temperature as a function of the quark mass is given by
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. (38)

Recall that T 0
c is the transition temperature in the chiral limit. Thus, to determine the pseudocritical temperatures

Tc(H), we need to perform fits to the chiral condensate Mb, defined in Eqs. (12) and (13), to determine the parameters
T 0
c , z0, t0, a0, a1 and a2 in the scaling and regular terms. Theoretically, one expects the O(4) Ansatz to describe the
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Figure 1: Left: A schematic phase diagram of QCD in the T -µB and light quark mass space. It shows the
phase transition line at vanishing chemical potential as well as a line of second order transitions, that will
exist, if a tri-critical point exists in the chiral limit at non-zero baryon chemical potential. The dotted line
shows the crossover transition line of QCD at physical values of the quark mass that ends in a critical point.
Also indicated is the freeze-out or hadronization line determined experimentally. Shaded areas indicate the
critical region in the vicinity of the critical endpoint and the chiral transition at µB = 0, respectively. Right:

The QCD transition temperature as function of the baryon chemical determined from the maximum of the
chiral susceptibility [4] and the scaling behavior of the second derivative of the chiral condensate with respect
to the chemical potential [18]. Data points show chemical freeze-out temperatures determined from particle
yields measured at the LHC [15, 16], the SPS [15] and in the BES at RHIC [17]. The difference between
triangles and circles reflects the influence of proton anti-proton annihilation processes, that take place after
hadronization, on the determination of the freeze-out parameters [15].

tant for the generation of net baryon number fluctuations, may be distorted due to non-equilibrium,
annihilation processes occurring between the time of hadronization and the freeze-out of the bulk
of particle species. This may also have consequences for the interpretation of experimentally ob-
served charge fluctuations.

In order to use fluctuation observables in the search for critical behavior it clearly is mandatory
to understand at which time these fluctuations are generated. I.e. are the fluctuations of thermal
origin and, if so, what are the thermal conditions probed by these observables? Do they correspond
to a well defined point in the QCD phase diagram? If so, how is this point related to the QCD
transition line? Answering these question also requires that we are clear about our notion of the
QCD transition temperature as well as the freeze-out temperature. We will address some of these
questions, which have intensively been discussed at CPOD 2013, in the following.

2. Pseudo-critical temperatures and freeze-out temperatures

Searches for critical behavior in the BES at RHIC and the SPS to a large extent rely on the ex-
pectation that changes in correlation lengths that will arise in the vicinity of a critical point give rise
to non-monotonic structures in observables that are sensitive to fluctuations generated at the time of
hadronization or chemical freeze-out. This assumes that the line of chemical freeze-out parameters
(Tf ,µ f

B) is well defined and closely follows the QCD transition line, which eventually may end in a
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Fluctuations of conserved charges

• Consider a subvolume V 

• Susceptibility (2nd cumulant) 

!

• Less singular than order parameter fluctuations, 
but easier to access.  

•  Criticality shows up in higher cumulants:

� = V T
@2p

@µ2
= hN2i � hNi2

�n = cn = V T
@np

@µn

N = NB �NB̄



Critical scaling
• Free energy density: backgound + singular part   

                            where 

• Scaling variable 

!

• Physical        in                                                  
O(N) scaling regime 

fs(t, h) = h1+1/�ff (z)

f = fr + fs

z = t/h1/��

t = (T � Tc)/Tc

h = mq/Tc
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FIG. 6: The order parameters M (left) and Mb (right) for all quark mass values, ml/ms ≤ 0.4, and all values of the gauge
coupling, β ∈ [3.28, 3.33], used in this study. The scaling variables t and h used to compare with the O(2) scaling function are
taken from the fit to the light quark mass results shown in Fig. 5.

linear in the light quark mass. In our analysis of the order parameter, performed in a larger temperature and quark
mass interval, we clearly see these differences and their role in contributing to violations of scaling. This is shown in
Fig. 6. Most prominent are effects arising from a too large quark mass value. These effects show up in the scaling
plot as deviations from the scaling function in the region of small z, i.e. for large quark masses at fixed t. They
lead to the sizeable displacement of results obtained for too heavy quarks from the scaling curve. Effects that arise
because the temperatures chosen are too far away from the critical point, t = 0, are typically not that drastic in our
data sample. We fitted the scaling violations to an ansatz

M(t, h) = h1/δfG(t/h1/βδ) + atth + b1h + b3h
3 + b5h

5 . (16)

We also considered including a term quadratic in the reduced temperature (∼ t2h). This correction, however, turned
out to vanish within the errors of our fits.

