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Two types of observers 

•  Single-point observer sees thermal stress tensor with 

T=const(t) 

•  Nonlocal 2-point experiments (the stress tensor 

correlators) send signal into the bulk and finds 

deviations:  equilibration is actually time dependent 

Boundary,z=0 

Falling membrane 

horizon 

Black hole AdS

vacuum AdS5
Bottom line: there is no need to solve the Einstein equation 

2 known and time-independent solutions combined => 
plus an equilibration shock in “scale” space



Israel’s junction condition is 

dual to the equilibration 

dynamics 

•  Thermal AdS above= UV is  

equilibrated 

•  Cold AdS5 below= IR is not 

equilibrated  

•  The equilibration front moves 
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Average Tij is thermal but the 

correlators (the two-point observers) 

deviate from equilibrium: (depending 
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The reason for oscillations in spectral densities is in fact 

 the ``echo” effect, induced by a gravitons scattering from a membrane, 
Confirmed numerically and semiclassically 
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Hydrodynamics is known to describe matter created in high energy heavy ion collisions well. Large
deposition of energy by passing jets should create not only the sound waves, already discussed in
literature, but also the shocks waves of finite amplitude. This paper is an introduction to relativistic
shocks, which go through elementary energy and momentum continuity argument, to weak shocks
treated in Navier-Stokes approximation, to out-of-equilibrium setting of AdS/CFT. While we have
not yet found numerical solution to corresponding Einstein equations, we have found a variational
approximation to the sum of their squares. Our general conclusion is that deviations from LS and
NS hydrodynmical shock profiles are surprisingly small, even for strong shocks. We end with a list
of open questions which the exact solution should be able to answer.

PACS numbers:

I. INTRODUCTION

Shocks are rather well known hydrodynamical phe-
nomenon described in the textbooks such as [1]. Their
discussion in the framework of ultrarelativistic collision
of nuclei has been initiated by Landau and Belenky [2]
who had applied it to matter compression at the initial
time. Important point made in their paper was that very
strong shocks (of very large amplitude) do not depend on
the EOS of the matter before the shock.

In 1970’s, with the first experiments with ultrarela-
tivistic nuclei at BEVALAC, it has been suggested to look
for shock waves and Mach cones in excited nuclear mat-
ter. Unfortunately hydrodynamics itself has not worked
out in this application because the nuclear matter is not
a good liquid: the mean free path of nucleons are com-
parable to the nuclear sizes. Another applications of the
shock theory to heavy ion collisions has been considera-
tions of the deflagration and detonation shocks, propa-
gating from the system’s edge inward [4]. Small veloc-
ity of such fronts were predicted to be the reason for
the “burning log” scenario for RHIC collisions. However,
those shocks are very slow and their propagation takes
very long time, which is in practice not available. While
exist for certain geometries (a “slab” configuration), in
real collisions the gradients are large enough to gener-
ate strong outward radial flow with velocities larger than
that for inward deflagration front, making it irrelevant.

Unlike excited nuclear matter, Quark-Gluon Plasma
(QGP) turned out to be a very good liquid. Soon af-
ter beginning of the RHIC era of experimentts it be-
came clear that ideal relativistic hydrodynamics de-
scribes those very well [5–7] and viscous corrections are
small [8, 9]. Further recent confirmation came from
sound perturbations from initial state fluctuations, pro-
ducing higher angular harmonics in the correlation func-
tions, see e.g. [10].

AdS/CFT correspondence has been used to explain the
rapid onset of hydrodynamical regime. It started with

the predicted small viscosity-to-entropy ratio [11]

⌘/s = 1/4⇡ (1.1)

in equilibrium strongly coupled QGP, and then has been
followed by studies of various out-of-equilibrium settings
[13–15]. Basically all of them found rapid equilibration
time, basically the in falling time into the forming black
hole horizon.
Unfortunately, all out-of-equilibrium settings just men-

tioned are time-dependent, and (except for the first one)
require solution of 2+1 dimensional Einstein equations,
which is technically challenging. In this paper we discuss
shock waves as an alternative stationary setting, in which
the Einstein equations are basically elliptic and thus al-
low for much simpler treatment. In fact, we will be ar-
guing below that one can use analytical means and the
variational approach, to get su�ciently accurate approxi-
mation even for strong shocks. Weak shocks in AdS/CFT
setting has already been discussed in Refs [18, 19].
Another tool to be discussed is the so called resumed

hydrodynamics [12] which suggests an approximate way
to include higher gradients in sQGP. We will solve
the corresponding Lublinsky-Shuryak (LS) equations and
compare the results with the Navier-Stokes (NS) text-
book solution.
Last topic in the introduction is phenomenological: it

deals with some estimates for shock which appear due to
jet quenching at LHC. We will argue that the energy de-
position is large enough to create strong shocks at early
time. The main point is the observation of very asym-
metric events, in which the trigger jet has the transverse
energy E

T

significantly larger than that of the associate
jet E

A

. Energy of the jet is deposited into QGP can be
as large as

�E ⇡ E
T

� E
A

⇠ 100GeV (1.2)

(The first equalty we write as approximate since the trig-
ger also looses some energy, as well as picking up some
from fluctuations and trigger bias e↵ect, both of the scale
10 GeV or so.)
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FIG. 1: (color online) (Upper plot) The rapidity of the shock
y versus the matter rapidity Y is shown by upper (red) solid
line, while the lower (green) dashed line is y�Y . (Lower plot)
The compression ratio versus Y .

III. WEAK RELATIVISTIC SHOCKS

Weak, we repeat, means the case with small rapidity
jump through the shock front

Y = y
f

� y
i

⌧ 1 (3.1)

In this case, as we will soon see, the gradients are small
and this classic textbook problem is solved in the Navier-
Stokes (NS) approximation (see e.g. [1], chapter 87).
The principal steps are the same, minor modifications
are due to (i) the relativistic kinematics, (ii) the absence
of the conserved matter current, and (iii) di↵erent EOS
compared to the nonrelativistic gases usually considered.

As we already stated, we ignore vector current and
their conservations altogether, focussing on the stress
tensor. Its relativistic dissipative part can be written
as follows

�T
µ⌫

= ⌘(r
µ

u
⌫

+r
⌫

u
µ

� 2

3
�

µ⌫

r
⇢

u
⇢

) + ⇠(�
µ⌫

r
⇢

u
⇢

)(3.2)

where the coe�cients ⌘, ⇠ are the shear and the bulk vis-
cosities and the following projection operator onto the
matter rest frame was used:

r
µ

⌘ �
µ⌫

@
⌫

, �
µ⌫

⌘ g
µ⌫

� u
µ

u
⌫

(3.3)

The 11 and 01 NS equations, for the simplest conformal
EOS ✏ = 3p, read

p(4u2
1 + 1) + ⌘

4

3
@
x

u1 = C11 (3.4)

p4u0u1 + ⌘@
x

u0 = C10 (3.5)

where two constants in the r.h.s. can be inferred e.g.
from both fluxes far before the shock where the mat-
ter is homogeneous and the gradient terms are absent.
Writing the functions as initial values plus modifications
p(x) = p

i

+ �p(x), y(x) = y
i

+ �y(x) and substituting
them to the two equations above, one can perform ex-
pansion in small terms up to the second order. Note
that the viscosity term can be kept as constant as the
gradient is already of the desired magnitude of small-
ness. Since �p only appears linearly, one can find it from
one equation and substitute it into another, obtaining
thus a closed di↵erential equation for �y(x) alone. It is
quadratic in rapidity perturbation and can be rewritten
in the following transparent form

(�y)(�y � Y ) + (�x)
d�y

dx
= 0 (3.6)

where, we remind, Y = y
f

� y
i

. The value of the coe�-
cient is (c

i

= cosh(y
i

))

�x =
⌘

12p
i

c
i

(c2
i

� 1)(4c2
i

+ 9)

�2c4
i

+ 6c2
i

� 3
(3.7)

in which the initial rapidity can be approximated by that
of the sound.
Indeed, by construction, one root of the quadratic form

is zero and the second root of the l.h.s. (other than y
i

)
must be the jump to the final rapidity y

f

. This is the
same generic equation as one gets (for pressure) of the
non relativistic shock, and its solution is predictably the
“Fermi step function”

�y(x) =
Y

1 + exp(�Y x/�x)
(3.8)

The width of the shock is the central issue: and now
we see that for weak shocks it is parametrically large,
O(1/Y ), which explains applicability of the gradient ex-
pansion and why does it propagate with a speed of sound.

IV. STRONG SHOCKS AND THE RESUMED
HYDRODYNAMICS

Let me now introduce a numerical example of a shock
with the rapidity jump Y = O(1), so now there is no ap-
parent small parameter. The solutions to the NS equa-
tion cannot be obtained analytically but one can of course

Pressure (solid) jumps 
down, rapidity (dashed) 
up  
 
Numerical example 
which is a solution of 
the NS 
Equations without 
expansion 
 
(but is it justified? What 
about other 
Terms in gradient 
expansion? 

(11)(11)
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> > 
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EE0:=simplify(eval(subs( f11(x1,r)=0.,f12(x1,r)=0.,f22(x1,r)=0.,EE)
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ES0:=simplify(eval(subs( f11(x1,r)=0.,f12(x1,r)=0.,f22(x1,r)=0.,ES)
));

ES0 :=
1
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d
dx1

 h x1
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dx1
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d
dx1
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2

K 64. 
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dx1
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dx1

 h x1
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C 352. cosh h x1  r2 
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dx1
 h x1  sinh h x1  h x1  

d
dx1

 h x1

K 36. r2 
d

dx1
 h x1
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K 2. r4 

d
dx1

 h x1
4

T01 and T11 balanced
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eq0 := y x  y x K yfi CA 
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 y x

dsolve eq0 = 0 ;

y x =
yfi

1C e
K
yfi x
A  _C1 yfi

eq1:=(1+B*diff(diff(y(x),x),x)/y(x))*y(x)*(y(x)-yfi)+ A*diff(y(x),
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eq1 := 1C
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dx2
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FIG. 3: (color online) (Upper plot) (Lower plot) Comparison
of the solutions to NS (blue dashed) and LS (black solid)
hydrodynamics , for example 2 discussed in the text.

However, the appropriate procedure should not be an
application of the LS operator to the NS solution, but
deriving a new solution to the LS equation itself. For the
example 2 we used above, with y

i

= 0.4765882094, the
relevant values are such that one gets the following LS
equation

[�y � (1/2)�y00](�y � 0.2056) + 0.2323�y0 = 0 (4.8)

(The NS one corresponds of course to the second term
in the first bracket removed). The solution of LS equa-
tion require not only the function but also its derivative
at some point: both which should be tuned to get the
correct behavior at both infinities. The resulting solu-
tion is plotted in Fig.3(b), together with the NS Fermi
function. A somewhat surprising is how much two are
close, even for a relatively strong shock example under
consideration. The conclusion from that is: LS resumed
hydrodynamics predicts, that the sum of the high gra-
dient terms is much smaller than individual ones and
basically vanish. The shock is thus one more example
of unexpectedly early onset of the NS behavior. (Other

examples recent examples include [14, 15].)

V. SHOCKS IN THE ADS/CFT

We use coordinates v, x1 = x, x2, x3, r and write the
nonzero component of the metric as

g11 = �r2fc2 + r2s2;

g12 = g21 = �r2fcs+ r2cs+A(x1, r);

g22 = �r2fs2 + r2c2 +B(x1, r);

g15 = g51 = c;

g25 = g52 = s;

g44 = g33 = r2 (5.1)

where

f = 1� h(x, r)4/r4;

c = cosh[y(x)]; s = sinh[y(x)] (5.2)

Note that we do look for a static (v-independen) solution,
depending on only 2 spatial coordinates r, x. The metric
contains 4 unknown functions.

If two functions h and y are just constants, the Einstein
equations (with appropriate cosmological constant) are
satisfied without extra function, namely for A,B = 0.
Indeed, in this case this metric is nothing else but the
black thermal AdS brane moving with the rapidity y.
What we are set to do is an interpolation between two
such solutions, with y

i

, h
i

di↵erent from y
f

, h
f

in a finite-
width region, the shock. Needless to say, the values are
to be related by the flux continuity, so that it become
possible.

In general, the Einstein equations can be easily de-
rived (e.g. by the “tensor package” of Maple), but they
look very long and discouraging. Here is for example the
simplest of them, the Ricci scalar
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R = �(�96A2h3c2h00r2 � 96sAh3c3h00r2B � 40r8

+16scA2r4A00 � 12r6B + 4r4A2 � 4AA00r6

+16c6h4BA00A+ 32c2Br3h3(h0)

+16c4B2h3(h0)r � 12cBsr5A0

�12B0r7 + 24c4B2h3h00r2

+2c6h4B2B00 � 8AA00r4c2B + 4cr6Ȧ0

+16r2sA2ÿc3 � 4r2c5B2sÿ

+48sA2cA0r3 + 52cAB0r5s+ 8scr3h4A0

+8c2r3sAȦ+ 16c2rh4AA0 � 4c4rBh4B0

�16c4rAA0h4 � 52AA0r3c2B � 64A2h3c2(h0)r

+64A2h3c4(h0)r + 72sAcBr4 � 8sAh4r2c

�16sAc3Bh4 � 2r8B00 + 3r6ẏ2 � 3r6A02

+16A4c2 � 16A4c4 � 16sc5h4A2A00

�4sAr5ẏ � 6c2BA02r4 � 10c4Bẏ2r4

+20c3Br5ẏ + 2c2Bẏ2r4 + 16A3c3sB

+24c6B3h2(h0)2 � 4c6h4BA02 � c6h4BB02

+4c4h4BA02 + 2sr6ẏA0 � r2c4h4B02

+4r2c2h4A02 � 16rA2Ȧc3 + 16r3c5BȦ

+16A2r3c5ẏ + r4c4BB02 � 4c4h4r2A02

+4A2r2c2A02 + 16A2r2c4ẏ2

�4A2r2c2ẏ2 � 48rc4A3A0 + 48rc2A3A0 �
4r2c4A2A02 � 12r2c6A2ẏ2 + 16c5rA2Ȧ

+8c5rB2Ȧ+ 4r3c5B2ẏ � 8r3c4B2B0

�3r2c6B2ẏ2 � 3r2c4B2A02

�96r2c4BA2 + 8r5c4BB0 � r2c4B2ẏ2

+16r3c5AḂ � 56A2r3B0c4 � 4c4r4ẏȦ

+4c2r4ẏȦ� 2c3r4A0Ḃ

+12c3B2ẏr3 � 32c2r5A0A� 8A2ẏr3c3

�2r6c3ẏB0 + 2r6cẏB0 + 32r5c4AA0

�32sc5ABh3(h0)B0 � 32r2sAc3h3(h0)B0

�32r2c3BsA0h3(h0)� 2r2c4BAsẏB0

�288sAh2c3(h0)2r2B + 16c4r2Bh3(h0)B0

+64c4r2AA0h3(h0)� 64c2r2AA0h3(h0)

+4c2Bsẏr4A0 � 144sAh2c(h0)2r4

+64sA2c3A0h3(h0)� 64c4BAA0h3(h0)

�64sc5A2A0h3(h0) + 4sc5h4BA0B0

144sAc5B2h2(h0)2 + 64c6BAA0h3(h0)

�16c5B2h3s(h0)A0 + 4r4c4BsẏA0

�2r4c3BsA0B0 + 8r2c3BAA0ẏ � 24c4rsAȦB

+2r2c4BAA0B0 + 2r2c4B2sẏA0

+4r2c4BsA0Ȧ+ 2r2c5BsẏḂ

�4r2c5BAA0ẏ + 4r4sAc4ẏB0

�6r4sAc2ẏB0 � 8r2sAc3ẏȦ

�8r2sA2c2A0ẏ � 16sr4h3c(h0)A0

+12sc5r2Aẏ2B + 44sc3r3ABB0

+4sc4r2AA0Ḃ + 8sc3r2ABA02

+8sc5r2AẏȦ� 4sc3A2r2A0B0

+56sc3A2rA0B + 4sr2h4c3A0B0 � 16sc4r3BAẏ

(5.3)

�28c2BsAẏr3 � 4r6csÿ + 2r4c2h4B00

�16r2A2Ȧ0c3 � 2r4c4B2B00 � 16r2c4A3A00

�96A2h3c4h00B + 8r6h3h00 � 4r6B00c2B

�48sAh3ch00r4 � 48sAc5B2h3h00 � 8c5h4BB00sA

+8c6h4A2B00 + 8r4c3BB00sA� 8sc3h4BA00r2

�16r2c4BÿA� 16c2r2h4A00A+ 96A2h3c4h00r2

+16c4r4ÿA� 16c2r4ÿA+ 8c2A2B00r4

+16c4r2h4A00A+ 224c2A2r4 � 8c4h4A2B00

+8c6B3h3h00 � 16sr5c3BA0 � 16sr5c3AB0

+4sr6ẏA0c2 + 8r2Ac3A0Ȧ+ 4r2Ac4ẏḂ

�8r4c5AA0ẏ + 4r4c2sA0Ȧ+ 2r4c3sẏḂ

�8r2c5AA0Ȧ� 4r2c6AẏḂ + 4r4c4AA0B0

�2r4c3AsB02 � 8rc3A3B0s+ 4rc4A2B0B

+4r2c5A2ẏB0 + 96r2sAc3B2 � 8r3c4BsḂ

�4r2c6BẏȦ� 2r2c5BA0Ḃ + 24r3c4BAA0

�16rc4B2AA0 + 8c4rA2Ḃs� 4c5rAḂB

�12sc3r3B2A0 + 8r4AA0cẏ � 2sr6cA0B0

+4r2c4BẏȦ� 32r3sAȦc4 � 16A3rc2ẏs
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+192A3h2c3(h0)2s� 288A2h2c4(h0)2B + 32c6A2h3(h0)B0

+8c5sh4AA02 + 2c5sh4AB02 + 288c6BA2h2(h0)2

+8c6B2h3(h0)B0 � 8c6h4AA0B0 � 192sc5A3h2(h0)2

+8c4h4AA0B0 � 32A2h3c4(h0)B0 + 8sAcA02r4

+20sAc3ẏ2r4 � 40sAc2r5ẏ � 8sAcẏ2r4
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1

2r2(r2 � 2csA+ c2B)3
(5.4)

7

where prime stands for the derivative over r and dot
stands for the derivative over x1. Substituting again
the moving brane solution one gets constant (coordinate-
independent) value R = 20, the cosmological constant to
which R should be equal to.

