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• nonzero holonomy => instanton-dyons, interactions	


•  classical dyon-antidyon interaction (new R.Larsen+ES) 

• back reaction to holonomy potential => confinement      
ES and T.Sulejmanpasic,arXiv:1305.0796, inspired by Poppitz, Schafer and Unsal,arXiv:1212.1238	


• Numerical simulations of the dyon ensemble                     
(new R.Larsen+ES)	


• fermionic zero modes of the dyons, dyon-antidyon pairs             
ES and T.Sulejmanpasic,arXiv:1201.5624, R.Larsen and ES, in progress	


•  dyon ensemble+fermions => chiral symmetry 
breaking  P.Faccioli+ES,archive 1301.2523Phys. Rev. D 87, 074009 (2013)	


http://arxiv.org/abs/arXiv:1212.1238


holonomy: P=>0 is the onset of confinement

•!Quark density must be  proportional to L  (well checked using quark 

susceptibilities  by Ratti,Weise, 06) : gluons to L2   

•!Pisarski called the region T=(1-2) Tc  semi-QGP 

•!And yet, no such suppression in entropy and energy density: what is 

missing there? <=  Magnetic objects, unsuppressed by L  

Deconfinement/the energy density   

Bazavov et al,  (HotQCD Coll.) , arXiv:0903.4379  

Renormalized Polyakov loop 

QCD ``Higgsing”=> nonzero  A0=>  imaginary chemical potential for electric charge 

Is the transition 20 or 200 MeV wide? 

RHIC 

L =< P >=<

1

Nc
TrPexp(i

Z
d⌧A0) >

The Polyakov loop 	

!

L=1 => A0=0 high T full QGP	

L=1/2 “semi-QGP” (Pisarski)	

L=>0 no quarks or onset of 
confinement	

!
popular models like PNJL and 
PSM , make semi-QGP 
quantitative

The approximate width of the phase transition in	

thermodynamical quantities, energy and entropy	


is small, but P changes between Tc and 2Tc

= e�F (quark)/T
QCD	


not SU(2) YM



Instantons => Nc selfdual dyons 
(KvBLL, Pierre van Baal legacy)
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to which the KvBLL instanton reduces at v → 0
or at T → 0.

We introduce the distances from the ‘obser-
vation point’ x to the dyon centers, r = x −
x1, s = x − x2. Correspondingly, r = |r|, s =
|s|. We choose the separation between dyons to
be along the third spatial direction, r12 = e3r12.

The KvBLL instanton field is

Aµ = δµ,4 v
τ3

2
+

1

2
η̄3

µντ3∂ν ln Φ (60)

+ Φ Re
[

(̄η1
µν−iη̄2

µν)(τ
1+iτ2)(∂ν +ivδν,4)χ̃

]

,

where τa are Pauli matrices, η̄a
µν is the ’t Hooft

symbol (see subsection 2.4). The functions used
are

ψ̂ = − cos(2πTx4) + ch ch +
r · s
2rs

sh sh ,

ψ = ψ̂ +
r2
12

rs
sh sh +

r12

s
sh ch +

r12

r
sh ch ,
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r12

ψ

(

e−2πiTx4 sh

s
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sh

r

)

, Φ =
ψ

ψ̂
.

We have introduced short-hand notations for hy-
perbolic functions:

sh ≡ sinh(sv), ch ≡ cosh(sv),

sh ≡ sinh(rv), ch ≡ cosh(rv) .

The first term corresponds to a constant A4 com-
ponent at spatial infinity (A4 ≈ iv τ3

2 ) and gives
rise to the non-trivial holonomy. One can see that
Aµ is periodic in time with period 1/T . A useful
formula for the field strength squared is

Tr FµνFµν = ∂2∂2 log ψ.

In the situation when the separation between
dyons r12 is large compared to both their core
sizes 1

v (M) and 1
v (L), the caloron field can be ap-

proximated by the sum of individual BPS dyons.
To demonstrate it, we give below the field inside
the cores and far away from both cores.