The fits of both order parameters performed with the ansatz given in Eq. 16 are shown in Fig. 7. As expected, we
find that corrections linear in ml/ms are eliminated in M . The corresponding fit parameter b1 is zero within errors
and we therefore have fixed it to be zero in the fit shown in Fig. 7 (left). For the non-subtracted order parameter Mb

this term gives the dominant finite quark mass corrections. Here we find b1 = 0.0013(3).

C. Scaling of the chiral condensate

We have seen in the previous section that order parameters constructed from the chiral condensate are well described
by the magnetic equation of state for small enough values of the light quark masses, ml/ms<∼1/20. We want to
underscore this point here by displaying the order parameters not in their scaling form, but as a function of temperature
in units of the transition temperature determined in the previous section. This is shown in Fig. 8. The curves drawn
in this figure are taken from the scaling fits to the subtracted and non-subtracted order parameters shown in Fig. 5.
They had been obtained from the numerical results for M (left) and Mb (right) in the range ml/ms ≤ 1/20 and
T/Tc = 1 ± 0.03.

D. Comparison with earlier calculations in 2-flavor QCD

As mentioned in the Introduction, there have been earlier attempts to compare the quark mass and temperature
dependence of the chiral order parameter with O(N) scaling functions on lattices with temporal extent Nτ = 4
[6, 8, 9]. These calculations had been performed for 2-flavor QCD using unimproved gauge and staggered fermion
actions. In Ref. [6] calculations with three quark mass values had been performed, m̂ = 0.008, 0.0125 and 0.025. The
last two masses are similar to the two mass values used in Ref. [8], i.e. m̂ = 0.01335 and 0.0267. In fact, results for

m⇡

Ejiri et al., PRD 80, 094505

M = h1/� fG(z) + bg.



Baryon number cumulants
• Generalized scaling parameter 

• Only even cumulants:

t = (T � Tc)/Tc + (µ/Tc)
2, z = t/h1/��

(µ = 0)

�2n
B = �T

@2nF

@µ2n
⇠ �h(2�↵�n)/��f (n)

f (z) + . . .

�4
B ⇠ �h�↵/��f (2)

f (z)

�6
B ⇠ �h�(1+↵)/��f (3)

f (z)/ ⇠ ⇠1.1

�8
B ⇠ �h�(2+↵)/��f (4)

f (z)/ ⇠ ⇠2.4

in chiral limit (↵ ' �0.2)! 0



Universal O(4) scaling function
• Engels & Karsch 
    PRD 85, 094506 
!

!

                        for                                                                                                                                                                  

�4
B ⇠ �h�↵/��f (2)

f (z)

Figure 8: The scaling function f ′
f(z) as a function of z = t̄h−1/∆. The line shows

our parametrization, the data have been calculated using Eqs. (89) and (90).

Figure 9: The scaling function f ′′
f (z) as a function of z = t̄h−1/∆. The line shows

our parametrization, the data have been calculated using Eqs. (89) and (90), the
star at z = 0 is the result from Eq. (86).
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Figure 1: Scaling of the non-analytic contributions to χB
4 (left) and χB

6

(right) arising from second and third derivatives of the singular part of the
free energy. Shown are results for different values of the symmetry breaking
parameter h0h = mq/Tc; h0 and z0 = h1/βδ

0 /t0 are non-universal scale pa-
rameters. Note that for h0h = 1 the abscissa is the scaling variable z. The
corresponding curve thus directly shows the O(4) scaling function.
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Figure 2: Same as Fig. 1 but for the non-analytic contributions to χB
8 .
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Baseline: HRG (no criticality)
• HRG reproduces lattice 

results, e.g.                             
(Ejiri et al. 2006)     

   

• and experiment 

!