One can start by taking drastic simplifications: putting
extra functions to zero A,B = 0 and h(x1, r) = h(x1)
to be independent on r. This results in the following
relatively simple expression

R� 20 =
1

2r2
[�16rcosh(y)ẏ + ẏ2(7cosh(y)2 � 3)

+4cosh(y)sinh(y)ÿ] (5.5)

depending only on the rapidity profile across the shock.
Let us see what this combination is for traditional Fermi-
step solution in weak shock Example 1. Since in this case
the width of the shock is large, the square of the deriva-
tive and the second derivative are negligibly small, while
only the first term is important. With this lesson in mind,
one can return to a case with nonzero extra functions and
use linearized equations, ignoring higher derivatives in x.
This procedure leads to hydrodynamics, as one can solve
all the equations for extra function perturbatively, see
[17] for general review of the method and Refs [18, 19]
for the particular case of weak shocks.

Let us turn to strong shocks, such as our numerical
example, in which case the width of the shock is O(1)
and there is no small parameter in the problem. The
Einstein equations in full nonlinear form take pages and
are way too complicated to be presented here or solved
directly. Instead we propose to use a variational method.

Unfortunately the Einstein-Hilbert action R is not
bounded from below and cannot be used for variational
studies. The so called conformal gravity, with a squared
Weyl tensor in the Lagrangian, should work [22]. What
we propose to do is to use the covariantly squared (mod-
ified) Einstein tensor

Ē2 = Ē
mn

Ēmn, Ē
mn

= E
mn

+ 6g
mn

(5.6)

which combines all the Einstein equations (in the
AdS/CFT setting) into one (covariant scalar) combina-
tion. It is sign-definite and for a solution all components,
and thus the sum of squares, should vanish.

The equations are basically elliptic, and as such they
only need the field values on the boundary of the region
to be solved inside it. In this problem all corrections
vanish both at x ! ±1, as well as at large r. The only
tricky issue is near the nontrivial boundary of the black
hole horizon. We use as the initial input the rapidity y(x)
and pressure p(x) = h4(x) from the NS solution, which
fix the g

vv

, but allow nonzero modification functions in
other components such as g

xx

. Since it does change the
meaning of the coordinate x itself, we think this proce-
dure is su�ciently general to get to the solution.

A simple way to proceed is to do so variationally, to use
certain ansatz (assumed trial function) and substitute it
into all the equations and/or Ē2 see how close/far are

the results from the desired zero values. Evaluation of a
particular trial is performed by Maple in few seconds, in
spite of horrendously complex expressions involved.
We have used only one of the correction functions B,

and after some number of trials we came up with the
flowing ansatz for it

B(x, r) = �0.045r(1� 0.2x)exp(�.18x2) (5.7)

In Fig.4 one can see a comparison of the Ē2(x, r) for the
NS profile only (the top blue curves) with the results in-
cluding this B (the lower black curves). It is clear that
the mismatch is reduced by about factor 20 or more, in
the whole region of x, r in question. For a problem with-
out any small parameter and derivatives and functions
all being O(1), the remaining mismatch is only fraction
of a percent. We take it as a hint that we are close to
a solution, and that using other and more sophisticated
functions convergence to the true solution with better
accuracy can in fact be reached.

The appropriate standard procedure would be to dis-
cretize the functions, by introducing a grid in x1, r and
use well known relaxation methods (solving for zero) at
each point [23] : in this case one can reach arbitrary high
precision if needed.

The meaning of the correction B is seen from the fact
that it modifies the length elements along the coordinate
x

dl =
p
g
xx

dx = r
p

�fs2 + c2 +B(x, r)/r2dx (5.8)

Since B/r2 ⇠ 1/r one finds that far from the black hole
the correction is unimportant and thus at the bound-
ary this correction disappears. Near the horizon, since
the first term is small, f ⇡ 0 the second is dominant
and O(1). As the correction B is negative, it shrinks
a bit the distance across the shock. The magnitude of
B found leads to our main conclusion, that B makes a
shock few percent sharper near horizon, as it is at the
AdS boundary.
(Additional comment about a horizon. In general,

as new solution is found one has to calculate the null
geodesics in it and find their bifurcation. Note however
that for “radial” ones, with dx=0, the sign of the dr/dv
is defined by the metric components g11, g15, which do
not include the modification function B. So the line of
horizon is still given by the (lorentz transformed) h4(x)
line.)

VI. SUMMARY AND DISCUSSION

Hydrodynamics is an approximate e↵ective theory, its
local approximation relies on smallness of the gradients,
or on the assumption that the spatial scale of interest
is much larger than the “micro scale” given by viscos-
ity, mean free path etc. Very weak shocks are basically
sounds, and for them hydrodynamical assumptions are
parametrically justified, together with all the resutlts.

Maple'refuses'to'even'display'
the'expression'for'it,'but'
fortunately'it'sGll'takes'
explicit'funcGons'and'
evaluate/plot'the'results…'so'
one'
can'play'with'that'
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of'squares'
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let me try individual components
EM00 := simplify(eval(subs(f11(x1, r) = 0., f12(x1, r) = 0., EinM
[1,1]))): EM100:=simplify(eval(subs( eta(x1)=dy_sol, h(x1)=dp_sol, 
f11(x1,r)=0.,f12(x1,r)=0.,f22(x1,r)=0.,EM00))):
EM300 := eval(subs(eta(x1) = dy_sol, h(x1) = dp_sol, f22(x1, r) = -
(0.55e-1*(1-.15*x1))*exp(-.1*(x1+.9)^2)/r, EM00)): plot([subs(r = 
1, EM100), subs(r = 1, EM300)], x1 = -20 .. 20, color = [blue, 
black],linestyle = [dash, solid], axes = boxed, thickness = 2);
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ES3d eval subs  eta x1 = dy_sol, h x1 = dp_sol, f22 x1, r =K0.052$ 1K 0.3$x1

$
exp K0.1$ x1C 0.8 2

r
, ES00 : plot subs r = 1, ES1 , subs r = 1, ES3 , x1 =

K20 ..20, color = blue, black , linestyle = dash, solid , axes = boxed, thickness = 2 ;

Dashed is NS, it already 
is rather good



Variational result: 
one function only 

The'physical'meaning'of'B'is'correcGon'
to'the'gxx'
'
Its' and'magnitude'imply'few'
percent'reducGon'of'the'shock'width,'especially'
near'the'horizon'
'
Conclusions:'same'as'from'LS'resummaGon,'
CorrecGons'to'NS'are'quite'small!'

B(x,%r)%=%−0.052r(1%−%0.3x)exp[−.1(x%+%0.3)2]%%
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N = 4 SUSY in order to compute the retarded correlators of the energy-momentum tensor.

From these correlators we determine a large set of transport coefficients of third- and fourth-order

hydrodynamics. We find that higher order terms have a tendency to reduce the effect of viscosity.

The asymptotics (2.29) is indeed observed in the correlators computed from the bulk gravity (see

previous section). What is interesting to note that the behavior (2.29) is naturally identified with

the ξ terms in the correlators, suggesting ξ ∼ ln(k2 − ω2) at asymptotically large ω. It is then

tempting to identify the ξ terms as responsible for the contribution to the correlators of the non-

hydro pair creation effects, while the κ and ρ terms could be regarded as interference contributions

between the “vacuum” and “hydro” physics. Within such interpretation it is natural to identify η

as purely hydrodynamical effects associated with the matter flow. Thus if one is interested in pure

thermal/hydrodynamic correlators, one first has to determine η as functions of momenta and then

compute the correlators with the GSFs set to zero.

Despite this nice interpretation of ξ as the pure “vacuum” term, all GSF terms in fact fully

mix when considered as functions of momenta. If we consider (ω → 0, k → ∞) asymptotics, all

correlators tend to behave proportional to k4 ln k2. From this behavior we can learn about the

asymptotic behavior of the GSFs themselves

κ ∼ k2 ln k2 , ρ ∼
√

k2 ln k2 , ξ ∼ ln k2 . (2.30)

3. When the bulk meets the boundary: Results

There should be one to one correspondence between linearized T µν and the full set of its correlators.

Our program is to equate the expressions (2.25,2.26,2.27) for the correlators to the correlators com-

puted from the bulk gravity. The goal is to invert these equations in order to determine the four

transport coefficient functions. We have got an apparent problem as we end up having only three

equations for four unknown functions. This system does not seem to have a unique solution. Despite

our failure to simultaneously determine all transport coefficient functions, we are able to extract

them perturbatively in the long-wave limit approximation.

In the near-longwave limit all of the coefficient functions are expandable in power series 8

η = η0(1 + iη0,1 ω + η2,0 k2 + η0,2 w2 + i η2,1 ω k2 + i η0,3 ω3 + η4,0 k4 + η2,2 ω2 k2 + η0,4 ω4 + · · ·);
κ = κ0 (1 + iκ0,1 ω + κ2,0 k2 + κ0,2 w2 + iκ2,1 ω k2 + iκ0,3 ω3 + · · ·) ;

ρ = ρ0 (1 + i ρ0,1 ω + ρ2,0 k2 + ρ0,2 w2 + · · ·)
ξ = ξ0 (1 + i ξ0,1 ω + · · ·) (3.1)

Here we explicitly list all terms up to fifth order. The third order coefficients are determined (practi-

cally all) analytically. The other coefficients are extracted numerically. We achieved a good accuracy

with the forth order coefficients while the rest have large errors.

η0 = (ϵ + P )/2; τ ≡ η0,1 = 2 − ln 2 ; η2,0 = − 1/2;

κ0 = 2 η0 ; κ0,1 = 5/2 − 2 ln 2 ; ρ0 = 4 η0 (3.2)

The viscosity η0 is of course just (1.1). The coefficient η0,1 is the relaxation time, which within the

AdS/CFT approach was first addressed in Ref. [44]. It was correctly determined in Ref. [29, 30] and

8We belive this expansion has a finite radius of convergence, The radius of convergence is given by the first singularity,

which coincides with the first quasinormal mode of the scalar channel.
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later in [45]. In [29] it was found by looking at the first correction to speed of sound. η0,1 can be

consistently deduced from any of the three correlators. κ0 was found also in [29] by matching the k2

term in GT . Independently and consistently, it can be also found from the shear and sound channels

(the ω k2 term in the numerator of GD and the w2 k2 term in the numerator of the function GS).

The coefficient η2,0 appears at third order hydro, which was left beyond the scopes of [29].

However, this coefficient could be easily read off from the analysis of Ref. [29], in particular, from

the k4 correction to the diffusive pole in the shear channel. The result is consistent with the k4 term

in the numerator of GD. The coefficient ρ0 is deduced from the ω = 0 limit of the function GD.

Finally we analytically extracted the coefficient κ0,1. This comes from matching the coefficients of

the ω k2 in the scalar channel.

The remaining coefficients were found numerically. Let consider the coefficient η0,2 as an example

of our numerical procedure. We were able to get a very accurate fit of the coefficient in front of the

ω3 term in the expansion of the correlator GT . This coefficient is then trivially related to η0,2 and

κ0, κ0,1, ρ0, the latter being all previously determined. The result is

η0,2 ≃ − 1.379 ± 0.001 ≃ − 3

2
+

ln2 2

4
(3.3)

where the last expression is our guess for the analytic expression. The error in eq. (3.3), as well as

other errors quoted below, reflect our confidence in the results provided.

Despite the fact that we were not able to find a method to extract four unknown coefficient

functions from three equations, there seems to be a recurrent procedure, which make this task

possible, at least perturbatively near the long wave limit. The coefficient κ2,0 can be obtained from

the ω = 0 limit of the sound correlator GS . Once this one is known, the ω = 0 limit of GT reveals

the coefficient ξ0, etc.

Below we present our numerical results.

4th order hydro

η2,1 = − 2.275 ± 0.005 ; η0,3 = − 0.082 ± 0.003 (3.4)

5th order hydro

η4,0 = 0.565 ± 0.005 ; η0,4 = 2.9 ± 0.1 ; η2,2 = 1.1 ± 0.2 ; (3.5)

The GSF’s coefficients

κ2,0 = − 1.6 ± 0.05 ; κ0,2 = 0.04 ± 0.01 ;

κ0,3 = − 1.95 ± 0.05 ; κ2,1 = − 1.6 ± 0.2 ;

ρ0,1 = 0.92 ± 0.01 ; ρ0,2 = − 0.68 ± 0.04 ; ρ2,0 = − 0.755 ± 0.005 ;

ξ0 = − 2.6 ± 0.1 ; ξ0,1 = −1.1 ± 0.2 ; (3.6)

To summarize our knowledge of viscosity function η, we plot it and compare to the IS one (Fig.

3). The NS value is, of course, η = η0. For ω, k ≤ 0.4 we can expect up to 15% correction due to

momenta-dependence of the viscosity function.
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Pade resummation of the series 
•  Model 1 has 3 poles and reproduce 8 

coeff. exactly and more approximately 

This ansatz has three pure imaginary poles and it reproduces exactly eight first coefficients in the

expansion (3.1).

d1 = 0.736 , a1 = 0.72731 , b1 = 0.3263 d2 = 2.1 , a2 = 0.10618 , b2 = 0.3042 ,

d3 = −2.1016 , a3 = 0.10620 , b3 = 0.3038 .

The resummed viscosity function is plotted in Fig. 4. This model could be further improved by
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Figure 4: Viscosity function (divided by η0): the model

accounting for the asymptotic behavior (3.10) as well as for information about quasinormal modes of

the scalar channel. The second and third poles practically cancel each other. Despite the fact that it

does not accurately reproduce the expansion, it turns out to be a very good approximation to retain

only one pole, similarly to IS but with three-momentum dependence.

ηmodel 2 =
η0

1 − η2,0 k2 − i w η0,1
(4.3)

Within about 10% accuracy (and in some regions with much better one) the second model is equiva-

lent to the first one. Since the entire effect of momenta-dependence is not expected to be very large,

the second model should be more than sufficient for any phenomenological applications. We note

that the group velocity for the sound mode computed within this model is always smaller than one,

confirming causality of the model.

The viscosity function can be Fourier transformed into the memory function

D(x, t) =

∫

dω d3k e−i ω t + i k x η(k2,ω) (4.4)

which leads to the following expression for the dissipation tensor Π:

Πµν = − 2

∫ t

0
dt′

∫

d3x′ D(x − x′, t − t′) ∇′µ uν(x′, t′) (4.5)

Performing the Fourier transform explicitly we obtain

Dmodel 2(x, t) =

∫

dω d3k e−i ω t + i k x ηmodel 2(k2,ω) =
1

2
√

2

η0

η0,1

(

− η0,1

η2,0 t

)3/2

e− t / η0,1 ex2 η0,1 / (η2,0 t)

(4.6)

We remind the reader that η2,0 is negative.
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while (28) involves only two dimensionless co-
e�cients, whose values for AdS/CFT are

⌘2,0 = �1

2
⌘0,1 = 2 � ln2 = 1.30 (29)

it actually approximately reproduces about a
dozen of known terms. Note that re-summation
into the denominator suggests a reduction of
the viscous e↵ect as gradient grows. It may look
counterintuitive: note however that viscosity is
a coe�cient of a term in hydro equations with
at list second order of k: so this reduction only
makes such terms finite, not zero.

Recently one of us has studied the “strong
shock wave” problem [25] in the AdS/CFT
setting, solved from the first principles (Ein-
stein equations) and comparing to the LS re-
summation. While this problem is far from
sound and is a generic “hydro-at-its-edge” type,
with large gradients without any small param-
eters, deviations between the NS and the exact
(variational) solution of the corresponding Ein-
stein equations were found to be on the level of
few percents only. Studies of time-dependent
collisions in bulk AdS/CFT have found that
the first-principle solution approaches the NS
solution early on and quite accurately, at the
time when the higher gradients by themselves
are not small, see e.g. [26].

Let us now check how does it work in the
case of Gubser solution. Changing k2, ! into
derivatives
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makes the re-summed factor (with the denomi-
nator) an integral operator, which can be used
not only for plane waves of the sound but for
any function of the coordinates f(t, r). The in-
verse “LS operator” acting on a function f is
defined as
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Schematically the resummed hydro equations
look as

(Euler) = ⌘O
LS

(Navier � Stokes) (32)

where O
LS

is an integral operator. However,
one can act with its inverse on the hydrody-
namical equation as a whole, acting on the Eu-
ler part but canceling it in the viscous term

O�1
LS

(Euler) = ⌘(Navier � Stokes) (33)

These are the equations of the LS hydrodynam-
ics. Obviously they have two extra derivatives
and thus need more initial conditions for solu-
tion.

Instead of solving these equations, we will
simply check the magnitude of the corrections
appearing in the l.h.s due to the action by the
LS di↵erential operator on the (ideal Gubser)
solution used as a zeroth-order starting point.
As one can see, large systems have a small
q/T ⇠ 1/RT parameter and so these correc-
tions are parametrically small. The issue is
what happens “on the hydro edge”, when the
corrections have no formal small parameter.

In Fig.6 we show the (inverse) action of (31)
on the zeroth other temperature profile of the
Gubser flow as a function of r. We have used
the freeze-out temperature T

f

= 150 MeV and
the indicated respective freeze-out times for pp,
pA and AA. The higher gradient corrections for
AA and pA are inside the few percent range
from 1, while in the pp case the correction is
larger, yet still in the 15 percent range. We thus
conclude, that if the LS resummation repre-
sents the role of the higher gradients, the over-
all corrections remain manageable, although it
does grow from AA to pA to pp cases.