7.2. Inside dyon cores
In the vicinity of the L dyon center x1 and far

away from the M dyon (sv ≫ 1) the field be-
comes that of the L dyon. It is instructive to
write it in spherical coordinates centered at x1.
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Figure 13. The action density of the KvBLL
caloron as function of z, x at fixed t = y = 0.
At large separations r12 the caloron is a super-
position of two BPS dyon solutions (left: r12 =
1.5/T ). At small separations they merge (right:
r12 = 0.6/T ).

In the ‘stringy’ gauge in which the A4 compo-
nent is constant and diagonal at spatial infinity,
the L dyon field is

AL
4 =

τ3

2

(

1

r
+ 2π − v coth(vr)

)

, AL
r = 0,

AL
θ = v

− sin(2πTx4 − φ) τ1 + cos(2πx4 − φ)τ2

2 sinh(vr)
,

AL
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cos(2πx4 − φ) τ1 + sin(2πTx4 − φ)τ2

2 sinh(vr)

− τ3 tan(θ/2)

2r
.

Here Aθ, for example, is the projection of A onto
the direction nθ = (cos θ cosφ, cos θ sinφ,− sin θ).
The φ component has a string singularity along
the z axis going in the positive direction. No-
tice that inside the core region (vr ≤ 1) the field
is time-dependent, although the action density is
static. At large distances from the L dyon cen-
ter, i.e. far outside the core one neglects expo-
nentially small terms O

(

e−vr
)

and the surviving
components are
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4
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v +
1

r
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τ3

2
,

AL
φ
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tan θ

2
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τ3
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corresponding to the radial electric and magnetic
field components of the L dyon (see subsection

Instanton'liquid'
4d+short'range'

<P> nonzero Polyakov line	

=> <A_4> nonzero	

=> new solutions	


Dyonic'plasma'
3+1d'long'range'

instanton-
dyons in	

SU(2)
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(also called a nonzero holonomy), calls for new classical solutions which does not approach zero
fields at spatial infinity but rather some constant A4. Explicit solutions of such type were con-
stracted in [9, 10]. It has been demonstrated that in this case the instanton can be split into the
Nc consituent dyons. The names and quantum numbers (for the simplest SU(2) gauge group we
will discuss in this work) cover all four possibilities for the electric and magnetic charges, see Table
I. For SU(Nc) in general there are M1, M2...MNc�1 static dyons with all diagonal charges and one
“twisted” L-dyon.

name E M mass

M + + v

M̄ + - v

L - - 2�T � v

L̄ - + 2�T � v

TABLE I: The charges and the mass (in units of 8�2/e2T ) for 4 SU(2) dyons.

The goal of this study is to look at the ensemble of these dyons “through the eyes of the
fermions”. More specifically, we will discuss variable number of fermions of di�erent kinds. Our
central object will be the spectrum of eigenvalues of the Dirac operator and especially the signal of
the phase transition between the chirally broken phase at low temperature T < Tc and the chirally
restored phase at high T. As it is well known (Casher-Banks theorem), the former possesses finite
density of eigenvalues ⇤(⇥) at its zero value, while the latter develops a “gap” G in the eigenvalue
spectrum. (Thus, in a way, this transition looks similar to a conductor-insulator transitions in
condense matter physics.)

Let us indicate here what qualitative di�erence the nonzero holonomy brings into this problem.
As in this case the fermions are in the “Higgsed” vacuum, they are massive, with masses (in SU(2))
mf = ±hv/2. Therefore the zero modes at large distances r ⇥ ⇤ are exponentially decreasing
with the distance, unlike the power behavior typical for the zero holonomy case. This rapidly
decreasing fermionic amplitudes are of course further enhanced by the number Nm of fermionic
zero modes

e�V � detT � e�Nmmf r (7)

which can create strong linear confining potential for the corresponding dyons and thus produces
small-size “clusters” of the size

< r >� 1/Nmmf (8)

The number of the modes dependence on the fermion’s color charge and the number of its
copies. For the usual fundamental quarks Nm = 2Nf , as there is a zero mode for a quark and for
an antiquark. For the adjoint fermion Nm = 2NcNa.