   (Karsch, Redlich, 2011)  

• Criticality in higher susc. 0.1
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Figure 2: The ratio of quadratic fluctuations and mean net baryon num-
ber (σ2

B/MB), cubic to quadratic (SBσB) and quartic to quadratic (κBσ2
B)

baryon number fluctuations calculated in the HRG model on the freeze-out
curve and compared to results obtained by the STAR collaboration [19]. The
dashed curves show the approximate tanh(µB/T ) result for κBσ2

B and SBσ,
respectively.

This simple result arises from the fact that in the HRG model only baryons with
baryon number B = 1 contribute to the various moments.

In heavy ion collisions the strangeness and electric charge chemical potentials
are much smaller than µB (see Fig. 1). The above relation thus can be considered
to be a good estimate of skewness at chemical decoupling. We will show in the
following that corrections due to non-vanishing electric charge and strangeness
chemical potentials are indeed small for baryon number fluctuations.

4.1 Comparison of the HRG model results on baryon

number fluctuations with RHIC data

The relations for skewness and kurtosis summarized in Eqs. (17), (19) and (20)
are generic results, expected to hold if thermodynamics is governed by the HRG
model. Knowing the energy dependence of thermal parameters along the freeze-
out curve (Eqs. 1 and 2) we can directly verify if these particular relations, deduced
within the HRG model, are consistent with recent findings of the STAR collabora-
tion, which measured moments of baryon number fluctuations through net-proton
number fluctuations [19].

9

�4 (T < Tpc)

�2/�1 = coth(µ/T )

�3/�2 = tanh(µ/T )

�4/�2 = 1



Tracking the phase boundary
• If                  , expect deviation from HRG 

• Allton et al. (Bielefeld-Swansea), PRD 71, 054508 

• Look for  
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Figure 3.1: The Taylor expansion coefficients cn and cI
n for n = 2, 4 and 6 as functions of

T/T0.

Explicit expressions for c2, c4, c6 and cI
2, cI

4 and cI
6 are given in the Appendix. Note that

the expansion for the quark number susceptibility χq given in Eq. (3.4) is a derivative
of the grand potential at µI ≡ 0 and thus has the same radius of convergence as that
of the pressure and quark number density given by Eqs. (3.1) and (3.3). The expansion
coefficient cI

2 also defines the first term in an expansion of the pressure at non-zero isospin.
This series may have a different radius of convergence [28]; indeed, since the lightest
particle carrying non-zero isospin I3 in the hadronic phase is the pion, we might expect
the expansion to break down in the chiral limit for arbitrarily small µI .

The coefficient c0(T ) gives the pressure in units of T 4 at vanishing baryon density and
can be calculated using the integral method [29]. It is the only expansion coefficient which
also requires lattice calculations at zero temperature. Higher order terms can be calculated
directly from gauge field configurations generated on finite temperature lattices. They,
however, require additional derivatives of ln detM , where M is the quark matrix. They are
evaluated at fixed temperature, i.e. fixed gauge coupling β, by calculating combinations
of traces of products of ∂mM/∂µm and M−1 (see Appendix).

Results for the Taylor expansion coefficients are listed in Table 3.2. In Fig. (3.1) we
plot cn and cI

n for n = 2, 4 and 6 as functions of T . A comparison with Figs. 3 and 8
of Ref. [11] reveals the improvement in statistics of the current study. The same features
are apparent: namely c2 and cI

2 both rise steeply across T0 with cI
2 > c2 as is obvious from

the explicit expressions given for these coefficients in the appendix; they reach a plateau
at approximately 80% of the value nf/2 predicted in the Stefan-Boltzmann (SB) limit,
i.e. for free massless quarks; c4 rises steeply to peak at T ≃ T0 before approaching its SB
limit value nf/4π2 from above, whereas the peak in cI

4 is much less markedh.

hThe difference is largely due to the dominance of the disconnected term ⟨(∂2 ln detM/∂µ2)2⟩ −
⟨∂2 ln detM/∂µ2⟩2 which contributes to c4 with a coefficient three times that of its contribution to cI

4.
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Figure 3.1: The Taylor expansion coefficients cn and cI
n for n = 2, 4 and 6 as functions of

T/T0.