III. HIGHER ANGULAR HARMONICS

A. Acoustic damping

There is a qualitative di↵erence between
the radial flow we had discussed so far, and
higher angular harmonics. While the former
monotonously grows with time, driven by sign-
constant pressure gradient, the latter are a
(damped) oscillators. The signal observed de-
pend on the viscous damping factor as well as
on the particular phase in which the oscillator
finds itself at the freezeout time. We will dis-
cuss those e↵ects subsequently.

The e↵ects of viscosity damps the higher an-
gular flow moments stronger. The so called
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investigation of the influence of the initial conditions on
thermalization and entropy production that we are inter-
ested in.

Motivated by this, we developed a new numerical
framework using the ADM formalism of numerical rel-
ativity and analyzed the evolution of the plasma sys-
tem starting from a range of initial conditions. These
correspond, in our setup, to specifying a single metric
coe�cient function (‘initial profile’) for the initial geom-
etry on the hypersurface ⌧ = 0. The initial hypersur-
face is the same as in [8], however without any spuri-
ous coordinate singularities. Subsequently we solve nu-
merically 5-dimensional Einstein’s equations and obtain
plasma energy-momentum tensor from the asymptotics
of the solution at the AdS boundary. The details of this
setup can be found in a companion article [11], while
in the present letter we will concentrate on the physical
questions mentioned above.

Boost-invariant plasma and hydrodynamics. The
traceless and conserved energy-momentum tensor of a
boost-invariant conformal plasma system with no trans-
verse coordinate dependence is uniquely determined in
terms of a single function hT⌧⌧ i – the energy density at
mid-rapidity "(⌧). The longitudinal and transverse pres-
sure are consequently given by

pL = �"� ⌧
d

d⌧
" and pT = "+

1

2
⌧
d

d⌧
" . (1)

It is quite convenient to eliminate explicit dependence
on the number of colors Nc and degrees of freedom by
introducing an e↵ective temperature Teff through

hT⌧⌧ i ⌘ "(⌧) ⌘ N2
c · 3

8
⇡2 · T 4

eff . (2)

Let us emphasize that Teff does not imply in any way
thermalization. It just measures the temperature of a
thermal system with an identical energy density as "(⌧).

All order viscous hydrodynamics amounts to present-
ing the energy-momentum tensor as a series of terms ex-
pressed in terms of flow velocities uµ and their deriva-
tives with coe�cients being proportional to appropriate
powers of Teff , the proportionality constants being the
transport coe�cients. For the case of N = 4 plasma,
the above mentioned form of Tµ⌫ is not an assumption
but a result of a derivation from AdS/CFT [7]. Hydro-
dynamic equations are just the conservation equations
@µTµ⌫ = 0, which are by construction first-order di↵er-
ential equations for Teff .

In the case of boost-invariant conformal plasma this
leads to a universal form of first order dynamical equa-
tions for the scale invariant quantity w = Teff · ⌧ namely

⌧

w

d

d⌧
w =

Fhydro(w)

w
, (3)

where Fhydro(w) is completely determined in terms of the
transport coe�cients of the theory, much in the spirit of

FIG. 1. a) F (w)/w versus w for all 29 initial data. b) Pressure
anisotropy 1� 3pL

" for a selected profile. Red, blue and green

curves represent 1st, 2nd and 3rd order hydrodynamics fit.

[12]. For N = 4 plasma at strong coupling Fhydro(w)/w
is known explicitly up to terms corresponding to 3rd order
hydrodynamics [13]

2

3
+

1

9⇡w
+
1� log 2

27⇡2w2
+
15� 2⇡2 � 45 log 2 + 24 log2 2

972⇡3w3
+. . .

(4)
The importance of formula (3) lies in the fact that if the
plasma dynamics would be governed entirely by (even
resummed) hydrodynamics including dissipative terms
of arbitrarily high degree, then on a plot of ⌧

w
d
d⌧w ⌘

F (w)/w as a function of w trajectories for all initial con-
ditions would lie on a single curve given by Fhydro(w)/w.
If, on the other hand, genuine non-equilibrium processes
would intervene we would observe a wide range of curves
which would merge for su�ciently large w when thermal-
ization and transition to hydrodynamics would occur.
In Figure 1a we present this plot for 29 trajectories cor-

responding to di↵erent initial states. It is clear from the
plot that non-hydrodynamic modes are very important in
the initial stage of plasma evolution, yet for all the sets
of initial data, for w > 0.7 the curves merge into a single
curve characteristic of hydrodynamics. In Figure 1b we
show a plot of pressure anisotropy 1� 3pL

" ⌘ 12F (w)
w � 8

for a selected profile and compare this with the corre-
sponding curves for 1st, 2nd and 3rd order hydrodynam-
ics. We observe, on the one hand, a perfect agreement
with hydrodynamics for w > 0.63 and, on the other hand,
a quite sizable pressure anisotropy in that regime which
is nevertheless completely explained by dissipative hy-
drodynamics (see [10] for similar conclusion).
In order to study the transition to hydrodynamics in

more detail, we will adopt a numerical criterion for ther-
malization which is the deviation of ⌧ d

d⌧w from the 3rd

order hydro expression (4)
�

�

�

�

�

⌧ d
d⌧w

F 3rd order
hydro (w)

� 1

�

�

�

�

�

< 0.005. (5)

Despite the bewildering variety of the non-equilibrium
evolution, we will show below that there exist, however,
some surprising regularities in the dynamics.
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The results are obtained through numerical solution of Einstein’s equations for the dual geometries,
as described in detail in the companion article arXiv:1203.0755. Despite the very rich far-from-
equilibrium evolution, we find surprising regularities in the form of clear correlations between initial
entropy and total produced entropy, as well as between initial entropy and the temperature at
thermalization, understood as the transition to a hydrodynamic description. For 29 di↵erent initial
conditions that we consider, hydrodynamics turns out to be definitely applicable for proper times
larger than 0.7 in units of inverse temperature at thermalization. We observe a sizable anisotropy in
the energy-momentum tensor at thermalization, which is nevertheless entirely due to hydrodynamic
e↵ects. This suggests that e↵ective thermalization in heavy ion collisions may occur significantly
earlier than true thermalization.

Introduction. One of the outstanding problems of the
dynamics of quark-gluon plasma (QGP) is the under-
standing of the physics of thermalization. In relativistic
heavy-ion collisions at RHIC and LHC the quantitative
description of experimental data requires the applicabil-
ity of hydrodynamics from a very early stage [1]. How-
ever, our insight into the non-equilibrium dynamics of
QGP is very scarce. The above problem is often referred
to as ‘the early thermalization puzzle’. This is in fact a
misnomer as viscous hydrodynamics may turn out to be
applicable when the pressures are still quite anisotropic,
going against the commonly accepted paradigm that true
thermalization is necessary. One of the main results of
the present work is that for a wide range of initial con-
ditions this is indeed the case. Subsequent isotropization
towards true thermodynamic equilibrium occurs purely
within the quantitatively well understood viscous hydro-
dynamics and is trivial in comparison.

The key physical question of interest is the time scale
after which viscous hydrodynamic description becomes
valid. This has a further refinement as viscous hydro-
dynamics is really a gradient expansion with new trans-
port coe�cients appearing at each order. So it is very
interesting to determine to what extent would all-order

resummed hydrodynamics describe the plasma evolution
and to what extent is one forced to incorporate genuine
non-hydrodynamic degrees of freedom. Furthermore, the
dynamics of plasma expansion will strongly depend on
the initial state. It is very important to understand if
there exists some simple physical characterization of the
initial state determining the characteristics of the tran-
sition to hydrodynamics and subsequent evolution. Fi-
nally, it is interesting to understand the amount of en-
tropy produced during di↵erent stages of the dynamics.

In this letter we will address the above questions

for plasma configurations invariant under longitudinal
boosts and with no dependence on transverse coordi-
nates. This kinematical regime was first introduced by
Bjorken [2] and roughly mimicks an infinite energy colli-
sion of infinitely large nuclei.

Within QCD there are no techniques allowing to ad-
dress these issues from first principles. It is thus quite
natural to consider the same questions in the context
of strongly coupled plasma in the N = 4 supersymmet-
ric gauge theory for the description of which one can
use the AdS/CFT correspondence [3]. There, the time-
dependence of plasma is translated into gravitational dy-
namics in 5 dimensions with a negative cosmological con-
stant and appropriate boundary conditions. Using these
methods perfect fluid hydrodynamics was derived at the
nonlinear level in the boost-invariant setting [4], the value
of shear viscosity was shown to agree [5] with the one ex-
tracted from linear perturbations [6], and finally viscous
hydrodynamics was derived without any symmetry as-
sumptions [7].

Once we consider the far-from-equilibrium regime for
small proper times, gradient or scaling expansions cease
to be valid, and one has to deal with full Einstein’s
equations. Previous work by some of us [8], motivated
by the early results of [9], used power series expansions
around ⌧ = 0 to study strongly non-equilibrium regime
of Bjorken flow. Unfortunately, the radius of convergence
of these power series was insu�cient to analyze the tran-
sition to hydrodynamics. On the other hand, the numer-
ical work of [10] necessarily introduced a deformation of
the physical 4-dimensional metric to pump energy and
momentum into the vacuum at early times and create
in this way a far-from-equilibrium state. Such a way of
generating the initial state precludes the analysis of the
physical evolution starting from ⌧ = 0, in particular the
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The results are obtained through numerical solution of Einstein’s equations for the dual geometries,
as described in detail in the companion article arXiv:1203.0755. Despite the very rich far-from-
equilibrium evolution, we find surprising regularities in the form of clear correlations between initial
entropy and total produced entropy, as well as between initial entropy and the temperature at
thermalization, understood as the transition to a hydrodynamic description. For 29 di↵erent initial
conditions that we consider, hydrodynamics turns out to be definitely applicable for proper times
larger than 0.7 in units of inverse temperature at thermalization. We observe a sizable anisotropy in
the energy-momentum tensor at thermalization, which is nevertheless entirely due to hydrodynamic
e↵ects. This suggests that e↵ective thermalization in heavy ion collisions may occur significantly
earlier than true thermalization.

Introduction. One of the outstanding problems of the
dynamics of quark-gluon plasma (QGP) is the under-
standing of the physics of thermalization. In relativistic
heavy-ion collisions at RHIC and LHC the quantitative
description of experimental data requires the applicabil-
ity of hydrodynamics from a very early stage [1]. How-
ever, our insight into the non-equilibrium dynamics of
QGP is very scarce. The above problem is often referred
to as ‘the early thermalization puzzle’. This is in fact a
misnomer as viscous hydrodynamics may turn out to be
applicable when the pressures are still quite anisotropic,
going against the commonly accepted paradigm that true
thermalization is necessary. One of the main results of
the present work is that for a wide range of initial con-
ditions this is indeed the case. Subsequent isotropization
towards true thermodynamic equilibrium occurs purely
within the quantitatively well understood viscous hydro-
dynamics and is trivial in comparison.

The key physical question of interest is the time scale
after which viscous hydrodynamic description becomes
valid. This has a further refinement as viscous hydro-
dynamics is really a gradient expansion with new trans-
port coe�cients appearing at each order. So it is very
interesting to determine to what extent would all-order

resummed hydrodynamics describe the plasma evolution
and to what extent is one forced to incorporate genuine
non-hydrodynamic degrees of freedom. Furthermore, the
dynamics of plasma expansion will strongly depend on
the initial state. It is very important to understand if
there exists some simple physical characterization of the
initial state determining the characteristics of the tran-
sition to hydrodynamics and subsequent evolution. Fi-
nally, it is interesting to understand the amount of en-
tropy produced during di↵erent stages of the dynamics.

In this letter we will address the above questions

for plasma configurations invariant under longitudinal
boosts and with no dependence on transverse coordi-
nates. This kinematical regime was first introduced by
Bjorken [2] and roughly mimicks an infinite energy colli-
sion of infinitely large nuclei.

Within QCD there are no techniques allowing to ad-
dress these issues from first principles. It is thus quite
natural to consider the same questions in the context
of strongly coupled plasma in the N = 4 supersymmet-
ric gauge theory for the description of which one can
use the AdS/CFT correspondence [3]. There, the time-
dependence of plasma is translated into gravitational dy-
namics in 5 dimensions with a negative cosmological con-
stant and appropriate boundary conditions. Using these
methods perfect fluid hydrodynamics was derived at the
nonlinear level in the boost-invariant setting [4], the value
of shear viscosity was shown to agree [5] with the one ex-
tracted from linear perturbations [6], and finally viscous
hydrodynamics was derived without any symmetry as-
sumptions [7].

Once we consider the far-from-equilibrium regime for
small proper times, gradient or scaling expansions cease
to be valid, and one has to deal with full Einstein’s
equations. Previous work by some of us [8], motivated
by the early results of [9], used power series expansions
around ⌧ = 0 to study strongly non-equilibrium regime
of Bjorken flow. Unfortunately, the radius of convergence
of these power series was insu�cient to analyze the tran-
sition to hydrodynamics. On the other hand, the numer-
ical work of [10] necessarily introduced a deformation of
the physical 4-dimensional metric to pump energy and
momentum into the vacuum at early times and create
in this way a far-from-equilibrium state. Such a way of
generating the initial state precludes the analysis of the
physical evolution starting from ⌧ = 0, in particular the
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point of view the qualitative answer is clear: two
colliding objects may merge into a common black
hole only provided that the impact parameter is
less than some critical value bc(E), depending on
the collision energy. Interestingly, it happens as
a jump, just a bit below this impact parameter a
reasonable trapped surface and a black hole exist,
and after that none is formed. The dependence
of the trapped surface area on impact parameter
is shown in Fig. 24.

From the point of view of the boundary the-
ory this behavior is, however, a complete surprise:
it predicts first order transition as a function of
the impact parameter, with creation of a ther-
mal fireball with significant entropy at b < bc,
while no such things for b > bc! As discussed in
the paper by Lin and myself [151], in experiment
there is a relatively sharp transition from “heavy-
ion-like” to “pp-like” entropy as a function of the
impact parameter, but the data quality is too bad
to make the comparison conclusive.

If many strings are falling together their com-
bined gravity is non-negligible – they are partly
falling under their own weight. So one should
solve the nonlinear Einstein equations, which tell
us that (from the viewpoint of a distant observer)
extra weight may actually slow down falling,
eventually leading to near-horizon levitation. So
far we cannot solve it in realistic geometry and
used a simplifications instead. Lin and myself
[152] considered the case when a falling shell
(or membrane, made of collision debris) is flat
(x1, x2, x3-independent). In this collapsing shell
case one finds a quasi-equilibrium solution: the
metric above the falling membrane is static ther-
mal AdS in spite of the fact that the membrane
is falling. We derived and solved the equation
of motion of it – from the so-called Israel junc-
tion condition – and the metric below the falling
membrane, which is simple (vacuum) AdS.

The main question is by which experiments an
observer on the boundary can distinguish a true
thermal state from “quasi-equilibrium”. What we
found is that a “one-point observer” would simply
see equilibrium pressure and energy density, while
more sophisticated “two-point observer”, who can
measure correlation functions, will see deviations
from the equilibrium ones in their spectral den-
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Figure 1: (Color online.) Comparisons between the numerics of [36] and the analytic for-
mula (58). The black dashed curve represents the leading term in (58); the solid red curve
corresponds to the first two terms in (58); the dotted blue curve represents the expression
(58), which is correct up to a term of order O(1/�2); the green dots represent the numerical
evaluations used in figure 3 of [36]; lastly, the vertical green line marks the place where,
according to [36], the maximum impact parameter bmax/L occurs. We thank S. Lin and
E. Shuryak for providing us with the results of their numerical evaluations.
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We study the trapped surface produced by an o�-center collision of light-like, point-
sourced shock waves in anti-de Sitter space. We find an analytic expression for the shape
of the trapped surface in the limit where the energy of the shock waves is large and the
impact parameter is not too large. We use the area of the trapped surface to estimate a
lower bound on the entropy produced in the collision. We compare our results to particle
multiplicity measurements in heavy-ion collisions as interpreted through the Glauber model.
In an attempt to roughly simulate the e�ects of asymptotic freedom and confinement in
quantum chromodynamics, we also consider the e�ects of slicing o� parts of anti-de Sitter
space.
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of energies. The red curve represents the b = 0 limit of the AdS prediction (65). The
blue curve represents the prediction of the Landau model (see, for example, section 2.3 of
[2]). The brown dot-dashed curve represents the AdS prediction (80) with a UV cuto⇥ at
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Figure 24. The area of the trapped surface versus
the impact parameter, with the comparison of the
numerical studies by Lin and myself [151] shown
by points and analytic curves by Gubser, Pufu
and Yarom [150].

sities. Solving for various two-point functions in
the background with falling shell/membrane we
found such deviations. They are oscillating in fre-
quency or peak at certain “echo” times; see more
on this interesting phenomenon in [152].

5. LECTURE 4: NEW PHENOMENA
ASSOCIATED WITH JET QUENCH-
ING AND INITIAL-STATE FLUCTU-
ATIONS

In this last Lecture I jumped over many dis-
coveries made at RHIC – such as, e.g., the jet
quenching phenomenon itself and related theoret-
ical developments – and proceeded directly to the
current frontier. This includes several di�erent
observations, all united by the fact that we are
looking at certain correlations between particles,
telling us that the overall description in terms of
a hydrodynamically expanding fireball is the cor-
rect overall picture but it is not the whole truth.