C. Chiral symmetry restoration and related issues on the lattice

The critical line as a function of flavors Nf , Na: Let us start by reviewing the issue of the
critical line for the chiral symmetry breaking as a function of fermion number. Since it is not yet
reviewed systematically in lattice literature, let us provide our own version of the corresponding
phase diagram. What we decided to plot is the “critical lattice coupling”

�c(Tc) =
2Nc

e2(Tc)
(9)

calorons=M+L 	

are	


 E and M neutral



terminology

*=dyon (Diakonov et al, ES et al)	

*= monopole (Unsal et al)	

*=quark (Zhitnitsky et al)

• particle-monopoles, 3d particle-like objects with nonzero 
magnetic charge. Its Bose condensate makes ``dual superconductor” 
and confinement. Not a solution in pure gauge, not to be discussed in this talk, though

instanton-*

(anti)selfdual 3d YM solution at nonzero holonomy	

 with electric and magnetic charges, a constituent of the instanton. Not a 
particle=> no paths or condensates,  Z is an integral over locations only

the same 	
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 with electric and magnetic charges, a constituent of the instanton. Not a 
particle=> no paths or condensates,  Z is an integral over locations only

! in N=2 SYM (Seiberg-Witten theory)  when both are under control, and 
can prove that stat.sum Z over particle-monopoles and 

instanton dyons are equal ! 
(being low and high-T approaches to the same physics)	
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terminology

*=dyon (Diakonov et al, ES et al)	

*= monopole (Unsal et al)	

*=quark (Zhitnitsky et al)

• particle-monopoles, 3d particle-like objects with nonzero 
magnetic charge. Its Bose condensate makes ``dual superconductor” 
and confinement. Not a solution in pure gauge, not to be discussed in this talk, though

instanton-*

(anti)selfdual 3d YM solution at nonzero holonomy	

 with electric and magnetic charges, a constituent of the instanton. Not a 
particle=> no paths or condensates,  Z is an integral over locations only

! in N=2 SYM (Seiberg-Witten theory)  when both are under control, and 
can prove that stat.sum Z over particle-monopoles and 

instanton dyons are equal ! 
(being low and high-T approaches to the same physics)	


! monopoles were used before to understand 
confinement	


instantons were used to understand chiral breaking,	

and instanton-dyons seem to be able to do both!

the same 	

object



calorons (finite-T) were located on the lattice 
Ilgenfritz et al, Gattringer... 

are instanton-dyons semiclassical?2

instanton-monopoles in their work). The issue in this
case is more complicated than for ĪI: dyon-antidyon pair
always has uncompensated charges, magnetic or electric.
Studies of the corresponding “streamline configurations”
is yet to be done.

In a carefully tuned weakly coupled, supersymmetric
setting, softly broken by a small gluino mass, PSU [16, 17]
have calculated the contribution of instanton-dyons and
neutral instanton-dyon pairs. (They call them neutral

bions, but they are also known as L̄L, M̄M molecules in
other works.) They observed that the repulsion in the
latter term can overcome the former one and drive the
confinement/deconfinement phase transition.

Supersymmetry forces the perturbative holonomy po-
tential to be canceled, between contributions of gluons
and (periodic) gluinos. Pure Yang-Mills (we are inter-
ested in) has no gluinos and there is no cancellations of
the perturbative potential, which prefers the deconfined
phase. The QCD-like theories with thermally compact-
ified fermion (i.e. fermions with anti-periodic temporal
boundary condition) further add to this perturbative de-
confining potential. In order to generate confinement,
one needs to find some nonperturbative mechanism which
is strong enough to compete with the perturbative holon-
omy potential.

In this work we show that the free energy of the
instanton-dyons can induce holonomy potential which
produces confinement in the pure gauge theory (us-
ing as an example the simplest SU(2) case) in qualita-
tive agreement with the lattice data. The central role
is played by the e↵ective repulsive interaction between
dyon-antidyon, as in the PSU works. We should stress,
however, that PSU in [16] did consider non supersymet-
ric, pure Yang-Mills case. We comment on the similar-
ities and the di↵erences of their work and ours later in
the text.