Explicit expressions for c2, c4, c6 and cI
2, cI

4 and cI
6 are given in the Appendix. Note that

the expansion for the quark number susceptibility χq given in Eq. (3.4) is a derivative
of the grand potential at µI ≡ 0 and thus has the same radius of convergence as that
of the pressure and quark number density given by Eqs. (3.1) and (3.3). The expansion
coefficient cI

2 also defines the first term in an expansion of the pressure at non-zero isospin.
This series may have a different radius of convergence [28]; indeed, since the lightest
particle carrying non-zero isospin I3 in the hadronic phase is the pion, we might expect
the expansion to break down in the chiral limit for arbitrarily small µI .

The coefficient c0(T ) gives the pressure in units of T 4 at vanishing baryon density and
can be calculated using the integral method [29]. It is the only expansion coefficient which
also requires lattice calculations at zero temperature. Higher order terms can be calculated
directly from gauge field configurations generated on finite temperature lattices. They,
however, require additional derivatives of ln detM , where M is the quark matrix. They are
evaluated at fixed temperature, i.e. fixed gauge coupling β, by calculating combinations
of traces of products of ∂mM/∂µm and M−1 (see Appendix).

Results for the Taylor expansion coefficients are listed in Table 3.2. In Fig. (3.1) we
plot cn and cI

n for n = 2, 4 and 6 as functions of T . A comparison with Figs. 3 and 8
of Ref. [11] reveals the improvement in statistics of the current study. The same features
are apparent: namely c2 and cI

2 both rise steeply across T0 with cI
2 > c2 as is obvious from

the explicit expressions given for these coefficients in the appendix; they reach a plateau
at approximately 80% of the value nf/2 predicted in the Stefan-Boltzmann (SB) limit,
i.e. for free massless quarks; c4 rises steeply to peak at T ≃ T0 before approaching its SB
limit value nf/4π2 from above, whereas the peak in cI

4 is much less markedh.

hThe difference is largely due to the dominance of the disconnected term ⟨(∂2 ln detM/∂µ2)2⟩ −
⟨∂2 ln detM/∂µ2⟩2 which contributes to c4 with a coefficient three times that of its contribution to cI

4.
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Tracking the phase boundary
• If                  , expect deviation from HRG 

• PQM model (O(4) & Z(3)) in Functional RG          
B.F., Karsch, Redlich, Skokov, EPJ C71, 1694 
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Figure 7: The chiral crossover line [dashed line] and the first minima in χB
6

(left) and χB
8 (right) [solid line]. The bands show the parameter range for

which χB
6 and χB

8 , respectively, are negative in the neighborhood of these
minima.

tion line. This is illustrated in Fig. 7, which shows the temperature interval,
closest to the hadronic phase, where the sixth and eighth order moments of
the net baryon number fluctuations are negative, as obtained in the FRG
approach to the PQM model. It is evident that the sixth order moment χB

6

is negative in a wide range of temperatures which extends into the symme-
try broken phase. This is even more the case for the eighth order moment
as expected from the structure of the corresponding O(4) scaling function.
Except for a small range of chemical potential values close to µq/T = 0, the
eighth order moment is, however, positive again on the crossover line.

5 Discussion and Conclusions

We have shown that higher order moments of the net baryon number fluctu-
ations are sensitive probes for the analysis of freeze-out conditions in heavy
ion collisions and may allow to clarify their relation to the QCD phase transi-
tion. This is the case at LHC energies as well as at the entire regime of beam
energies covered by the low energy run at RHIC. If in heavy ion collisions,
particles are produced from a thermalized system, the analysis of higher mo-
ments of the net baryon number fluctuations does provide constraints on

16

T
fo

' T
pc

(�6/�2 6= 1)



STAR data (net proton fluctuations) 
• Au-Au collisions 

show clear deviation 
from HRG expect. 

 at √s = 200 GeV: 
C6/C2 is below HRG prediction

 consistent with freeze-out
close to transition

!6/!2

!4/!2

talk by L. Chen

Beam Energy Scan RHIC

! 6
/!

2

STAR preliminary!"#$%&'()*+#,$)-$.