Figure 4: (a) The area of the trapped surface versus impact parameter, with the comparison of the
numerical studies by Lin and myself [19] shown by points and analytic curves from [20]. (b) Experimental
data from PHOBOS collaboration, on the charge particle multiplicity at RHIC per participant nucleon.
Three sets of data, one above the other, are for three collision energies, 200, 62.4 and 19.6/22.4 GeV.
All three show values independent on centrality of the collision (left peripheral, right central) for AuAu
collisions (closed points), which is di↵erent and higher if compared to pp collisions (green stars) and
dAu collisions (open squares) in which no QGP is formed.

same boundary hologram as ours, they lead to mathematical inconsistencies. They cannot be treated
as perturbations at large z, and their trapped surfaces are not closed from below, and thus their area
is not even defined.)

6 The resummed hydrodynamics and the entropy at LHC

Not all the entropy is produced promptly: some is produced by the dissipative e↵ects at the hydro-
dynamical stage. In order to estimate this amount one first need to specify what exactly is meant
by “hydro” and by its “start”. To define a starting moment is relatively easy: any theory may be
considered valid as long as it works with some preset accuracy (say, one percent). hydro itself comes
at least in four forms: (i) “ideal hydrodynamics” without dissipation, (ii) Navier-Stokes (NS) which
includes the viscous term, (iii) the “second order” hydro with the second gradients of some kind; (iv)
the “resummed” hydro suggested at least for AdS/CFT in [22]).

On a theory side, there has been a significant progress in solving Einstein equation for “gravitational
collisions”, see e.g. [23]. We will not go into this vast subject here, and only focus on the central issue
of equilibration and onset of hydrodynamics. A very interesting study has been recently performed
in Ref. [24]. In the rapidity-independent approximation, these authors had follow evolution for ⇠ 20
di↵erent and arbitrary initial conditions, and study how they equilibrate. Fig.5(left), from this paper,
show convergence of all of those evolutions to some universal function of the variable w = ⌧ T

dw

d ln ⌧
= F (w) , (17)

whose existence is the essence of the “resummed hydro” proposed in [22]). As one can see, depending
on accuracy, on may assign the beginning of hydro to some “initial” wi = 0.4.. � .6. The plot on the
right demonstrate that at such time the anisotropy is still large and viscosity is important.
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the impact parameter, with the comparison of the
numerical studies by Lin and myself [151] shown
by points and analytic curves by Gubser, Pufu
and Yarom [150].
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Figure 4: (a) The area of the trapped surface versus impact parameter, with the comparison of the
numerical studies by Lin and myself [19] shown by points and analytic curves from [20]. (b) Experimental
data from PHOBOS collaboration, on the charge particle multiplicity at RHIC per participant nucleon.
Three sets of data, one above the other, are for three collision energies, 200, 62.4 and 19.6/22.4 GeV.
All three show values independent on centrality of the collision (left peripheral, right central) for AuAu
collisions (closed points), which is di↵erent and higher if compared to pp collisions (green stars) and
dAu collisions (open squares) in which no QGP is formed.

same boundary hologram as ours, they lead to mathematical inconsistencies. They cannot be treated
as perturbations at large z, and their trapped surfaces are not closed from below, and thus their area
is not even defined.)

6 The resummed hydrodynamics and the entropy at LHC

Not all the entropy is produced promptly: some is produced by the dissipative e↵ects at the hydro-
dynamical stage. In order to estimate this amount one first need to specify what exactly is meant
by “hydro” and by its “start”. To define a starting moment is relatively easy: any theory may be
considered valid as long as it works with some preset accuracy (say, one percent). hydro itself comes
at least in four forms: (i) “ideal hydrodynamics” without dissipation, (ii) Navier-Stokes (NS) which
includes the viscous term, (iii) the “second order” hydro with the second gradients of some kind; (iv)
the “resummed” hydro suggested at least for AdS/CFT in [22]).

On a theory side, there has been a significant progress in solving Einstein equation for “gravitational
collisions”, see e.g. [23]. We will not go into this vast subject here, and only focus on the central issue
of equilibration and onset of hydrodynamics. A very interesting study has been recently performed
in Ref. [24]. In the rapidity-independent approximation, these authors had follow evolution for ⇠ 20
di↵erent and arbitrary initial conditions, and study how they equilibrate. Fig.5(left), from this paper,
show convergence of all of those evolutions to some universal function of the variable w = ⌧ T

dw

d ln ⌧
= F (w) , (17)

whose existence is the essence of the “resummed hydro” proposed in [22]). As one can see, depending
on accuracy, on may assign the beginning of hydro to some “initial” wi = 0.4.. � .6. The plot on the
right demonstrate that at such time the anisotropy is still large and viscosity is important.
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Time evolution of a ”little bang” created in heavy ion collisions can be divided into two phases,
the pre-equilibrium and hydrodynamic. At what moment the evolution becomes hydrodynamic and
is there any universality in the hydrodynamic flow? To answer these questions we briefly discuss
various versions of hydrodynamics and their applicability conditions. In particular, we elaborate
on the idea of “universal” (all-order resumed) hydrodynamics and propose a simple new model for
it. The model is motivated by results obtained recently via the AdS/CFT correspondence. Finally,
charged hadron multiplicities in heavy ion collisions at the RHIC and LHC are discussed. At the
freezout, the multiplicities can be related to total entropy produced in the collision. Assuming
the universal hydrodynamics to hold, we calculate the entropy production in the hydro stage of
the collision. We end up speculating about a connection between the multiplicity growth and the
temperature dependence of the QGP viscosity.

I. INTRODUCTION

This paper contains some further developments of the ideas put forward in our paper [1]. There we argued that
entropy production in the strongly coupled quark gluon plasma (sQGP) should be computed using an all-order
resummed hydrodynamics and that the resummation makes it possible to provide reliable estimates even starting
from very short thermalization times. The main goal of this note is to connect this proposal to some recent theory
developments based on the AdS/CFT setting [2], which support our ideas, as well as to address the phenomenological
question of charged particle multiplicity production in heavy ion collisions at the LHC, to be detailed below in
section II. Let us stress here that the entropy production is only one of several applications, for which an all-order
resummation might be important. There are additional interesting phenomena, in which matter gradients are large
and applicability limits of standard hydrodynamics is in question. Let us give here two examples of those.

As recent studies have shown, fluctuations of initial state density in heavy ion collisions are the origin of sound
waves. By freezeout, these waves reach large distances, comparable to the fireball radius itself, and are observed
as fluctuations of angular harmonics in the particle distributions. It is remarkable that amplitudes of up to 9-th
harmonics have been measured, displaying good agreement with hydrodynamics [3–5]. Yet, the questions how to
treat these fluctuations in non-equilibrium and from what initial times can they be evolved hydrodynamically remains
unanswered.

“Mach cones” induced in the matter by quenching jets [6, 7] present another application of the sound waves in
heavy ion physics. Unlike sounds from the previous example, the jet-induced waves were studied in detail within
the AdS/CFT context [8]. The results were shown to have a good agreement with hydrodynamics at later stages
but when exactly hydro becomes applicable and why still could have been studied more, given the exact AdS/CFT
solution. The issue becomes even more important with the first LHC data on jets, revealing events with huge amounts
of energy, ⇠ 100 GeV , deposited by a jet. This calls for studies of the full nonlinear settings, beyond the linearized
sound wave approximation.

In section III, we discuss initial conditions for hydrodynamics from the perspective of the AdS/CFT results. We
also propose in this section a new, all-order resumed, hydrodynamics model for Bjorken explosion. In Section IV, we
use this model in order to compute the entropy production in the hydro phase. Phenomenological relevance to the
data on charged particle multiplicities is also discussed. We summarize and provide additional discussions in section
V.

II. MULTIPLICITIES IN pp AND AA COLLISIONS

One of the first discoveries made by the LHC is a rapid rise with energy of multiplicities of charged hadrons produced
both in pp and heavy ion collisions. The discovery is especially dramatic in heavy ions collisions, where most of the
existing models have failed to predict the data.
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on the idea of “universal” (all-order resumed) hydrodynamics and propose a simple new model for
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freezout, the multiplicities can be related to total entropy produced in the collision. Assuming
the universal hydrodynamics to hold, we calculate the entropy production in the hydro stage of
the collision. We end up speculating about a connection between the multiplicity growth and the
temperature dependence of the QGP viscosity.

I. INTRODUCTION

This paper contains some further developments of the ideas put forward in our paper [1]. There we argued that
entropy production in the strongly coupled quark gluon plasma (sQGP) should be computed using an all-order
resummed hydrodynamics and that the resummation makes it possible to provide reliable estimates even starting
from very short thermalization times. The main goal of this note is to connect this proposal to some recent theory
developments based on the AdS/CFT setting [2], which support our ideas, as well as to address the phenomenological
question of charged particle multiplicity production in heavy ion collisions at the LHC, to be detailed below in
section II. Let us stress here that the entropy production is only one of several applications, for which an all-order
resummation might be important. There are additional interesting phenomena, in which matter gradients are large
and applicability limits of standard hydrodynamics is in question. Let us give here two examples of those.

As recent studies have shown, fluctuations of initial state density in heavy ion collisions are the origin of sound
waves. By freezeout, these waves reach large distances, comparable to the fireball radius itself, and are observed
as fluctuations of angular harmonics in the particle distributions. It is remarkable that amplitudes of up to 9-th
harmonics have been measured, displaying good agreement with hydrodynamics [3–5]. Yet, the questions how to
treat these fluctuations in non-equilibrium and from what initial times can they be evolved hydrodynamically remains
unanswered.

“Mach cones” induced in the matter by quenching jets [6, 7] present another application of the sound waves in
heavy ion physics. Unlike sounds from the previous example, the jet-induced waves were studied in detail within
the AdS/CFT context [8]. The results were shown to have a good agreement with hydrodynamics at later stages
but when exactly hydro becomes applicable and why still could have been studied more, given the exact AdS/CFT
solution. The issue becomes even more important with the first LHC data on jets, revealing events with huge amounts
of energy, ⇠ 100 GeV , deposited by a jet. This calls for studies of the full nonlinear settings, beyond the linearized
sound wave approximation.

In section III, we discuss initial conditions for hydrodynamics from the perspective of the AdS/CFT results. We
also propose in this section a new, all-order resumed, hydrodynamics model for Bjorken explosion. In Section IV, we
use this model in order to compute the entropy production in the hydro phase. Phenomenological relevance to the
data on charged particle multiplicities is also discussed. We summarize and provide additional discussions in section
V.

II. MULTIPLICITIES IN pp AND AA COLLISIONS

One of the first discoveries made by the LHC is a rapid rise with energy of multiplicities of charged hadrons produced
both in pp and heavy ion collisions. The discovery is especially dramatic in heavy ions collisions, where most of the
existing models have failed to predict the data.
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involving two gradients.
(iii) “resummed hydrodynamics” (RH) which includes in some approximate form all higher order gradients. Accuracy
of this approximation is given by deviations from first principle non-equilibrium calculations.
Obviously, as the accuracy of approximation increases from (i) to (iii), its applicability regions widens. In connection
with heavy ion collision processes, it means “the beginning of the hydro stage” moves towards earlier and earlier
times.

A. Conformal “resummed hydrodynamics”

When talking about all-order resummed hydro it is convenient to introduce viscosity as a momenta-dependent
function. In [1] we extracted it from an AdS/CFT computed sound dispersion curve. In [13] we took a more formal
approach, which lead us to propose the following model

⌘(!, k2) =
⌘0

1 � 1/2 k2 � i ! ⌧R
. (III.1)

Here ⌘0 = 1/2 in dimensionless units in which 2⇡T = 1 and that corresponds to the celebrated ratio of viscosity to
entropy density equal 1/4⇡ [14]. In this units, ⌧R = 2 � log 2 and is the relaxation time of the Israel-Stewart (IS)
model [15]. The model (III.1) reproduces well the small ! and k expansion up to fifth order.

We consider Bjorken flow [16] as a model for the explosion. It has the simplest geometry: there is no dependence on
two transverse coordinates, as well as on space-time rapidity y = (1/2) ln[(t�x)/(t+x)]. What is left is a dependence
on the proper time ⌧ =

p
t2 � x2 only. In these coordinates, the metric is ds2 = �d⌧2 + ⌧2dy2 + d~x2

?, and we will

not write any further details, as those are well known. In the Bjorken flow, there are no spatial variations (~k = 0)
and our model (III.1) reduces back to IS. It is well known that additional non-linear terms contribute to the entropy
production that is not governed by the viscosity term only. However, the entropy is produced mostly at the beginning
of the expansion, when viscous terms are dominant. It is especially true for the case of very early thermalization.
This is why a more or less reliable estimate of entropy production can emerge only if we know the dissipation tensor
at very large !.

Let introduce the dimensionless variable w = ⌧ T . Then, within the all order hydrodynamic approximation, the
entropy production equation can be written with some “universal function” of this variable

dw

d ln ⌧
= F (w) , (III.2)

Solving (III.2) one finds time dependence of the temperature, from the initial time ⌧i to the final (freezeout) time ⌧f

⌧(wf ) = ⌧(wi) exp

Z wf

wi

dw0

F (w0)

�
T (w) = w/⌧(w). (III.3)

The final values Tf , ⌧f should be read o↵ the experimental data (there are evidences that Tf is about the same at
the RHIC and LHC while ⌧f grows with ENN , and hence the total entropy (multiplicity) grows too).

From these experimental data, one may use the solution and trace back to the initial values for the thermalization
time and temperature. However, eq. (III.3) provides only one relation between the two. In the plane (⌧i , Ti) it defines
a curve. (This is similar to field theory RG flows of couplings). An additional condition, to be detailed below, is
needed, in order to fix the absolute values of the initial conditions.

The function F (w) can be expanded in powers of 1/w with coe�cients of the expansion being higher order viscosities.
Thanks to the AdS/CFT correspondence, for conformal N = 4 plasma the expansion terms are known up to third
order [17, 18]

F (w)/w =
2

3
+

1

3w
⌘̄ � 1

3 w2

⌘̄ (ln 2 � 1)

3⇡
+

15 � 2⇡2 � 45ln(2) + 24(ln(2))2

972⇡3 w3
+ O(1/w4) . (III.4)

The first term corresponds to the ideal hydro. The second one is NS, with ⌘̄ = 1/3⇡, while the third one is the second
order including non-linear terms, beyond IS. At large w the series is convergent. We will be arguing below that hydro
is a reasonably good approximation for w � w0 ' 0.4. For illustration purpose we give here values of these terms at
w0, normalized to the first term:

(3/2)F (w0)/w0 = 1 + 0.1326 + 0.0107 � 0.0189 . (III.5)
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but we do not yet know if LS hydro is 

indeed more accurate than NS …



• 1953 Landau: hydro model for pp collisions (longitudinal) 

• 1979 Shuryak,Zhirov looked for transverse flow in pp in 
ISR data, but found Mt scaling instead 

• 1990’s Bjorken and Minimax experiment in Fermilab found 
some hints at Tevatron high multiplicity events 

• 1995 and on: a lot of flows in AA collisions, since 2000 
RHIC,2010 LHC => ``ideal fluid” paradigm, hydro 
becomes a  mainstream 

• 2010 CMS ridge in high multiplicity pp => Hydro in pp?

hydro in small systems,  
pp and pA
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where the separation of variables constant k, the “wave
vector”, is assumed to be large. When C1x = 1,

⌃
C1t =

cs = const we have a function of x� cst, the usual prop-
agating wave.

The amplitude A should be found from the second ap-
proximation, the terms of the order 1/⇤. One may again
get an explicit solution assuming the variables can be sep-
arated. Looking for the amplitude in a factorizable form
A = At(t)Ax(x) one can see that the first three terms
can be only dependent on t, provided C2 depends on time
only. The last three O(1/⇤) terms would be factorizable
into C1t(t) times a function of x if C3 = C1t(t) ⇥ C3x(x).
If so, the solution for both parts of the amplitudes are

At(t) = exp

⇤ t

0
dt1[�

⌅
C1t(t1)�

Ċ1t(t1)
4C1t(t1)

� C2t(t1)/2]

Ax(x) = exp

⇤ x

0
dx1[�

�⌅
C1x(x1)

+
C �

1x(x1))
4C1x(x1)

+
C3x(x1))
2C1x(x1)

] (2.5)

New separation-of-variable constant � formally appears
here, but it does not generate anything new in respect to
what was already included in the phase, so it can safely
be put to zero.

Familiar examples of waves are e.g. the spherical and
conical waves, in which case the variables can be sepa-
rated . Indeed, when the spatial part of the equation is
d-dimensional Laplacian, one has

C1 =
1
c2
s

, C2 = 0, C3 =
d� 1

x

1
c2
s

(2.6)

and the corresponding amplitude decays with distance as

A ⇤ 1
x

d�1
2

(2.7)

(Note that for d=3 it is a very familiar result, and for d=2
it is an asymptotics of the cylindrical Bessel functions.)

As the reader will see later, the sound on top of Gub-
ser’s flow can also be shown to have an amplitude depend-
ing one only one variable, ⌥, in comoving coordinates,
which however is a non-factorizable funciton of proper
time � and r. Therefore, without introduction of these
coordinates, one would not be able to solve the equation
for the amplitude in such a simple factorized form.

In our problem the reason we can use such an approxi-
mation is the assumed locality of the initial perturbation.
This means that the spacial scale of the initial perturba-
tion (and thus the initial width of the propagating circu-
lar wave) is much smaller than the fireball dimensions

l ⌅ R (2.8)

It will also mean that locally the sound wave is close to
the plane sound wave

⇥T ⇤ exp[ik(⌦n⌦x� cst)] (2.9)

with large wave vector kR⇧ 1.
Let us show how this approximation works in the case

of Gubser flow. Step one is to look at second derivatives
only, as those would produce terms of the second order
in k and thus to be the leading ones.