For definiteness, we start with fixing global parameters
of the SU(2) gauge theory topology, using lattice works
[19] and [20]. The finite-T instantons or calorons possess
only the topological charge – they have neither electric
nor magnetic charges and thus no direct coupling to ei-
ther electric or magnetic holonomies b,� (see next sec-
tion). They can be identified on the lattice via a number
of well developed methods, e.g. the so called “cooling”.
In Fig.1 we present the data from [19] and their fit by the
semiclassical expression for the dimensionless density (in
units of T 3) of instantons/calorons

n
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let me switch to mean b for now
the equation for b (without pert term) is cosh(b)=1/(2Vn) 

so far it is without pert potential
I now want to fix K and Lambda
Kd 0.024; Lambda d 0.36;

K := 0.024
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FIG. 1: Caloron density as a function of T/Tc. The solid
curve is the semiclassical fit ncal = KS2

cale
�Scal in units of T

with parameters K = 0.024, Scal = 8⇡2/g2(T ), open (filled)
points are the lattice data from [19] ([20]).

3.75, which gives an idea how semiclassical the discussed
objects are. (SU(3) instantons have actions S

cal

⇡ 12 or
S
d

= S
cal

/3 ⇡ 4, quite close in magnitude.) After those
parameters are fixed, one knows semiclassical densities of
the dyons and their pairs, as we explain in detail below.

THE HOLONOMY POTENTIAL

In two-color SU(2) gauge theory there is only one
diagonal color matrix, thus one electric and one mag-
netic holonomy. An electric holonomy is closely related
to the local Polyakov loop, which for SU(2) group can
be parametrized by a single (space dependent) angle
✓ = v/T

1

2
TrP (x) = cos

✓
v(x)

2T

◆
, b =

4⇡2

g2

⇣ v
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� 1

⌘
(2)

where P (x) = P exp
�
i
H
A0d⌧

�
. The re-definition of v

into field b, by a shift and re-scaling, is done for fur-
ther convenience (note that our b-field is labeled b0 in
[16]). Zero v means trivial (deconfining) holonomy, zero
b means confinement.

Magnetic potential (or magnetic holonomy) � was in-
troduced by Polyakov Ref.[21], together with an obser-

tension, to which the QCD value is ascribed. For pure gauge

SU(2) one then finds Tc ⇡ 270MeV .
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In this paper, we restrict our attention to the
SU(2) gauge group. In this case, the holonomy
parameterization simplifies, since there is only
one diagonal generator ⌧3 and a single holon-
omy parameter, µ = µ

1

= �µ
2

. In Fig.1 we
show the locations of the holonomy eigenvalues
at two di↵erent temperatures. At high T (case
(a)) the holonomy is close to a zero phase, so
⌫
2

= 2 µ is small. Respectively, the mass of the
first dyon, called M, is also small. The mass
of the second dyon is proportional to the com-
plementary part of the phase circle ⌫

2

, which
at high T takes nearly the whole circle. The
corresponding L dyon is thus heavy.

As T ! T
c

, the holonomy moves toward
±1/4 of the circle, as shown in case (b): and in
this case both dyons have the same mass. This
position corresponds to phases µ

i

= ±1/4 and
the Polyakov line vanishes P ! cos(⇡/2) = 0,
which physically corresponds to the confine-
ment of heavy charges (quarks).

In Table I we list the quantum numbers of
the possible dyon solutions for the SU(2) gauge
group. In such a gauge theory there are 4
distinct dyons, denoted with M , M̄ , L and
L̄, which are characterized by di↵erent (color-
) magnetic and electric charges. For the gen-
eral SU(N

c

) case there are M
1

, M
2

...M
Nc

so-
called “static” dyons with all diagonal charges
and just one so-called “twisted” dyon L.

From the technical point of view, the statis-
tical physics of the dyon ensemble is quite chal-
lenging compared to that of the “instanton liq-
uid” [7]. This is mostly because, on top of topo-
logical phenomena induced by the zero-modes
of light fermions, one has to deal with long-
range Coulomb forces and even linearly growing
potentials due to a “screening” e↵ect, as will be
discussed below.

A first, qualitative discussion of dyonic en-
semble has been performed by T. Sulejmanpasic
and one of us [24]. It was pointed out that a dy-
onic system can realize several distinct phases,
ranging from a gas of individual L̄L clusters at
high T , to a strongly-coupled liquid plasma at
T ⇡ T

c

. Ref. [24] also includes an extensive dis-
cussion of the lattice-based phenomenology re-
lated to self-dual dyons. Extension of that work
to the case of adjoint fermions will be given in
[25].