/012$."#()3)-!"4

5 67! !Periferal Central

Uncertainties: finite volume, non-critical fluctuations, 
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• Polyakov loop: order parameter of 
deconfinement in pure gauge theory 

!

• Z(N) symmetry                             broken for 

• In SU(3) Polyakov loop complex 

• Often use          as order                             
parameter 

• Finite size effects        
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• Polyakov loop: order parameter of 
deconfinement in pure gauge theory 

!

• Z(N) symmetry                             broken for 

• In SU(3) Polyakov loop complex 

• Constraints from group struct.                             
target space (SU(3)):       

Deconfinement transition

L ! e2⇡in/NcL T > Tc

L =

1

Nc
trc P exp

"
i

Z �

0
A4 d⌧

#

L = LR + i LI

hLi = e��Fq

5

phase for large positive λ [34, 35]. As a preparation for
the discussion of later sections it is hence useful to obtain
some qualitative understanding of the phase structure of the
Polyakov loop models viewed as generalisations of the 3-state
Potts model. For the reason mentioned at the end of the previ-
ous section we choose as a minimal generalisation the follow-
ing effective action,

Seff ≡ λ10S10 + λ21S21 , (38)

which in terms of the fundamental loops may be written ex-
plicitly as

Seff = (λ10 − 2λ21)
∑

⟨xy⟩

(

LxL∗
y

+ h.c.
)

+ λ21

∑

⟨xy⟩

(

L2
xLy + L2

yLx + h.c.
)

. (39)

Note that there are also quadratic contributions stemming
from S21. The action (39) is manifestly Z(3) centre symmet-
ric under Lx → zkLx.
It is important to realise that (39) differs from the standard

lattice actions for scalar fields in several respects. First, the
field Lx is dimensionless, being the trace of a unitary matrix.
This allows for the presence of cubic hopping terms connect-
ing neighbouring sites. Even more important is the fact that
the target space of Lx is compact. Introducing the eigenvalues
ofP via

Pdiag = diag
(

eiφ1 , eiφ2 , e−i(φ1+φ2)
)

, (40)

and writing L = L1 + iL2 we find for the real and imaginary
part of L,

L1 = cosφ1 + cosφ2 + cos(φ1 + φ2) , (41)
L2 = sin φ1 + sin φ2 − sin(φ1 + φ2) . (42)

The target space of L may then be sketched in the complex
L-plane (see Fig. 2). The boundary corresponds to the points
with φ1 = φ2, the singular ‘corners’ being given by the three
centre elements P = zk . Let us try to get some first rough
idea of the phase structure associated with the two-coupling
model (39) in the λ10-λ21 plane by looking at the extrema of
the classical action. If we vary the couplings these will trace
out a certain (possibly discontinuous) trajectory in the target
space given by the triangle of Fig. 2.
As we argued earlier, for centre-valued Polyakov loops the

effective action (39) reduces to the action of the Potts model
(36) with coupling λ = 18(λ10 + 4λ21). Thus we expect
a ferromagnetic phase (F) for large negative λ10 + 4λ21 and
an anti-ferromagnetic phase (AF) for λ10 + 4λ21 large and
positive. In a region around the origin in the coupling plane
entropy dominates energy and we cannot expect to actually
obtain the correct phase-structure in this region by purely clas-
sical reasoning based on minimising the energy. Qualitatively
we expect a symmetric phase in a neighbourhood of the ori-
gin. This is represented schematically in Fig. 3 by the central
rectangle.
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FIG. 2: Target space of the Polyakov loopL in the complex L-plane.
The corners represent the three centre elements. The intermediate
points (denoted anti-centre elements) will also become relevant for
the discussion of the phase structure.

In order to study the ordered phases (in particular AF)
we divide the lattice in two sub-lattices (denoted ‘even’ and
‘odd’) where the Polyakov loop takes values Le and Lo, re-
spectively. Two nearest neighbours belong to different sub-
lattices. The absolute minima of the classical action

Seff(Le, Lo) ∝ (λ10 − 2λ21)(LeL
∗
o + h.c.)