Step two is to get the wave amplitude from cancelling
among themselves the terms with the first power of large
exponent

III. PERTURBATIONS ON TOP OF THE
GUBSER FLOW

A. Summary of the Gubser flow

Gubser flow [7, 8] is a generalization of Bjorken flow
that, while keeping the boost-invariance and the rota-
tional invariance in the transverse plane, replaces the
translational invariance in the transverse plane of the
Bjorken flow by symmetry under special conformal trans-
formations. Therefore, the matter is required to be con-
formal, with the EOS

⇤ = 3p ⇤ T 4 (3.1)

and thus the speed of sound cs = 1/
⌃

3. The solution has
one dimensional parameter q which has units of inverse
length, via which the finite size of the nuclei is taken into
account (and also the velocity acquires a radial compo-
nent). Working in the (�, ⌅, r, ) coordinates, where the
metric is:

ds2 = �d�2 + �2d⌅2 + dr2 + r2d 2, (3.2)

the 4-velocity profile is given by

uµ = (� cosh⌃(�, r), 0, sinh⌃(�, r), 0)(3.3)

v⇥ = tanh⌃ =
�

2q2�r

1 + q2�2 + q2r2

⇥
(3.4)

add energy density

The hydrodynamic equations in these coordinates were
solved by Gubser in [7] for both the non-viscous and the
viscous case. Later in [8] Gubser and Yarom re-derived
those solutions by going into the comoving frame. In
order to do so they have rescaled the metric by the proper
time

ds2 = �2dŝ2 (3.5)

and performed another coordinate transformation given
by:

sinh ⌥ = �1� q2�2 + q2r2

2q�
(3.6)

tan ⇧ =
2qr

1 + q2�2 � q2r2
(3.7)
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Note how the proper time and the radial components
mix together, while both angular coordinates ⌥ and ⇤ re-
main unchangedIn the new coordinates the rescaled met-
ric reads:

dŝ2 = �d⇧2 + cosh2 ⇧
�
d⌅2 + sin2 ⌅d⌥2

⇥
+ d⇤2 (3.8)

where ⇧ is the time coordinate and ⌅ is a radial coordi-
nate.

In the new coordinates the fluid is at rest, or rather
moving together with an expanding geometry, such that
the velocity field is given by û⇤ = �1, with all other
components zero.

The relation between the velocity in Minkowsky space
in the (⌃, r, ⌥, ⇤) coordinates and the one in the rescaled
metric in (⇧, ⌅, ⌥, ⇤) coordinates corresponds to:

uµ = ⌃
�x̂⇥

�x̂µ
û⇥ , (3.9)

while the energy density transforms as: ⇥ = ⌃�4⇥̂.
The solution to the hydrodynamic equations is now

dependent on new time ⇧, in the viscous case it is

T̂ =
T̂0

(cosh �)2/3
(3.10)

�H0 tanh �

„
1� (cosh �)1/3

2F1

„
1

2
,
1

6
;
3

2
,� sinh2 �

««

where H0 is a dimensionless constant made out of the
shear viscosity and the temperature, ⇤ = H0T 3 and 2F1

is the hypergeometric function. In the inviscid case the
solution is just the first term of expression (3.11). On top
of this background solution there can be bumps due to
the initial fluctuations of the collision and in what follows
we will study these perturbations and their evolution.

B. Perturbations on the Gubser flow

In this section we study linear perturbations to the
Gubser flow following the work by Gubser and Yarom in
[8]. We will only look at the non-viscous case, such that
the background temperature will be given by the first
term in (3.11). We want to look for sound waves on top
of the background, so we consider linear perturbations
over the previous solution:

T = T0 + T1 = T0(1 + �) (3.11)
uµ = u0µ + u1µ (3.12)

with

u0µ = (�1, 0, 0, 0) (3.13)
u1µ = (0, u�(⇧, ⌅, ⌥, ⇤), u⌅(⇧, ⌅,⌥, ⇤), 0) (3.14)

� = �(⇧, ⌅, ⌥) (3.15)

where we have assumed that the perturbations remain
rapidity-independent, they are initiated and propagate
in the transverse plane. In principle, we could have an

⇤ dependence both in the velocity and in the tempera-
ture, but for simplicity and to preserve boost invariance
and study cylindrical waves, we only consider ⇧, ⌅ and
⌥ dependence. Plugging expressions (3.12) into the hy-
drodynamic equations and only keeping terms which are
linear in the perturbation, we find the following second
order equation for the temperature:

�2�

�⇧2
� 1

3 cosh2 ⇧

⇤
�2�

�⌅2
+

1
tan ⌅

��

�⌅
+

1
sin2 ⌅

�2�

�⌥2

⌅

+
4
3

tanh ⇧
��

�⇧
= 0 (3.16)

C. The short-wavelength approximation and
variable separation for Gubser flow

In this section we follow the procedure described in
section II and study the solution to equation (3.16) in the
short wavelength approximation. We start by assuming
a solution of the form:

� = ei(f⇥(⇤)�f�(�)�f⇤(⌅))F⇤(⇧)F�(⌅)F⌅(⌥) (3.17)

where fi >> 1, such that the derivatives taken over the
exponential are dominant. In this way, we study the
equation separating it in di�erent equations depending
on which power of the derivatives over the exponent they
have. The first step is to look only at the second deriva-
tives because, since they produce terms of second order
in the exponent, they are the leading ones. In this way
we find:

f⇤(⇧) = ± 2⇥
3
k arctan e⇤ + A (3.18)

f�(⌅) = ±
⇧ ⌃

k2 � m2

sin2 ⌅
+ B (3.19)

f⌅(⌥) = ±m⌥ + C (3.20)

The integral in (3.19) can be solved, but it gives a cum-
bersome result. So in what follows we will assume no ⌥
dependence just to get an idea of the result. If we as-
sume that there is no ⌥ dependence, the functions in the
exponent reduce to:

f⇤(⇧) = ± 2⇥
3
k arctan e⇤ + A (3.21)

f�(⌅) = ±k⌅ + B (3.22)
(3.23)

The function f⇤(rho) is almost linear in ⇧ in the region
that we are interested in studying (�2 � ⇧ � 1), so we
expect to see wave propagation in this region.

Now that we have found the functions in the expo-
nent we look for the wave amplitude by cancelling among
themselves the terms with the first power of the large ex-
ponent, and by doing this we find the amplitude functions
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to be:

F⇤(⇧) ⇥ 1
(cosh ⇧)1/6

(3.24)

F�(⇥) ⇥
1⌅
sin ⇧

(3.25)

D. The exact separation of variables for Gubser
flow

We have seen that in the short wavelength approxi-
mation we found a wave-like solution to equation 3.16,
but now we would like to look for the exact solution,
which can be found by using variable separation such
that �(⇧, ⇥, ⌃) = R(⇧)⇥(⇥)⇤(⇥), then

R(⇥) =
C1P

2/3

� 1
2+ 1

6
⇥

12�+1
(tanh ⇥) + C2Q

2/3

� 1
2+ 1

6
⇥

12�+1
(tanh ⇥)

(cosh ⇥)2/3

�(�) = C3P
m
l (cos �) + C4Q

m
l (cos �)

⇥(⇤) = C5e
im⇥ + C6e

�im⇥ (3.26)

where ⇤ = l(l + 1) and P and Q are associated Legendre
polynomials. The part of the solution depending on ⇥ and
⌃ can be combined in order to form spherical harmonics
Ylm(⇥,⌃), such that �(⇧, ⇥,⌃) ⇤ Rl(⇧)Ylm(⇥,⌃).

It is interesting to explore the asymptotic behavior of
the Legendre functions when l >> 1 that is given by [9]:

Pm
l (cos ⇥) =

2⌅
⌅

�(l + m + 1)
�(l + 3/2)

cos ((l + 1/2)⌃� ⇥
4 + m⇥

2 )
⌅

2 sin ⇥

Qm
l (cos ⇥) =

⌅
⌅

�(l + m + 1)
�(l + 3/2)

cos ((l + 1/2)⌃ + ⇥
4 + m⇥

2 )
⌅

2 sin ⇥
(3.27)

These expressions show that for large l the solution
presents oscillatory behavior in ⇥ with an amplitude given
by 1⇥

sin �
, which is the same that we obtained in the short-

wavelength approximation for F�(⇥) (eq.3.25). Now we
look into the ⇧-dependent part of the solution in the large
l limit we have that the Legendre polynomials as a func-
tion of tanh ⇧ correspond to:

P m
l (tanh ⇤) =

r
2

⇥

�(l + m + 1)

�(l + 3/2)

cos

„„
l +

1

2

«
arccos (tanh ⇤)�

⇥

4
+

m⇥

2

«p
cosh ⇤

Qm
l (tanh ⇤) =

r
⇥

2

�(l + m + 1)

�(l + 3/2)

cos

„„
l +

1

2

«
arccos (tanh ⇤) +

⇥

4
+

m⇥

2

«p
cosh ⇤

(3.28)

Again we see an oscillatory behavior and a wave am-
plitude. In this case the amplitude is given by

⌅
cosh ⇧

and if we divide this by (cosh ⇧)2/3 as we have in the
exact solution (3.26) we get an amplitude for the wave
of 1

(cosh ⇤)1/6 , which is the same as we got in 3.24 for the
short wavelength approximation.

So we have checked that for large l (or equivalently
large k) �(⇧, ⇥, ⌃), and therefore T̂1, behaves like a wave,
so if at some ⇧ = ⇧0 we put a perturbation we expect
sound to propagate. We will study this by putting a
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given by:
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u� = 0
u⌅ = 0 (3.30)
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where i = ⇥,⌃, so it is enough to put
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The general solution for linear perturbations is
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where clm, Al and Bl are constants that can be deter-
mined using the initial conditions (3.29) and (3.32). With
Al and Bl determined, the ⇧-dependent part of the tem-
perature is:
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the solutions to the ⇧-dependent part of the equation 3.16
for �. The denominator of the of the right term of Rl(⇧)
corresponds to the Wronskian of the functions pl(⇧) and
ql(⇧) evaluated in ⇧0.Since the Legendre polynomials P
and Q are linearly independent, the Wronskian is always
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Hydrodynamical description of the “Little Bang” in heavy ion collisions is surprisingly successful,
mostly due to the very small viscosity of the Quark-Gluon plasma. In this paper we systematically
study the propagation of small perturbations, also treated hydrodynamically. We start with a num-
ber of known techniques allowing for analytic calculation of the propagation of small perturbations
on top of the expanding fireball. The simplest approximation is the “geometric acoustics”, which
substitutes the wave equation by mechanical equations for the propagating “phonons”. Next we
turn to the case in which variables can be separated, in which case one can obtain not only the
eikonal phases but also amplitudes of the perturbation. Finally, we focus on the so called Gubser
flow, a particular conformal analytic solution for the fireball expansion, on top of which one can
derive closed equations for small perturbations. Perfect hydrodynamics allows all variables to be
separated and all equations to be solved in terms of known special functions. We can thus collect
the analytical expression for all the harmonics and reconstruct the complete Green function of the
problem. In the viscous case the equations still allow for variable separation, but one of the equations
has to be solved numerically. We still can collect all the harmonics and show real-time perturbation
evolution, observing viscosity-induced changes in the spectra and the correlation functions of sec-
ondaries. We end up by comparing the calculated angular shape of the correlation function to the
STAR experimental data, and find, for su�ciently large viscosity, a surprisingly good agreement.

PACS numbers:

I. INTRODUCTION

Since it is the third paper of the series devoted to
the propagation of perturbations on top of the “Little
Bang”, it does not need a detailed Introduction. Let us
only briefly remind the main physics of the phenomena
in question, and then mention where the reader can find
important earlier works on the subject.

Initial state perturbations of an “average fireball”,
which occur on event-by-event basis, lead to divergent
sound waves, similar to the circles from a stone thrown
into a pond. The sound velocity is � 1/2 and the time
till freezeout �FO � 2R (where R is the nuclear size,
about 6 fm for Au nuclei used in the experiment), thus
the “sound horizon” (the maximal radius of the circles)
reaches Hs � R. In terms of the angular variables
we use, it means a response at relatively large angles,
O(±1 radian), from the perturbation. The strong radial
explosion of the fireball dramatically enhances the con-
trast, making small deviations of the freezeout surface
easily observable experimentally, provided the transverse
momentum of the particles are tuned into the appropri-
ate range. The shape of the hydro response to an initial
point perturbation (the Green function) is quite nontriv-
ial, and we show that for appropriate values of the vis-
cosity it reproduces the shapes observed experimentally
quite well. Thus we will conclude that a sound propaga-
tion over distance comparable to the fireball radius � R
have in fact been experimentally observed.

Outlining the paper’s context, we now go into a bit
more detail over the brief history of the “second act of

hydro”. Sound propagation on top of the expanding fire-
ball was first considered by Casalderrey-Solana and one
of us (ES) in [1]. The fireball expansion was modelled
by an Universe expansion using the Friedmann-Lemetre-
Robertson-Walker metrics, and the specific phenomena
discussed in it was the e�ect of the variable speed of
sound (due to the QCD phase transition) on sound prop-
agation. Its main result was the appearance of backward-
moving or convergent spherical/conical waves, together
with the usual divergent ones.
A qualitative picture of “circles” resulting from point-

like initial-state perturbations, reaching the “sound hori-
zon” radius, were first introduced in the first paper of this
series [2]. It has correctly predicted the “double-hump”
shape of the angular distribution, with maxima identi-
fied with the two crossings of the circle with the fireball
boundaries, but failed to carry it further into the two-
particle correlations functions. The “circle” phenomenon
has also been found by the Brazilian group, in their (zero
viscosity) numerical studies of “event-by-event hydrody-
namics” [3]. This group however went further and calcu-
lated the two-body correlators, finding their characteris-
tic three-maxima structure. The details of such structure
in our (viscous) solution will be compared to the experi-
mental data at the end of this paper.
A general setting of the problem, including the iden-

tification of the two basic scales of the problem, the so
called “sound horizon” and “viscous horizon”, has been
made in the second paper of the series [4], in which we
also studied in detail the perturbations using the geomet-
ric Glauber model. Similar ideas have also been proposed
by Mocsy and Sorensen in [5, 6].

ar
X

iv
:1

10
5.

06
76

v1
  [

nu
cl

-t
h]

  3
 M

ay
 2

01
1

The Fate of the Initial State Fluctuations in Heavy Ion Collisions.
III The Second Act of Hydrodynamics

Pilar Staig and Edward Shuryak

Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794
(Dated: May 5, 2011)

Hydrodynamical description of the “Little Bang” in heavy ion collisions is surprisingly successful,
mostly due to the very small viscosity of the Quark-Gluon plasma. In this paper we systematically
study the propagation of small perturbations, also treated hydrodynamically. We start with a num-
ber of known techniques allowing for analytic calculation of the propagation of small perturbations
on top of the expanding fireball. The simplest approximation is the “geometric acoustics”, which
substitutes the wave equation by mechanical equations for the propagating “phonons”. Next we
turn to the case in which variables can be separated, in which case one can obtain not only the
eikonal phases but also amplitudes of the perturbation. Finally, we focus on the so called Gubser
flow, a particular conformal analytic solution for the fireball expansion, on top of which one can
derive closed equations for small perturbations. Perfect hydrodynamics allows all variables to be
separated and all equations to be solved in terms of known special functions. We can thus collect
the analytical expression for all the harmonics and reconstruct the complete Green function of the
problem. In the viscous case the equations still allow for variable separation, but one of the equations
has to be solved numerically. We still can collect all the harmonics and show real-time perturbation
evolution, observing viscosity-induced changes in the spectra and the correlation functions of sec-
ondaries. We end up by comparing the calculated angular shape of the correlation function to the
STAR experimental data, and find, for su�ciently large viscosity, a surprisingly good agreement.

PACS numbers:

I. INTRODUCTION

Since it is the third paper of the series devoted to
the propagation of perturbations on top of the “Little
Bang”, it does not need a detailed Introduction. Let us
only briefly remind the main physics of the phenomena
in question, and then mention where the reader can find
important earlier works on the subject.

Initial state perturbations of an “average fireball”,
which occur on event-by-event basis, lead to divergent
sound waves, similar to the circles from a stone thrown
into a pond. The sound velocity is � 1/2 and the time
till freezeout �FO � 2R (where R is the nuclear size,
about 6 fm for Au nuclei used in the experiment), thus
the “sound horizon” (the maximal radius of the circles)
reaches Hs � R. In terms of the angular variables
we use, it means a response at relatively large angles,
O(±1 radian), from the perturbation. The strong radial
explosion of the fireball dramatically enhances the con-
trast, making small deviations of the freezeout surface
easily observable experimentally, provided the transverse
momentum of the particles are tuned into the appropri-
ate range. The shape of the hydro response to an initial
point perturbation (the Green function) is quite nontriv-
ial, and we show that for appropriate values of the vis-
cosity it reproduces the shapes observed experimentally
quite well. Thus we will conclude that a sound propaga-
tion over distance comparable to the fireball radius � R
have in fact been experimentally observed.