The present paper can be considered as a
quantitative continuation of that study, we shall

(a) (b)

µ
1

µ
2

µ
2

µ
1

⌫
2

⌫
1

T = T
c

T � T
c

Wednesday, October 31, 12

FIG. 1: Location of the holonomy eigenvalues
µ1, µ2 shown by (blue) darker small circles, for high
temperatures (a) and for T = Tc (b). Their di↵er-
ences ⌫1 = µ2 � µ1, ⌫2 = µ3 � µ2 are also indi-
cated. The (yellow) lighter circles on the left at the
phase ⇡ indicate the case of physical anti periodic
fermions.

name E M mass

M + + v

M̄ + - v

L - - 2⇡T � v

L̄ - + 2⇡T � v

TABLE I: The electric and magnetic charges and
the mass (in units of 8⇡

2
/g

2
T ) for the 4 di↵erent

kinds of SU(2) dyons.

define a partition function of the dyonic ensem-
ble which is amenable to practical many-body
computer simulations, perform the first numer-
ical simulations and report on the results.

The partition function of the dyon ensemble
can be schematically written as

Z =
Z
{dX

i

}e�Sc det G detF
zm

det0F
nzmp

det0B
(5)

where the first factor is the product of the
di↵erentials of all the collective variables, the
exponent contains the classical actions of all
dyons, while the two subsequent determinants
of matrices G and F

zm

are related to the
bosonic and fermionic zero-modes, respectively.

The moduli space metric 
(Atiyah,Hitchin,Diakonov)	


in a dilute case provides 
electric and magnetic 
Coulomb with natural 
charges	


If dense produces 
regularization and 
repulsive core	


Fermionic determimant in zero 
mode approximation 
(ES.Sulejmanpasic), only for L 
dyons if fermions are anti-periodic

The screening by the plasma 
(ES,Pisarski-Yaffe, Diakonov)Statmech of the dyons
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We discuss an ensemble of topological solitons – instanton-dyons and antidyons - in SU(2) pure
gauge theory at finite temperatures above and below the deconfinement phase transition tempera-
ture. The main focus is on the combined e↵ect of this ensemble on the so called e↵ective holonomy
potential, which drives the confinement/deconfinement phase transition. Using a simple model with
excluded volume and lattice data on caloron density we find that repulsive part of the potential is
robust enough to induce the phase transition at the right temperature. Model’s predictions – the
holonomy potential, electric and magnetic screening masses as a function of T – are in qualitative
agreement with the available lattice data. Further predictions are densities of various dyon types as
a function of temperature: while some lattice measurements of them had been made, much more
accurate data are needed to test these predictions.

PACS numbers:

INTRODUCTION

The expectation value of the Polyakov loop P =
P exp[i

H
A0d⌧ ] is an order parameter of confine-

ment/deconfinement phase transition in pure Yang Mill
theory. The gauge invariant integral over the thermal
(Matsubara) circle is also called holonomy. Its average
value and fluctuations are studied numerically in lattice
simulations, or described by an e↵ective potential U(P )
fitted to lattice data, see e.g. [1]. This potential plays
a prominent role in current models of finite tempera-
ture QCD, such as Polyakov-Nambu-Jona-Lasinio model
[2, 3], yet the understanding of its origin is still miss-
ing. Some recent attempts to understand the structure
of this potential have been made, both using the lattice
gauge theory and using functional renormalisation group
method [4–6].

Instantons, the 4-dimensional solitons carrying the
topological charge, are known to be important compo-
nent of the gauge field theory. They have been used suc-
cessfully in the description of many nonperturbative phe-
nomena (for review see [7]), including U(1) and SU(N

f

)
chiral symmetry breaking, but not confinement. At
nonzero asymptotic holonomy A0(r ! 1) 6= 0 the in-
stanton solution is modified and as a result the instanton
is split into N

c

constituents known as KvBLL self-dual
instanton-dyons [8, 9].

Interactions and statistical ensemble of instanton-
dyons and antidyons have been studied qualitatively us-
ing neutral dyon-antidyon pairs in [10], recently comple-
mented by first numerical simulations [11]. These works
used holonomy as an input, defining masses and other
properties of the instanton-dyons. They had studied the
interaction between self-dual and anti–self-dual sectors
via light fermions, and focused on the fermion collec-
tivization and chiral symmetry breaking phase transition.
In this paper we turn our attention to the back reaction

of the topology on the holonomy potential, via a simple
model with excluded volume, much in a spirit of van der
Waals theory of non-ideal gases.