+ λ21(L
2
oLe + L2

eLo + h.c.) (43)

will then be located at certain values L̄e and L̄o of the
Polyakov loop which are identified with its ‘expectation val-
ues’. We trust this reasoning as long as we are sufficiently far
from the origin of the coupling plane i.e. from the disordered,
entropy-dominated phase.
Any ferromagnetic ordering will be characterised by a min-

imum with L̄e = L̄o = L̄ ̸= 0 while in an anti-ferromagnetic
phase L̄e ̸= L̄o. Quite interestingly we find two distinct fer-
romagnetic phases, one for which the Polyakov loop is near a
centre element or L̄ in the vicinity of 3zk and a different fer-
romagnetic phase with L̄ taking values near the intermediate
points marked by triangles in Fig. 2. We call this an anti-
centre phase (AC). We expect a phase transition line separat-
ing the ferromagnetic and anti-ferromagnetic phases at van-
ishing Potts-coupling λ10 + 4λ21. The resulting qualitative
phase diagram is depicted in Fig. 3.
To discuss the ferromagnetic phases it suffices to minimize

the action (43) with Le = Lo = L, in which case

Seff(L) ∝ (λ10 − 2λ21)|L|
2 + 2λ21(L

3 + L∗3) . (44)

This can be done analytically. To localise the anti-
ferromagnetic phase we have calculated the absolute minima
of (43) on the target space depicted in Fig. 2 numerically. The
combined analytical and numerical results are summarised as



Polyakov loop fluctuations
• Polyakov loop susceptibilities in pure gauge th. 
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• Narrow transition region!
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�A = �R + O(�2
I)

• Less sensitive to finite 
size and lattice effects; 
Signals gluon deconf. 

•                                     

•                 consistent 
with Gaussian fluct.        

Ratios of susceptibilities

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.8  0.9  1  1.1  1.2  1.3  1.4

χA/χL

T/Tc

48
3
x4

48
3
x6

64
3
x8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.8  0.9  1  1.1  1.2  1.3  1.4

χT/χL

T/Tc

48
3
x4

48
3
x6

64
3
x8

T > Tc

T < Tc

Z =

Z
dLR dLI e

V T 3[↵(T )(L2
R+L2

I)]

�A/�R = 2� ⇡

2

�A/�R

�I/�R

Good signature for deconf.!



Adding quarks
• Quarks break Z(3) 

symmetry explicitly 

• Expect smooth transition 
between “pure glue” 
ratios. 

• Lo, B.F., Kaczmarek, 
Redlich, Sasaki,         
PRD 88, 074502              
QCD results: HotQCD
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FIG. 2: The temperature dependence of the renormalized Polyakov loop susceptibilities from Eqs. (5), (6) and (7), calculated
on various lattice sizes, in the SU(3) pure gauge theory. The temperature is normalized to its critical value.
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of the Polyakov loop susceptibilities calculated within lattice
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critical value for respective lattice. The line is the model
result explained in the text.

from 16 to 64. The temperatures for the three tempo-
ral lattice extents are set by varying the bare coupling
and use the temperature scale determined by the zero
temperature string tension, as well as the critical cou-
plings of the deconfinement transition [9, 10]. The gauge
field configurations were generated using one heatbath
and four overrelaxation updates per sweep with 15 000
sweeps in general and up to 100 000 sweeps close to the
critical temperature, Tc.
The renormalization constants, Z(g2), were taken from

[11]. The statistical errors were obtained from a Jack-
knife analysis and do not include any systematic error
resulting from the renormalization procedure. In Fig. 1,
we show the lattice gauge theory result for ⟨|Lren|⟩ as a
function of temperature.
While no volume effects are visible in the deconfined

phase, data at fixed Nτ in the confined phase, show the
expected 1/

√
V volume-dependence. Considering results

at fixed ratio Nσ/Nτ , only small cut-off effects can be
observed at high as well as at low temperatures. The
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FIG. 4: Lattice results on the ratio of the transverse (7) to
longitudinal (6) susceptibility of the Polyakov loop for pure
gauge system and (2+1)-flavor QCD. The line is the Polyakov
loop model result discussed in Section III.

deviation of the Nτ = 4 and 8 data between (1−2)Tc may
be attributed to the uncertainty in the determination of
the renormalization constants, rather than to the cut-off
effects.
The results for the renormalized Polyakov loop sus-

ceptibilities obtained on different lattice sizes are shown
in Fig. 2. In the close vicinity of the phase transition,
0.95 < T/Tc < 1.05, all three susceptibilities show rather
strong cut-off and volume effects. Such behavior is ex-
pected due to the first order nature of the phase transi-
tion in pure gauge theory. Outside this region, the fluc-
tuations of longitudinal and the modulus of the Polyakov
loop, show only minimal dependence on Nτ and Nσ in
both phases. The transverse susceptibility χT in Fig. 2,
however, is seen to exhibit stronger Nτ dependence in
the deconfined phase.