Outlining the paper’s context, we now go into a bit
more detail over the brief history of the “second act of

hydro”. Sound propagation on top of the expanding fire-
ball was first considered by Casalderrey-Solana and one
of us (ES) in [1]. The fireball expansion was modelled
by an Universe expansion using the Friedmann-Lemetre-
Robertson-Walker metrics, and the specific phenomena
discussed in it was the e�ect of the variable speed of
sound (due to the QCD phase transition) on sound prop-
agation. Its main result was the appearance of backward-
moving or convergent spherical/conical waves, together
with the usual divergent ones.
A qualitative picture of “circles” resulting from point-

like initial-state perturbations, reaching the “sound hori-
zon” radius, were first introduced in the first paper of this
series [2]. It has correctly predicted the “double-hump”
shape of the angular distribution, with maxima identi-
fied with the two crossings of the circle with the fireball
boundaries, but failed to carry it further into the two-
particle correlations functions. The “circle” phenomenon
has also been found by the Brazilian group, in their (zero
viscosity) numerical studies of “event-by-event hydrody-
namics” [3]. This group however went further and calcu-
lated the two-body correlators, finding their characteris-
tic three-maxima structure. The details of such structure
in our (viscous) solution will be compared to the experi-
mental data at the end of this paper.
A general setting of the problem, including the iden-

tification of the two basic scales of the problem, the so
called “sound horizon” and “viscous horizon”, has been
made in the second paper of the series [4], in which we
also studied in detail the perturbations using the geomet-
ric Glauber model. Similar ideas have also been proposed
by Mocsy and Sorensen in [5, 6].

ar
X

iv
:1

1
0

5
.0

6
7

6
v

1
  

[n
u

cl
-t

h
] 

 3
 M

ay
 2

0
1

1

13

the extra matter T = Tf +�T and one from extra motion
of the matter in the sound wave. The latter contribution
comes simply from adding the perturbation to the veloc-
ity,

uµ ⇥ uµ + �uµ (4.7)

�uµ is the perturbation, written in (3.35) as û1 times ⌅ .
The e�ect due to the extra matter is included when

calculating the freeze-out surface:

Tfo = Tb(⌅, r) + �T (⌅, r,⇧) (4.8)

where �T = T̂1/⌅ , with T̂1 from (3.35).The equation (4.8)
is solved for ⌅(r,⇧), and the result for the inviscid case
is presented in Fig.8. Since the contribution from the

FIG. 8: (Color online) Freeze-out surface ⇤(x, y) in fm for the
inviscid case.

perturbation is small, we write ⌅(r,⇧) = ⌅b(r) + �⌅(r,⇧)
and consider terms up to first order in �⌅(r,⇧). By this
we mean that the exponent will be approximated by

pµuµ(⇤b + �⇤)
Tf

� pµub µ(⇤b)
Tf

+
1
Tf

d(pµub µ(⇤b + �⇤))
d(�⇤)

|�⇥=0�⇤

+
pµ�uµ(⇤b)

Tf
(4.9)

Fig.9 shows �⌅ for both, the inviscid and for the viscous
case. In the former case the contribution is much larger
than in the latter, where the viscosity has dampened and
widened the peaks.

Figure 7 compares the particle distribution for the
three cases, (i) the inviscid case, (ii) the minimal ⇥/s =
1/(4⇤) and (iii) so-to-say maximal viscosity case ⇥/s =
0.134. In the ideal hydro case the two peaks of the angu-
lar distributions, due to the overlap of the perturbation
with the fireball boundary, are more pronounced than in
the cases with nonzero viscosity. Also, in this case (i) one
can clearly see high frequency oscillations on the curve.
Those are artifact of the arbitrary limit of the number of
harmonics used to l < lmax = 30. The oscillations dis-
appear when we take viscosity into account, because, as
we mentioned earlier, viscosity kills all higher harmonics

FIG. 9: (Color online) Excess of freeze-out surface �⇤(r,⌅)
due to the initial perturbation. Top: ideal case, bottom: vis-
cous case with ⇥/s = 0.134. Only the half of the surface that
is a�ected by the presence of the perturbation was plotted.

anyway, with l > lmax � 10. In the presence of viscosity,
the peaks in the particle distribution are weakened, and
their angular separation is a bit more spread than in the
inviscid case.

C. Two-particle correlations and comparison to
experiment

The number of extra particles produced by the pertur-
bation are numerically about O(10) (per unit rapidity),
which should be compared to O(1000) particles produced
by the background fireball. Thus modifications of the
expansion and all parameters are of order of percents, in
all parameters and in the spectra. Such small changes
cannot be observed on event-by-event basis: and yet the
fluctuations we discuss do happen di�erently in di�er-
ent events. The resolution of this di⇥culty is provided
by observation of the two (or more) particle correlation
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Figure 2: The steps involved in the extraction of the vn for 2-3 GeV fixed-pT correlation: a) the two-
dimensional correlation function (shown for |∆η| < 4.75 to reduce the fluctuations near the edge), b)
the one-dimensional ∆φ correlation function for 2 < |∆η| < 5 (re-binned into 100 bins), overlaid with
contributions from individual Fourier components as well as the sum, c) Fourier coefficient vn,n vs n,
and d) vn vs n. The bottom two panels show the full dependence of vn,n and vn on ∆η. The v1 is not
shown since it breaks the factorization from vn,n to vn of Eq. 13. The shaded bands in c)-f) indicate the
systematic uncertainties. The range 2 < pa

T
, pb
T
< 3 GeV is chosen, since collective flow is expected to

be large in this range while the pair statistics are still high.
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The power spectrum is very sensitive to viscosity, 
and it has acoustic minima/maxima (at m=7,12 

and m=9) 
perturbation initial size is 0.7 fm, viscosity eta/s=0,0.08,0.13,0.16 
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So what? Why is hydro’s success for the 

Little Bang interesting/exciting? 

• True that already in the 19th century sound vibrations in the bulk (as 
well as of drops and bubbles) have been well developed  (Lord 
Rayleigh, …) 

• But, those objects are macroscopic, they still have 10^20 molecules… 

• Little Bang has about 10^3 particles (per unit rapidity)                        
or   10  per dimension. The radial flow well described was already quite 
surprising: it worked only due to astonishingly small viscosity  … 

• And now we speak about the 10th harmonics! How a volume cell with 
O(1) particles can act as a liquid? (well, we look at the surface at 
freezeout, 2piR about 50 fm, so even 1/10 of it is 5fm… 
• Comment: so far the agreement is limited not by a hydro failure,       
but because of limited experimental statistics! 



hydro in small systems,  
pp and pA

10 

2012 pPb pilot run at the LHC  

Interaction rate of 200 Hz, all two million MB pPb events collected 

<Ntrk
offline >~40 for MB pPb

<Ntrk
offline >~15 for MB pp

Much easier to reach high multiplicity in pPb, as expected 
each event costs 10^6$ 

and yet one can measure 
two particle correlator!ridge 
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“Ridge” in pp and AA collisions 
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Physical origin of pp ridge  
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“Smoking gun” of a strongly  
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High-multiplicity pp and pA collisions: Hydrodynamics at its edge
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With growing multiplicity, the pp and pA collisions enter the domain where the macroscopic description
(thermodynamics and hydrodynamics) becomes applicable. We discuss this situation, first with simplified thought
experiments, then with some idealized representative cases, and finally address the real data. For clarity, we do not
do it numerically but analytically, using the Gubser solution. We found that the radial flow is expected to increase
from central AA to central pA, while the elliptic flow decreases, with higher harmonics being comparable. We
extensively study the magnitude and distribution of the viscous corrections, in Navier-Stokes and Israel-Stuart
approximations, ending with higher gradient resummation proposed by Lublinsky and Shuryak. We found that
those corrections grow from AA to pA to pp, but remain tractable even for pp.

DOI: 10.1103/PhysRevC.88.044915 PACS number(s): 12.38.Mh

I. INTRODUCTION

High energy heavy ion collisions are theoretically treated
very differently from pp and pA ones. While the for-
mer are very well described using macroscopic theories—
thermodynamics and relativistic hydrodynamics—the latter
are subject to what we would like to call the “pomeron
physics”, described with a help of microscopic dynamics in
terms of (ladders of) perturbative gluons, classical random
gauge fields, or strings. The temperature and entropy play a
central role in the former case, and are not even mentioned or
defined in the latter case.

The subject of this paper is the situation when these two
distinct worlds (perhaps) meet. In short, the main statement
of this paper is that specially triggered fluctuations of the pp
and pA collisions of particular magnitude should be able to
reach conditions in which the macroscopic description can
be nearly as good as for AA collisions. While triggered by
experimental hints at the Cern Large Hadron Collider (LHC)
to be discussed below, this phenomenon has not yet been a
subject of a systematic study experimentally or theoretically,
and is of course far from being understood. So on onset let us
enumerate few key issues to be addressed.

(i) How do the thermodynamical and hydrodynamical
(viscosities, relaxation time, etc.) quantities scale with
the change in the system size R and the multiplicity N?
What are the criteria for macroscopic (hydrodynamical)
behavior?

(ii) What are the consequences of the fact that the strongly
coupled quark-gluon plasma (sQGP) phase of matter is
approximately scale invariant?

(iii) Do high multiplicity pp and pA collisions in which the
(double) “ridge” has been recently observed at the LHC
[1–3] fit into the hydrodynamical systematics tested so
far for AA collisions?

(iv) What is the expected magnitude of the radial flow in
pp and pA collisions, and how is it related to that in
AA? What are the freeze-out conditions in these new
explosive systems?

(v) How do amplitudes of the second and higher angular
harmonics vn scale with n, R, and η/s? In which pt

region do we expect hydrodynamics to work, and for
with vn?

The major objective of the heavy ion collision program
is to create and study properties of a new form of matter,
the quark-gluon plasma. Among many proposed signatures
proposed in [4], the central role is played by production
of macroscopic fireball of such matter, with the subsequent
collective explosion described by the relativistic hydrodynam-
ics. Its observable effects include radial and elliptic flows,
supplemented by higher moments vm,m > 2. At the BNL
Relativistic Heavy Ion Collider (RHIC) and LHC the AA
collisions has been studied in detail by now, with multiple
measured dependences, with excellent agreement with hydro-
dynamics in a wide domain, for n < 7 and in the range of
pt < 3 GeV.

Let us start with a very generic discussion of applicability
of hydrodynamics. The basic condition is that the system’s
size R should be much larger than microscopic scales such as,
e.g., the correlation lengths or the inverse temperature T −1.
The corresponding ratio is one small parameter

1
T R

≈ O(1/10) ≪ 1, (1)

where the value corresponds to well-studied central AA
collisions. Another important small parameter which we seem
to have for sQGP is the viscosity-to-entropy-density ratio

η

s
= 0.1 . . . 0.2 ≪ 1. (2)

This tells us that viscous scale—the mean free path in kinetic
terms—is additionally suppressed compared to the micro scale
1/T by strong interaction in the system. The product of both
parameters appearing in expressions below suggests that one
can hope to apply even ideal hydrodynamics in AA collisions
with few percent accuracy, as also is seen phenomenologically.

The reason why the fireballs produced in AuAu collisions
at RHIC and PbPb at LHC behaves macroscopically is related
to the large size of the colliding nuclei used. Yet smaller
systems, with sizes O(1 fm) occurring in pp or pA, should
also be able to do so, provided certain conditions are met. Let
us thus start to define a proper comparison, starting with our
thought experiment 0, in which two systems (see a sketch in
Fig. 1) A and B have the same local quantities—temperatures,
viscosities and the like—but different sizes RA > RB . (For
example, think of AuAu and CuCu collisions at the same
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FIG. 8. (Color online) The slopes of the m⊥ distribution T ′ (GeV)
as a function of the particle mass, from [13]. The numbers on the right
are track multiplicity.

In the remaining radial Cooper-Fry integral over the freeze-
out surface one should substitute proper time τ (r) and its
derivative, as well as transverse rapidity κ(τ (r), r), defined
via tanh(κ) = v⊥. The spectra are fitted to exponential form at
large m⊥ [see Fig. 9(a)] and finally in Fig. 9(b) we compare
the slopes T ′ observed by the CMS (in the highest multiplicity
bin) to theoretical results.

We start doing it by comparing to other models. We do
not include the parton cascade models Hijing, as it has no
flow by design and obviously fails in such a comparison. The
(latest version of the) hydrodynamical model “Epos LHC” [25]
predicts spectra with slopes shown by asterisks: as evident
from Fig 9.(b) it misses the slope by a lot, for the protons
by about factor 2. Even further from the data are the slopes
calculated from the AMPT model [26] (diagonal crosses and
dashed line).

Upper two lines in Fig. 9(b) show our results, corresponding
to two selected values of Tf , 0.12, and 0.17 GeV. The former
is in the ballpark of the kinetic freeze-out used for AA data:
but as Fig. 9(b) shows it overpredicts the radial flow for the
pA case. The second value corresponds to the QCD critical
temperature Tc: it is kind of the upper limit for Tf since it is
hard to imagine freeze-out in the QGP phase. As seen from
the figure, such value produces reasonable amount for the
collective radial flow as observed by the CMS. The same level
of agreement holds not only in the highest multiplicity bin, but
for most of them. We thus conclude that in pA the chemical
and kinetic freeze-out coincide.

Apart from the effective m⊥ slopes T ′ for each multiplicity
bin and particle type, the paper [23] also gives the mean
transverse momenta. Like slopes, they also display that
radial flow in few highest multiplicity pA do exceed that in
central AA. Those data also agree reasonably well with our
calculation.

(a)

dN

dydm2
⊥

(y = 0)

m⊥(GeV )

(b)

m(GeV )

T (GeV )

FIG. 9. (Color online) (a) A sample of spectra calculated for
π, K, p, top-to-bottom, versus m⊥ (GeV), together with fitted
exponents.(b) Comparison of the experimental slopes T ′(m) versus
the particle mass m (GeV). The solid circles are from the highest
multiplicity bin data of Fig. 8, compared to the theoretical predictions.
The solid and dash-dotted lines are our calculations for freeze-
out temperatures Tf = 0.17, 0.12 GeV, respectively. The asterisk-
marked dashed lines are for Epos LHC model, diagonal crosses on
the dashed line are for AMTP model.

(The reader may wander why we do not compare the spectra
themselves. Unfortunately we cannot do it now, neither in
normalization more in shape because of significant “feed-
down” from multiple resonance decays, strongly distorting
the small-pt region. Event generators like HIJING and AMPT
use “afterburner” hadron cascade codes for that.)

B. Higher harmonics

The repeated motive of this paper is that the smaller systems
should have stronger radial flow, as they evolve “longer” (in
proper units, not absolute ones) and the pressure gradient
driving them never disappears. Higher harmonics are not
driven permanently but are instead oscillating, plus damped
by the viscosity. Since the only harmonics in the pA and pp
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large m⊥ [see Fig. 9(a)] and finally in Fig. 9(b) we compare
the slopes T ′ observed by the CMS (in the highest multiplicity
bin) to theoretical results.

We start doing it by comparing to other models. We do
not include the parton cascade models Hijing, as it has no
flow by design and obviously fails in such a comparison. The
(latest version of the) hydrodynamical model “Epos LHC” [25]
predicts spectra with slopes shown by asterisks: as evident
from Fig 9.(b) it misses the slope by a lot, for the protons
by about factor 2. Even further from the data are the slopes
calculated from the AMPT model [26] (diagonal crosses and
dashed line).

Upper two lines in Fig. 9(b) show our results, corresponding
to two selected values of Tf , 0.12, and 0.17 GeV. The former
is in the ballpark of the kinetic freeze-out used for AA data:
but as Fig. 9(b) shows it overpredicts the radial flow for the
pA case. The second value corresponds to the QCD critical
temperature Tc: it is kind of the upper limit for Tf since it is
hard to imagine freeze-out in the QGP phase. As seen from
the figure, such value produces reasonable amount for the
collective radial flow as observed by the CMS. The same level
of agreement holds not only in the highest multiplicity bin, but
for most of them. We thus conclude that in pA the chemical
and kinetic freeze-out coincide.

Apart from the effective m⊥ slopes T ′ for each multiplicity
bin and particle type, the paper [23] also gives the mean
transverse momenta. Like slopes, they also display that
radial flow in few highest multiplicity pA do exceed that in
central AA. Those data also agree reasonably well with our
calculation.
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π, K, p, top-to-bottom, versus m⊥ (GeV), together with fitted
exponents.(b) Comparison of the experimental slopes T ′(m) versus
the particle mass m (GeV). The solid circles are from the highest
multiplicity bin data of Fig. 8, compared to the theoretical predictions.
The solid and dash-dotted lines are our calculations for freeze-
out temperatures Tf = 0.17, 0.12 GeV, respectively. The asterisk-
marked dashed lines are for Epos LHC model, diagonal crosses on
the dashed line are for AMTP model.

(The reader may wander why we do not compare the spectra
themselves. Unfortunately we cannot do it now, neither in
normalization more in shape because of significant “feed-
down” from multiple resonance decays, strongly distorting
the small-pt region. Event generators like HIJING and AMPT
use “afterburner” hadron cascade codes for that.)

B. Higher harmonics

The repeated motive of this paper is that the smaller systems
should have stronger radial flow, as they evolve “longer” (in
proper units, not absolute ones) and the pressure gradient
driving them never disappears. Higher harmonics are not
driven permanently but are instead oscillating, plus damped
by the viscosity. Since the only harmonics in the pA and pp
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We predicted the radial flow 
in pp/pA to be even stronger  
than in central AA

Not the Mt scaling at large 
Ntr => not a large Qs   

but a collective flow: p=m v

“standard” 
hydro is 

not enough



CMS pPb: v2 from 2 and 4-particles

!

Gunther Roland RBRC Workshop, Apr 15-17, 2013 

v2 in pPb and PbPb 

v2 smaller in pPb than PbPb 

v2{4} drops at low multiplicity  

“Peripheral subtraction” has small effect at high multiplicity 

PbPb pPb 

Gunther Roland RBRC Workshop, Apr 15-17, 2013 

v2 in pPb and PbPb 

PbPb pPb 
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Figure 36: The differential v2{2} and v3{2} values (open markers) as a function of pT obtained
for |h| < 2.4 from long-range two-particle correlations with |Dh| > 2 for 1 < passoc

T < 2 GeV/c
is shown, together with the differential v2{4} values (solid markers) as a function of pT for
|h| < 2.4 obtained with three reference particles in the pT range of 0.3-3 GeV/c. The results refer
to 2.76 TeV PbPb collisions (left) and to 5.02 TeV pPb collisions (right).