Two distinct sectors of instanton interaction are
treated quite di↵erently. Pure sefl-dual (or anti–self-
dual) sector has classicaly degenerate moduli spaces pa-
rameterized by collective coordinates: their studies are
rather complete, and their nontrivial geometry were ex-
tensively studied in mathematical literature since the
1970s by Atiyah, Hitchin and others.

The instanton–anti-instanton (ĪI) configurations are
studied significantly less. The moduli spaces are in this
case substituted by the “streamline configurations” [12,
13] which smoothly interpolate between the separated
instanton–anti-instanton pair and the perturbative fields.
Close ĪI pairs correspond to weak fields, which cannot
be treated semiclassically and should be subtracted from
the semiclassical configurations. This physical idea has
been implemented in the Instanton Liquid Model via an
“excluded volume”, which generates a repulsive core and
stabilizes the density.

In a few important cases, in which the partition func-
tion is independently known, such subtraction can be
performed exactly, without any parameters. The ĪI pair
contribution to the partition function in QM instanton
problem has been done via the analytic continuation in
the coupling constant g2 ! �g2 by Bogomolny [14] and
Zinn-Justin [15] (BZJ), who verified it via known semi-
classical series. Another analytic continuation has been
used by Balitsky and Yung [13] for supersymmetric quan-
tum mechanics.

Recently Poppitz, Schäfer and Ünsal (PSU) [16, 17]
used BZJ approach in the N = 1 Super-Yang-Mills
theory on R3 ⇥ S1, observing that the result obtained
matches exactly the result derived via supersymmetry
[18]. PSU papers are the most relevant for this work,
as they focus on the instanton-dyons (referred to as
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instanton-monopoles in their work). The issue in this
case is more complicated than for ĪI: dyon-antidyon pair
always has uncompensated charges, magnetic or electric.
Studies of the corresponding “streamline configurations”
is yet to be done.

In a carefully tuned weakly coupled, supersymmetric
setting, softly broken by a small gluino mass, PSU [16, 17]
have calculated the contribution of instanton-dyons and
neutral instanton-dyon pairs. (They call them neutral

bions, but they are also known as L̄L, M̄M molecules in
other works.) They observed that the repulsion in the
latter term can overcome the former one and drive the
confinement/deconfinement phase transition.

Supersymmetry forces the perturbative holonomy po-
tential to be canceled, between contributions of gluons
and (periodic) gluinos. Pure Yang-Mills (we are inter-
ested in) has no gluinos and there is no cancellations of
the perturbative potential, which prefers the deconfined
phase. The QCD-like theories with thermally compact-
ified fermion (i.e. fermions with anti-periodic temporal
boundary condition) further add to this perturbative de-
confining potential. In order to generate confinement,
one needs to find some nonperturbative mechanism which
is strong enough to compete with the perturbative holon-
omy potential.

In this work we show that the free energy of the
instanton-dyons can induce holonomy potential which
produces confinement in the pure gauge theory (us-
ing as an example the simplest SU(2) case) in qualita-
tive agreement with the lattice data. The central role
is played by the e↵ective repulsive interaction between
dyon-antidyon, as in the PSU works. We should stress,
however, that PSU in [16] did consider non supersymet-
ric, pure Yang-Mills case. We comment on the similar-
ities and the di↵erences of their work and ours later in
the text.

For definiteness, we start with fixing global parameters
of the SU(2) gauge theory topology, using lattice works
[19] and [20]. The finite-T instantons or calorons possess
only the topological charge – they have neither electric
nor magnetic charges and thus no direct coupling to ei-
ther electric or magnetic holonomies b,� (see next sec-
tion). They can be identified on the lattice via a number
of well developed methods, e.g. the so called “cooling”.
In Fig.1 we present the data from [19] and their fit by the
semiclassical expression for the dimensionless density (in
units of T 3) of instantons/calorons

n
cal+ ¯
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= KS4
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e�Scal , S
cal

=
22

3
ln

✓
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⇤
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with parameters1 K = 0.024,⇤/T
c