A. The ratios of susceptibilities

The ambiguities from the renormalization scheme can
be avoided by considering the ratios of the susceptibilities
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temperature string tension, as well as the critical cou-
plings of the deconfinement transition [9, 10]. The gauge
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deviation of the Nτ = 4 and 8 data between (1−2)Tc may
be attributed to the uncertainty in the determination of
the renormalization constants, rather than to the cut-off
effects.
The results for the renormalized Polyakov loop sus-

ceptibilities obtained on different lattice sizes are shown
in Fig. 2. In the close vicinity of the phase transition,
0.95 < T/Tc < 1.05, all three susceptibilities show rather
strong cut-off and volume effects. Such behavior is ex-
pected due to the first order nature of the phase transi-
tion in pure gauge theory. Outside this region, the fluc-
tuations of longitudinal and the modulus of the Polyakov
loop, show only minimal dependence on Nτ and Nσ in
both phases. The transverse susceptibility χT in Fig. 2,
however, is seen to exhibit stronger Nτ dependence in
the deconfined phase.
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Deconfinement with light quarks
• Quarks breaks Z(3) symmetry: 

very smooth cross over? 

• What do fluctuations imply?  

•             sensitive to baryon #  
Ejiri et al., PLB 633, 275            

HotQCD
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Figure 2. The ratios of fourth and second cumulants of quark number (left) and charge
(right) fluctuations.

disappear already at T ≃ 1.4Tc. If such states would contribute to the thermodynamics
above Tc they also would lead to an increase in charge and quark number fluctuations.
The dashed lines shown in Fig. 2 indicate the increase in Rq,Q

4,2 at the presumed melting
temperature of qq-states, T ≃ 1.4Tc [ 3], assuming that at this temperature the qq-states
contribute only with half their statistical weight to the QCD partition function. This
clearly overestimates the fluctuations observed at high temperature in lattice calculations.

3. Conclusions

We have discussed some generic features of quark number and charge fluctuations in
2-flavour QCD. We argue that the ratio of quartic and quadratic fluctuations are sensi-
tive observables that can directly provide information on the constituents of the thermal
medium that carry net quark number and electric charge, respectively. We have shown
that below the QCD transition temperature these ratios are in reasonable agreement with
a hadronic resonance gas. Above Tc the ratios rapidly drop and approach the high tem-
perature ideal gas values. This suggests that already for T>∼1.5Tc quark number and
charge are predominantly carried by states with the quantum numbers of quarks.
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Deconfinement with light quarks
• Quarks break Z(3) symmetry: 

very smooth cross over? 

• What do fluctuations show?  

•             sensitive to baryon #  
Ejiri et al., PLB 633, 275  

•              Polyakov loop susc. 

•                         - “ - 

• Action focussed at            
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Conclusions
• Higher cumulants of conserved charges probe  

chiral critical fluctuations 

• Basically robust, but several open issues remain: 

• Sensitive to tail of distribution, cancellations 

• Overall conservation (Bzdak, Koch, Skokov) 

• Acceptance corrections (Bzdak, Koch) 

• Other sources of fluctuations (Skokov et al.)  

• …..



Conclusions II
• Fluctuations of Polyakov loop probe deconfinement 

• Indicate rather narrow transition,                   ,             
not simply related to Polyakov loop                    

• Consistent with analysis of strange d.o.f’s         
across the QCD transition                                         
A. Bazavov et al. (HotQCD), PRL 111, 082301 

• also A. Dumitru et al., PRD 83, 034022 

• Tune effective models (PNJL, PQM) to lattice results,          
including fluctuations

Tdec ' T�
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