(v2{2, |Dh| > 2}) for 1 < passoc
T < 2 GeV/c, are shown in Fig. 36 in open markers. At a given pT509

value, v2 is observed to be 3–4 times bigger than v3. While the requirement of |Dh| > 2 com-510

pletely removes the near-side jet-like correlations, additional non-hydrodynamical correlations511

from back-to-back jets, as well as effects of energy-momentum conservation on the away side512

of two-particle correlation function could still contaminate the v2 and v3 values obtained from513

two-particle correlations.514

In order to further restrict the residual non-flow effect on the away side, the technique of four-515

particle cumulant is used to extract the v2 value (v2{4}). See section. 6.2 for more details about516

this method. Note that no Dh gap is applied here (as well as in the two-particle correlation517

method) since, upon correlating four particles at the same time the non-flow correlations are518

naturally suppressed, especially for high multiplicity events (in fact, it is suppressed by an519

additional factor of 1/N as compared to two-particle correlation method). The measured v2{4}520

values as a function of pT are also shown in Fig. 36 in solid markers. As one can see, v2{4} is521

below v2{2} over the whole pT range, with similar behavior in pPb and PbPb collisions. This is522

expected because the event-by-event v2 fluctuation contribute to v2{4} and v2{2} in opposite523

ways, approximately following the relations:524

v2{2} =
q
< v2 >2 +s2

v2
, v2{4} =

q
< v2 >2 �s2

v2
, (30)

which always results in a larger value for v2{2} than v2{4}.525

Fig. 37 shows the multiplicity dependence of v2{2}, v2{4} and v3{2} for 1 < pT < 2 GeV/c526

in PbPb and pPb collisions. For Noffline
trk & 40, v2{2} and v3{2} show moderate increase with527

Noffline
trk in PbPb collisions, while they are approximately constant in pPb collisions. On the other528

hand, the v2{4} results show a very intriguing behavior, rapidly turning on at Noffline
trk ⇠ 40� 60529

in both pPb and PbPb , and then remaining approximately constant in Noffline
trk up to the highest530

multiplicity ranges explored in this analysis. Furthermore, the amount of event-by-event v2531
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fluctuations could be estimated from Eq. 30, if one assumes that hydrodynamic flow would be532

the only source of correlations in v2{2} and v2{4}. Considering that this could be the case, then533

sv2

v2
=

s
v2

2{2}� v2
2{4}

v2
2{2}+ v2

2{4}
. (31)

The results for pPb and PbPb collisions are shown in the bottom panel of Fig. 37, indicating534

about 45–55% v2 fluctuations in PbPb collisions, as compared to ⇠ 60% in pPb collisions. Con-535

sidering the expected non-flow effects in v2{2}, these data serve as an estimate of an upper536

limit on v2 fluctuations in pPb and PbPb collisions.537
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short history of QCD strings

• 1960’s: Regge phenomenology, Veneziano amplitude. Strings have 
exponentially growing density of states N(E)!

• 1970’s Polyakov,Susskind => Hagedorn phenomenon near deconfinement!

• 1980’s: Lund model (now Pythia,Hijing): string stretching and breaking!

• 1990-now lattice studies. Dual Abrikosov flux tubes. (Very few) papers on 
string interaction!

• 2013 Zahed et al: holoraphic Pomeron and its regimes



the simplest multi-string 
state: the spaghetti

N(strings)=2N(Pomerons) 

2NP

!
in small multiplicity bins strings are broken  independently                      

(the Lund model),!
!

but one should obviously think about their interaction                                          
if their number gets large enough!!

!

central pPb  
Ns is about 30

Collective interaction of QCD strings and

early stages of high multiplicity pA collisions

Tigran Kalaydzhyan and Edward Shuryak
Department of Physics and Astronomy, Stony Brook University,

Stony Brook, New York 11794-3800, USA

(Dated: April 8, 2014)

We study early stages of “central” pA and peripheral AA collisions. Several observables indicate
that at the su�ciently large number of participant nucleons the system undergoes transition into a
new “explosive” regime. By defining a string-string interaction and performing molecular dynam-
ics simulation, we argue that one should expect a strong collective implosion of the multi-string
“spaghetti” state, creating significant compression of the system in the transverse plane. Another
consequence is collectivization of the “sigma clouds” of all strings into collective chorally symmetric
fireball. We find that those e↵ects happen provided the number of strings N

s

> 30 or so, as only
such number compensates small sigma-string coupling. Those finding should help to understand
subsequent explosive behavior, observed for particle multiplicities roughly corresponding to this
number of strings.

I. INTRODUCTION

A. The evolving views on the high energy collisions

Before we got into discussion of high multiplicity pA

collisions, let us start by briefly reviewing the current
views on the two extremes: the AA and the minimum
bias pp collisions.

The “not-too-peripheral” AA we will define as those
which have the number of participant nucleons N

p

> 40,
and the corresponding multiplicity of the order of few
hundreds. (Peripheral AA, complementary to this def-
inition, we will discuss in this paper, below in sec-
tion IVB.) Central AA collisions produce many thou-
sands of secondaries: the corresponding fireball has the
energy/entropy density well inside the QGP domain, and
those were naturally in the focus of the RHIC and LHC
heavy ion programs. Needless to say, the theory guid-
ance and those experiments resulted in widely known
conclusions about strongly coupled dynamics of QGP.
In particular, its collective flows were found to follow the
hydrodynamical predictions with a remarkable accuracy.

(Hydrodynamical modeling typically starts at the
proper time ⌧

i

⇠ 1/2 fm, and the EOS used is that of
the fully equilibrated matter known from lattice simula-
tions. The description of matter at earlier stages and the
exact mechanism/degree of actual thermal equilibration
is still a developing and hotly debated subject which we
will not address in this work.)

AdS/CFT correspondence has provided dual descrip-
tion to strongly interacting systems. In its vocabulary,
thermal fireballs of deconfined matter are dual to certain
5-dimensional black holes, and its hydrodynamical ex-
pansion corresponds to departure of this black hole from
the space boundary (where the gauge theory is located).
Attractively interacting and collapsing system of QCD
strings we will discuss should be viewed as a QCD ana-
log to formation of the AdS/CFT black hole formation.

The opposite extreme is represented by the typical

FIG. 1: The upper plot reminds the basic mechanism of
two string production, resulting from color reconnection. The
lower plot is a sketch of the simplest multi-string state, pro-
duced in pA collisions or very peripheral AA collisions, known
as “spaghetti”.

(minimum bias) pp collisions. Its Pomeron description
at large impact parameter b = 1�2 fm is naturally given
in terms of a double string production, see upper plot of
Fig. 1. Color reconnection (described perturbatively or
by a “tube” string diagram) leads to a pair of longitu-
dinally stretched strings, with subsequent breaking into
several pieces – hadronic clusters, which finally decay into
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string interaction via 
sigma meson exchange

4

Radial flow is characterized by the dependence on
the particle mass M (for identified secondaries ⇡,K, p,⇤
etc) of either (i) their mean hp?(M)i or (ii) the of M?
distribution slope T

eft

(M), see e.g. [? ]. The data do
not show such dependence for the lower multiplicities (8
and 32) but the e↵ect clearly is there for higher ones (84
to 235).

Elliptic flow is in those cases measured also in two
ways, either by the two-particle or four-particle correla-
tion parameters known as v2{2} and v2{4} [? ]. The
latter for pA is multiplicity independent above N

tr

> 80,
but rapidly drops below it. This is perhaps the best in-
dicator for the onset of explosive regime we so far have.
For AA data for N

tr

< 80 are too uncertain to see any
trends there.

(The careful reader may notice that this value coin-
cides with the small peak of the multiplicity distribution
shown in Fig. 1 and dividing the miltiplicity distribution
into two parts, the geometry dominated and the high
multiplicity tail. This must be a coincidence, since it is
specific to the size of Pb nuclei used: the 16 wounded
nucleons is the mean value for a proton going along its
diameter.)

III. COLLECTIVE STRING INTERACTIONS

Stretching of these strings longitudinally creates what
we would call “the spaghetti stage”.

A. Interaction in multi-string systems

One Pomeron - 2 strings so N
p

= 20 event corresponds
to N

s

= 40 strings.
In order to study interaction, we need to know how far

from each other they are and how thick is the string
The typical impact parameter in a collision at LHC

energies is

b̄ ⇠
r

�
in

⇡
⇡ 1.5 fm (6)

while the string radius is rather small, e.g. according to
lattice studies [? ] r

s

⇡ .15 fm, an order of magnitude
lower. The fraction of the volume occupied by N

s

strings
in a cylinder is thus

N
s

⇣r
s

b̄

⌘2
⇠ 10�2N

s

(7)

For a “minimally biased” (typical) pA collisions, with
just few strings, it is a rather dilute system: so the inde-
pendence of string fragmentation – assumed by the Lund
model and its descendants – seems reasonable. But for
N

p

= 40 or more, this assumption should obviously be
questioned and revisited.

The system of strings, once produced by color ex-
changes as the target and projectile pass each other at

t ⇡ 0, is then stretched between their remnants, with ra-
pidities +Y and �Y where Y is related to NN center of
mass energy. An the generic rapidity �Y < y < Y (not
too close to each end) one can view the set of strings
as approximately parallel and directed along the beam
direction.
Interaction between the QCD strings was the subject

of our previous paper [8], to which we refer the reader for
motivations and the details. Following it, we will assume
it to be mediated by the lightest scalar �. For one string
the sigma “cloud” has the form

h�(r?)W i
hW ih�i = 1� CK0(m�

r̃?) (8)

where K0 is the Bessel function and the “regulated”
transverse distance is

r̃? =
q

r2? + s2
string

(9)

which smoothens the 2d Coulomb singularity ⇠ ln(r?) at
small r. The parameters values are consistent with the
string width.
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FIG. 2. (Color online). Points are lattice data from [12], the
curve is expression (8) with C = 0.26, s

string

= 0.176 fm.

Lattice simulations such as [12] have found vacuum
modifications due to presence of a QCD string. We
argued [8] that those data can be well described by a
“sigma cloud”. In Fig. 2 one can see our two-parameter
fit to those data (The sigma mass here was taken to be
m

�

= 600MeV as an imput, and not fitted/modified.)
The problem is thus reduced to the set of 2-dimensional

point particles with the interaction 2d Yukawa interac-
tion.
The main parameter of the string-string interaction is

thus numerically small

g
N

�
T

⌧ 1 (10)

typically in the range 10�1 � 10�2. So it is correctly
neglected in the situations – for which the Lund model
has been originally invented – in which only O(1) strings
are created. It is only comes into play when the number
of strings is so large, that this smallness can be overcome.
Instantaneous e↵ects first The magnitude of the quark

condensate � = hq̄qi at the string location is only 0.8
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2d spaghetti collapse

6

Peripheral AA are modeled in the standard Glauber
way, except that we take the number of participants being
in exactly the same bins, namely N

p

= 5, 10, 15, 20, 25,
for comparison.

B. Time evolution

Basically strings can be viewed as a 2-d gas of particles
with unit mass and forces between them are given by the
derivative of the energy (8) , and so

~̈r
i

= ~f
ij

=
~r
ij

r̃
ij

(g
N

�
T

)m
�

2K1(m�

r̃
ij

) (19)

with ~r
ij

= ~r
j

� ~r
i

and “regularized” r̃ (9).
We have used a classical molecular dynamics code

based on CERN library FORTRAN double precision
solver DDEQMR and this force to follow the particle evo-
lution in the transverse plane. In Figs. 4 and 6 we show
an example of one particular configuration with N

s

= 40.
In order to study longer time evolution, we took a some-
what larger coupling ???. As seen from Fig. 4 the con-
servation of the (dimensionless) total energy

E
tot

=
X

i

v2
i

2
� 2g

N

�
T

X

i>j

K0(m�

r
ij

) (20)

is indeed observed: its accuracy is about 10�4. Even
higher accuracy is observed for the total momentum
(which remains zero).

The evolution consists of two qualitatively distinct
parts: (i) early implosion, which converts potential en-
ergy into the kinetic one, which has its peak when frac-
tion of the particles “gravitationally collapse” into a
tight cluster; and (ii) subsequent approach to a “mini-
galaxy” in virial quasi-equilibrium. To illustrate better
the first stage of the motion we made a number of movies:
three first screenshots for this configurations are shown
in Fig. 6. Running multiple files we occasionally see more
complicated scenarios realized, e.g. two “mini-galaxies”
departing from each other.

One can see that the total kinetic energy approaches
over time some mean value, which of course should be
related to the “virial’ value

2hE
kin

i =
*
X

i

~r
i

@U

@~r
i

+
(21)

as time goes to infinity. (It is standard outcome of molec-
ular dynamics studies, e.g. stars in Galaxies have similar
quasi-equilibrium.).

The simulations for peripheral AA have a particular
feature. As exemplified in Fig. 5, the initial strong defor-
mation of the system – its y-direction size is much larger

than that in x-direction, the collapse goes in two stages.
First one finds rapid 1d collapse along the x axes, supple-
mented by much more slower collapse along y direction.
If the simulation runs long enough, the resulting cluster
becomes of course isotropic.

C. Results

We generated similar time evolutions for an ensembles
of randomly generated initial conditions. Out of many
possible observables we selected the following one : Lo-
cal density in the generated clusters ✏

max

defined by the
following procedure. Step one, resembling early searches
for the location of the black hole in our Galaxy center,
is the location of most rapidly moving particle. After it
is found, its position is taken as a cluster center, and
the number of particles inside the circle of fixed radius
r0 = 0.3 fm is used to calculate the maximal 2d density
n
max

The results are converted to maximal energy den-
sity of a run by

✏
max

= �
T

n
max

(22)

and averaged over the runs.
Systematic results were organized as follows. We have

sets of 10 runs for each set of parameters, the string
number N

s

= 10, 20, 30, 40, 50, the coupling constants
g
N

�
T

= 0.01, 0.02, 0.03, 0.05, 0.08, 0.10, 0.20 and two dif-
ferent initializations, corresponding to central pA or pe-
ripheral AA.

The output is shown in Fig. 6 as the maximal energy
density reached (during the proper time ⌧ < 2 fm/c. The
main result is that the implosion of the system produces
values which are significantly higher than at the initial
time ⌧ = 0, namely ✏0 = 2 to 9 GeV/fm3 for those sets.

While the rate of the evolution depends on the strength
of the coupling, the maximal energy density reached is
much less sensitive to it. As one can see from it, for
small number of strings ⇠ 10 there is no dependence on
the coupling, in the range selected: those are too small to
create any e↵ect. However as N

s

> 30 the coupling be-
comes important: it increases the density by a significant
factor, reaching values as large as ✏

max

⇠ 80 GeV/fm3.
As such high energy density is being reached, the string

description of the system can no longer be maintained.
As the kinetic energy dissipates into multiple strings
states, they become highly excited. The equilibrium fully
equilibrated into the sQGP, the temperature would be
about T

i

⇠ 500MeV ⇠ 3T
c

, enough to generate very
robust hydro explosion.

D. Elliptic deformations

V. SUMMARY
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FIG. 3. (Color online) Example of changing transverse po-
sitions of the 50 string set: three pictures correspond to one
initial configuration evolved to time ⌧ = 0.1, 0.5, 1, 1.5 fm.
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FIG. 4. (Color online) The (dimensionless) kinetic and po-
tential energy of the system (upper and lower curves) for the
same example as shown in Fig. 6, as a function of time t(fm).
The horizontal line with dots is their sum, namely E

tot

, which
is conserved.
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FIG. 5. (Color online) Example of peripheral AA collisions,
with b = 11 fm and the 50 string set. Four snapshots of the
string transverse positions x, y(fm) correspond to times ⌧ =
0.1, 0.5, 1., 2. fm.
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so too small coupling does not work
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FIG. 9: (Color online) The left plot is for central pA, the right on – for peripheral AA collisions. The vertical axis is the e↵ective
coupling constant g

N

�

T

(dimensionless). The horizontal axis is the maximal energy density ✏

max

(GeV/fm3) defined by the
procedure explained in the text. Five sets shown by di↵erent symbols correspond to string number N

s

= 10, 20, 30, 40, 50, left
to right respectively.

�400 MeV, i.e. the chiral symmetry can be completely
restored in those regions. Large gradient of this potential
at its edge can cause quark pair production, similar to
Schwinger process in electric field: one particle may flow
outward and one falls into the well. Such phenomenon
is a QCD analog to Hawking radiation at the black hole
horizon. The final ellipticity of the induced elliptic flow
will be studied elsewhere.

V. SUMMARY AND OUTLOOK

In this work we have discussed collective interactions
between the QCD strings in a “spaghetti” configuration,
created in “central” pA and peripheral AA collisions. We
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FIG. 10: Instantaneous collective potential in units 2g
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for
an AA configuration with b = 11 fm, g
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�

T

= 0.2, N
s

= 50 at
the moment of time ⌧ = 1 fm/c. White regions correspond to
the chirally restored phase.

this number may appear to be large, one can see that,
naively, the produced system remains su�ciently dilute.
In particular, under this condition the chiral condensate
is expected to be modified only at the level of 10% or so.
After that we formulated a model of the string-

string interaction induced by the � meson exchange and
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ular dynamics simulation of the string motion in the 2-
dimensional transverse plane. We observed collective im-
plosion of the “spaghetti” configurations and listed pa-
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transition. The range of the string number is chosen to
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One may argue that as the string density is increased
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and 0.7 fm, respectively.

Longitudinal tension of the string forces the connecting
part – we will refer to it as “zipper” – to move longitu-
dinally. If it is made of a semicircular string piece with
diameter d, then its acceleration is

ak =
4

⇡d

(14)

and the relativistic motion with such acceleration in
terms of rapidity and proper time is simply given by

y

zipper

= ak⌧ (15)

Since ⌧ < ⌧

breaking

and d ⇠ 1 fm ⇠ ⌧

breaking

, one finds
that a zipper can only move by about one unit of rapid-
ity during the time considered, out of the total rapidity
interval 2Y ⇠ 10. We thus conclude that there is no
enough time to “unzip” the string system.

C. Mean field

Assuming cylindrical symmetry, one can get the shape
of the mean sigma distribution by solving the radial equa-
tion on the sigma field. We will write it as

�

00(r?) +
1

r?
�

0(r?)�m

2
�

�(r?) = ⇢(r?) , (16)

where ⇢(r?) is the matter distribution in the transverse
space. Note that we have not included the coupling con-
stant in the r.h.s. or any normalization factors: this can
be simply incorporated into the solution once it is known,
since the equation (16) is linear. We use, for example, a
Gaussian source, ⇢ = exp[�r

2
?/(2R

2)].
At large distances the r.h.s. of (16) is negligibly small,

and the solution has the form

�(r?) = C ·K0(m�

r?) , (17)

which can be used to fix asymptotics of the numerical so-
lution at large r. If the integration is performed starting
from a large r downwards, then the generic solution blows
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FIG. 5: (Color online). The (dimensionless) kinetic and po-
tential energy of the system (upper and lower curves) for
the same example as shown in Fig. 7, as a function of time
t (fm/c). The horizontal line with dots is their sum, E

tot

,
which is conserved.
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FIG. 6: (Color online). Kinetic energy (dimensionless) ver-
sus the simulation time (fm/c), for few pA N
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= 50 runs.
Seven curves (bottom-to-top) correspond to increasing cou-
pling constants g
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The shaded region on the right corresponds to the time which
is considered to be too late for strings to exist, due to their
breaking.

up at small r, unless the constant C is specially tuned. In
Fig. 4 we show two such solutions, with tuned constants
C = 3757.21, 42.37 and radii R = 1.5, 0.7 fm, respec-
tively (the solutions are rescaled on the plot, so that the
integral of the source is normalized to one). These two
radii are supposed to exemplify the “spaghetti” trans-
verse size before and after a collapse: as one can see from
the figure, the depth of the sigma potential well increases
roughly by factor 5 or so between those two cases. This is
more than enough to completely cancel chiral symmetry
breaking around the after-collapse system.

IV. MOLECULAR DYNAMICS STUDY

A. Initialization for central pA and peripheral AA

To simulate central pA we first select the num-
ber of participant (or “wounded”) nucleons N

p

=
5, 10, 15, 20, 25 and select their random positions in the
transverse plane. The numbers correspond to p mov-
ing along the diameter of Pb as discussed above, while
variation in the number roughly correspond to expected

initial and final field

Gradient of the collective field should create  
gluon/quark pairs: QCD analog of Hawking radiation



more work on QCD strings

• Holographic Pomeron: semiclassical derivation 

• it has 3 regimes 

• Self-interacting high entropy string balls are the 
way to place holes !

• holographic AdS/QCD+ quarks (V-QCD) 



summary
• out-of-equilibrium examples solved all indicate early onset of NS which is more 

accurate than it should be based on next term evaluation 

• higher order gradients tend to cancel: LS conjecture for re-summation needs to 
be checked 

• in AA hydro reaches the next level: sounds with few harmonics, all works till 
pt=3-4 GeV or 99.99% of secondaries 

• pp and pA at multiplcities >300 or so show  unexpectedly robust explosive 
behavior 

• pA and peripheral AA  => spaghetti => QCD string collective implosion and 
collectivization of their sigma field 

• need to work out holographic scenarios for small systems => trapped 
surfaces? (in progress)
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rized in Section VIA, further directions of research are
discussed in Section VIB.

B. From strings to black holes

Historically, the subject of string self-interaction have
been first discussed in the context of fundamental strings
in critical dimensions (26 for bosonic strings and 10 for
superstrings). The string coupling gs in this case is a
function of the vacuum expectation value of the dilaton
field, �: gs = e� for closed strings and gs = e�/2 for open
strings. The power of gs in the string amplitude is then
given by the Euler characteristic � of the string world-
sheet. As it is well known, the massless modes of closed
strings include gravitons: therefore it is a candidate for
the theory of quantum gravity. The subject relevant for
this work is the transition between the states of massive
“string balls” and the ones of black holes. When any
object gets very massive, one expects it to be described
classically. Su�ciently massive string balls should thus
become black holes of the classical gravity.

A string ball can be naively generated by a “random
walk” process, of M/Ms steps, where Ms ⇠ 1/

p
↵0 is the

typical mass of a straight string segment. If so, the string
entropy scales as the number of segments

Sball ⇠ M/Ms (1)

The Schwarzschild radius of a black hole in d spatial
dimensions is

RBH ⇠ (M)
1

(d�2) (2)

and the Bekenstein entropy

SBH ⇠ Area ⇠ M
d�1
d�2 (3)

Thus the equality Sball = SBH can only be reached at
some special critical mass Mc. When this happens, the
Hawking temperature of the black hole is exactly the
string Hagedorn value TH and the radius is at the string
scale. So, at least at such value of the mass a near-critical
string ball can be identified – at least thermodynamically
– with a black hole.

However, in order to understand how exactly this state
is reached, one should first address the following puz-
zle. Considering a free string ball (described by the
Polyakov’s near-critical random walk), one would esti-
mate its radius to be

Rball,r.w.

ls
⇠

p
M (4)

for any dimension d. This answer does not fit the
Schwarzschild radius RBH given above (2).

The important element missing is the self-interaction
of the string ball: perhaps, Susskind was the first who
pointed it out. More quantitative study started by

FIG. 1: (Color online) Dipole-dipole scattering due to the
“tube” string configuration. The impact parameter b is the
dipole transverse separation.

Horowitz and Polchinski [8] had used the mean field ap-
proach, and then Damour and Veneziano [9] completed
the argument by using the correction to the ball’s mass
due to the self-interaction. Their reasoning can be sum-
marized by the following schematic expression for the
entropy of a self-interacting string ball of radius R and
mass M ,

S(M,R) ⇠ M

✓
1� 1

R2

◆✓
1� R2

M2

◆✓
1 +

g2M

Rd�2

◆
(5)

where all numerical constants are for brevity suppressed
and all dimensional quantities are in string units given
by its tension. The coupling g in the last bracket is the
string self-coupling constant to be much discussed below.
For a very weak coupling the last term in the last bracket
can be ignored and the entropy maximum will be given
by the first two terms: this brings us back to the random
walk string ball. However, even for a very small g, the
importance of the last term depends not on g but on
g2M . So, very massive balls can be influenced by a very
weak gravity (what, indeed, happens with planets and
stars). If the last term is large compared to 1, the self-
interacting string balls become much smaller in size and
eventually fit the Schwarzschild radius.

C. String balls emerging in high energy pp
scattering

Pomeron description of the high energy hadronic
scattering includes production of (two) QCD strings
stretched between the receding color dipoles. Zahed and
collaborators [10, 11] proposed a semiclassical deriva-
tion of the tunneling (Euclidean) stage of the process,
based on the so-called “tube” string configuration shown
schematically in Fig. 1. Depending on how it is cut, it
can be viewed as either a production of two open strings
or a closed string exchange between the two color dipoles.
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and all dimensional quantities are in string units given
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can be ignored and the entropy maximum will be given
by the first two terms: this brings us back to the random
walk string ball. However, even for a very small g, the
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scattering

Pomeron description of the high energy hadronic
scattering includes production of (two) QCD strings
stretched between the receding color dipoles. Zahed and
collaborators [10, 11] proposed a semiclassical deriva-
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based on the so-called “tube” string configuration shown
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Can be matched for one M only => critical string ball 
its Hawking T is the Hagedorn TH
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and all dimensional quantities are in string units given
by its tension. The coupling g in the last bracket is the
string self-coupling constant to be much discussed below.
For a very weak coupling the last term in the last bracket
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importance of the last term depends not on g but on
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stars). If the last term is large compared to 1, the self-
interacting string balls become much smaller in size and
eventually fit the Schwarzschild radius.

C. String balls emerging in high energy pp
scattering

Pomeron description of the high energy hadronic
scattering includes production of (two) QCD strings
stretched between the receding color dipoles. Zahed and
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even for a very small g, !
the importance of the last term 
depends not on g but on g2M. So, 
very massive balls can be 
influenced by a very weak gravity 
(what, indeed, happens with 
planets and stars)!
 and stars!
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is comparable to the physical maximal energy density of
the mixed phase we would like to study.

One remaining issue is treatment of color number. In
practice we ignore it, considering thermal excitations of
two strings we always initiate the system with. We also
think of those strings are direct and reverse color fluxes
from two neutral hadrons, which appear in hadronic col-
lisions: it basically mean that all our strings have all only
one and the same color. Their mutual repulsion – or no-
crossing rule – is in this case natural. All we simulate
is the Hagedorn phenomenon due to exponentially large
number of string states, ignoring pre factors due to the
Nc.

Some justification for that comes from the fact that
(apart from the properties of the deconfined phase itself)
very little Nc dependence is seen in the lattice gluody-
namics data, for a review see [15, 16]. One may however
still wander if one should assign specific colors to strings
in the model and account for the fact that two overlap-
ping flux tubes with different colors may be partially
allowed. In this first study we simply did not want to
make our model too complex.

IV. NUMERICAL SIMULATIONS

A. String ball without a self-interaction

Our algorithm consists of a sequence of updates for the
each string segment, such that the configuration gradu-
ally approaches equilibrium. In order to thermalize the
string and to generate a statistical ensemble, we use the
following three types of elementary updates:

r
r r

r �! r r (24)

r
r r

 !
r
rr (25)

r r �! r
r r

r (26)

There is no 1 to 2, because those are “local updates”,
done with the ends fixed. Where the new “corners” and
“staples” are chosen in a way avoiding self-intersections.
A new configuration is then accepted with the probability
from the heat bath (Metropolis) algorithm,

PA = min


1, exp

✓
E

old

� E
new

T

◆�
, (27)

where (E
old

) E
new

is the total energy of the (old) new
configuration, and T is the temperature in the region of
space, where the update is performed. We introduce a
space-dependent temperature with a Gaussian profile

T (r) = T
0

exp

✓
� r2

2s2T

◆
(28)

As the self-interaction is absent (gN = 0), the physics
is simple: in the “cold” regions of space T (x) < TH the
string’s entropy times temperature is less than its energy
and the string segments are only present if they should
cross the region in order to connect fixed string ends.
In the “hot” region, where T (x) > TH the string gets
strongly excited.
Since in hadronic collisions the color flux conservation

requires production of an even number of strings, (most)
of our simulations are initialized by the two-string config-
urations. The endpoints are separated by a fixed distance
3a ⇠ 1.5 fm and are not moved by the update algorithm.
In Fig. 5 we show an example of history of such sim-

ulations, as the string length versus the computer time
t/tm. The time is in units tm = 10 of the entire string up-
date cycles. The total run (equilibration time excluded)
is typically about (1� 3)⇥ 104 iterations. The necessary
run length actually was found to be dependent on the
ball size: the example we will now use corresponds to a
“medium-size ball” with a length of about 50 links and
a mass of about 25 GeV.
The integral distribution over all three coordinates is

close to the Gaussian one, as is exemplified in the upper
figure. Yet it is not just a Gaussian ensemble of random
points, as the points constitute extended objects - strings.
One can see in the lower part of Fig. 5 that the (computer
time) history of the system displays rather large fluctua-
tions. Yet the average over points (not shown) does not
show any obvious time dependence, which means that the
average properties of the ensemble has stabilized. The
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FIG. 6: (Color online) Upper plot: distribution over the string
lengths (in units of a) in our simulations. Dark (blue) his-
togram is for T0 = 1GeV, sT = 1.5a, the light (orange) one
is for T0 = 1GeV, sT = 1.0a. The lower plot shows a typi-
cal configuration in the second ensemble, with only one string
excited.

Metropolis algorithm, updates, 
T(x) instead of a box 
Yukawa self-interaction 
!
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FIG. 7: Upper plot: The energy of the cluster E (GeV)
versus the length of the string L/a. Lower plot: The en-
ergy of the cluster E (GeV) versus the “Newton coupling”
gN (GeV�2). Points show the results of the simulations in
setting T0 = 1GeV and size of the ball sT = 1.5a, 2a, for
circles and stars, respectively.

reason for those is the near-critical conditions at the ball
surface, where the string has e↵ectively a very small e↵ec-
tive tension. Furthermore, if one looks at the individual
configurations – e.g. those displayed in Fig. 4 – one can
see that, in spite of relatively heavy string balls, most of
the space remains unoccupied.

As the parameter sT of the ball size is reduced, the
mean length (and thus the ball’s mass) is strongly di-
minished as well. Two examples of the length distribu-
tion shown in Fig. 6 make this point clear. While at
T
0

= 1GeV, sT = 1.5a (dark blue histogram) one finds a
string ball of an average length of about 20 links, further
reduction to sT = 1.0a (light orange histogram) shows
that the most probable is the shortest configuration with
8 points (6 links), corresponding to an unexcited initial
configuration. Yet even in this case, the population of the
excited strings still show a long tale, with population up
to 25 links (in this simulation), with a probability rate
of about a percent. Inspection of those configurations
shows that it is dominated by the excitation of one of
the strings only, see lower part of Fig. 6.

B. Self-interaction included

Now we are ready to see how nonzero string self-
interaction modifies the properties of the system. While
increasing the corresponding parameter – “scalar New-
ton’s constant” gN – we observe that above its critical
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FIG. 8: (Color online) A typical configuration in the entropy-
rich self-balanced string balls ensemble. Simulation parame-
ters: T0 = 1GeV, sT = 1.5a, gN = 4.4 (GeV�2).

value even the most basic features of the system change.
In Fig. 7 (upper figure) we show the calculated rela-

tion between the average string length L and its energy
E. Each point is a run of about 10"000 iterations of the
entire string updates after equilibration. While at small
coupling E and L are simply proportional to each other,
like for non-interacting strings described above, this be-
havior changes abruptly. As the negative self-interaction
energy become important, the total energy E of the ball
becomes decreasing with the string length L. In Fig. 7
(lower figure) we show more details of this behavior: this
plot demonstrates how total energy E depends on the
coupling value gN . We find a jump at the critical cou-
pling (for this setting) gc1N , which in a simulation looks
like a first order transition, with double-maxima distribu-
tions in the energy and length. As is seen from the figure,
the precise value of the coupling somewhat depends on
the system size. At this coupling the jump in energy is
always about a factor 3, and the jump in string length
(or entropy) is even larger.
In this way we observe a new regime for our system,

which we will call the “entropy-rich self-balanced string
balls”. For a given fixed mass M we thus find that string
balls may belong to two very distinct classes: (i) small
near-random balls and (ii) large ones in which the string
can be very long, but balances its tension by a compara-
ble collective attraction. Discovery of this second regime
is the main result of this paper.

Finally, there exists the second critical coupling, which
found to be gc2N ⇡ 4.5GeV�2, above which balancing the
energy becomes impossible and simulations show imme-
diate collapse of the system, in which the energy quickly
falls to large negative values, clearly of no physical mean-
ing.

Example of a corresponding configuration is shown in
Fig. 8. Note that, in spite of a very large string length

we observe a new regime: the 
entropy-rich self-balanced 
string balls	

separated by 2 phase 
transitions	
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FIG. 7: Upper plot: The energy of the cluster E (GeV)
versus the length of the string L/a. Lower plot: The en-
ergy of the cluster E (GeV) versus the “Newton coupling”
gN (GeV�2). Points show the results of the simulations in
setting T0 = 1GeV and size of the ball sT = 1.5a, 2a, for
circles and stars, respectively.

reason for those is the near-critical conditions at the ball
surface, where the string has e↵ectively a very small e↵ec-
tive tension. Furthermore, if one looks at the individual
configurations – e.g. those displayed in Fig. 4 – one can
see that, in spite of relatively heavy string balls, most of
the space remains unoccupied.

As the parameter sT of the ball size is reduced, the
mean length (and thus the ball’s mass) is strongly di-
minished as well. Two examples of the length distribu-
tion shown in Fig. 6 make this point clear. While at
T
0

= 1GeV, sT = 1.5a (dark blue histogram) one finds a
string ball of an average length of about 20 links, further
reduction to sT = 1.0a (light orange histogram) shows
that the most probable is the shortest configuration with
8 points (6 links), corresponding to an unexcited initial
configuration. Yet even in this case, the population of the
excited strings still show a long tale, with population up
to 25 links (in this simulation), with a probability rate
of about a percent. Inspection of those configurations
shows that it is dominated by the excitation of one of
the strings only, see lower part of Fig. 6.

B. Self-interaction included

Now we are ready to see how nonzero string self-
interaction modifies the properties of the system. While
increasing the corresponding parameter – “scalar New-
ton’s constant” gN – we observe that above its critical
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FIG. 8: (Color online) A typical configuration in the entropy-
rich self-balanced string balls ensemble. Simulation parame-
ters: T0 = 1GeV, sT = 1.5a, gN = 4.4 (GeV�2).

value even the most basic features of the system change.
In Fig. 7 (upper figure) we show the calculated rela-

tion between the average string length L and its energy
E. Each point is a run of about 10"000 iterations of the
entire string updates after equilibration. While at small
coupling E and L are simply proportional to each other,
like for non-interacting strings described above, this be-
havior changes abruptly. As the negative self-interaction
energy become important, the total energy E of the ball
becomes decreasing with the string length L. In Fig. 7
(lower figure) we show more details of this behavior: this
plot demonstrates how total energy E depends on the
coupling value gN . We find a jump at the critical cou-
pling (for this setting) gc1N , which in a simulation looks
like a first order transition, with double-maxima distribu-
tions in the energy and length. As is seen from the figure,
the precise value of the coupling somewhat depends on
the system size. At this coupling the jump in energy is
always about a factor 3, and the jump in string length
(or entropy) is even larger.
In this way we observe a new regime for our system,

which we will call the “entropy-rich self-balanced string
balls”. For a given fixed mass M we thus find that string
balls may belong to two very distinct classes: (i) small
near-random balls and (ii) large ones in which the string
can be very long, but balances its tension by a compara-
ble collective attraction. Discovery of this second regime
is the main result of this paper.

Finally, there exists the second critical coupling, which
found to be gc2N ⇡ 4.5GeV�2, above which balancing the
energy becomes impossible and simulations show imme-
diate collapse of the system, in which the energy quickly
falls to large negative values, clearly of no physical mean-
ing.

Example of a corresponding configuration is shown in
Fig. 8. Note that, in spite of a very large string length

in spite of a very large string length	


L/a ∼ 700, the total energy is only E ≈ 17GeV, 	


as a result of the balancing between 	


the string tension and self- interaction.	