= .36. The caloron
action at T

c

is 7.50, so per dyon it makes S
d
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Lattice practitioners usually fix “physical units” via T = 0 string
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if this is the fit then the action at Tc is 
Scd 22 / 3 * log 1 / 0.36 ;

Sc := 7.492109152

now the crucial point: the M and L are basically sqrt(ncal)*exp(+-b)
let me switch to mean b for now
the equation for b (without pert term) is cosh(b)=1/(2Vn) 

so far it is without pert potential
I now want to fix K and Lambda
Kd 0.024; Lambda d 0.36;

K := 0.024

L := 0.36
nd0:= sqrt(ncal); Acteff := -4*nd0*(cosh(b)-(1/2)*V*nd0*cosh(2*b))
+12./Pi^2*(1-b^2/(Sc/2)^2)^2;

T/Tc

ncal+antical

Monday, April 1, 13

FIG. 1: Caloron density as a function of T/Tc. The solid
curve is the semiclassical fit ncal = KS2

cale
�Scal in units of T

with parameters K = 0.024, Scal = 8⇡2/g2(T ), open (filled)
points are the lattice data from [19] ([20]).

3.75, which gives an idea how semiclassical the discussed
objects are. (SU(3) instantons have actions S

cal

⇡ 12 or
S
d

= S
cal

/3 ⇡ 4, quite close in magnitude.) After those
parameters are fixed, one knows semiclassical densities of
the dyons and their pairs, as we explain in detail below.

THE HOLONOMY POTENTIAL

In two-color SU(2) gauge theory there is only one
diagonal color matrix, thus one electric and one mag-
netic holonomy. An electric holonomy is closely related
to the local Polyakov loop, which for SU(2) group can
be parametrized by a single (space dependent) angle
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. The re-definition of v

into field b, by a shift and re-scaling, is done for fur-
ther convenience (note that our b-field is labeled b0 in
[16]). Zero v means trivial (deconfining) holonomy, zero
b means confinement.

Magnetic potential (or magnetic holonomy) � was in-
troduced by Polyakov Ref.[21], together with an obser-

tension, to which the QCD value is ascribed. For pure gauge

SU(2) one then finds Tc ⇡ 270MeV .
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which expresses Coulomb forces via corresponding po-
tential field �. Since our objects have both electric and
magnetic charges and potentials, the trick is used twice.
The amplitudes for the 4 types of dyons take the expo-
nental form [16]

M ⇠ e�b+i��Sd , M̄ ⇠ e�b�i��Sd (4)

L ⇠ eb�i��Sd , L̄ ⇠ eb+i��Sd . (5)

Note that there is no i in the electric part. This be-
havior is not however because of the Euclidean formu-
lation of the theory, as the real charge couples the elec-
tric potential A0 as exp(i

R
A0d⌧) both in Euclidean and

Minkowski space-time (see the discussion in [16]). In fact
the coupling to b-field is through the action of instanton-
dyons which is b dependent, and it always appears in the
combination S

d

± b which is the action of the L and M
dyon. Contributions of all four instanton-dyons can be
combined into the following e↵ective potential
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The next step is an introduction of the binary repul-
sion and the excluded volume in L̄L and M̄M channels.
Subtracting pair contraction of instanton-dyon–antidyon
the partition function takes the form
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where A is the subtracted amplitude

A = 4⇡

Z
r0

0
dr r2e�Vd̄d(r) (8)

where the upper sign refers to M type and the lower sign
to L type instanton-dyons and anti-dyons and. The e↵ec-
tive dyon-antidyon interaction is Coulombic at large dis-
tances V

d̄d

= �8⇡�/g2r and regulated at small distances
by some particular scheme, e.g. 1/r ! 1/

p
r2 + a2

needed to stabilise the coulomb plasma. If the objects
were for example atoms this regularization would su�ce.

It is the instantonic nature of these objects – not regu-
larisation – which requires the additional subtraction as
the close pair of instanton-dyon and antidyon are pertur-
bative fields, and it is this subtraction which brings in a
new parameter r0 or A.
The e↵ective potential then becomes
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This is the key point: confining regime (the one with
b
min

= 0) can only be reached if the instanton-dyon den-
sity is su�ciently large.
The third step is inclusion of the one-loop perturbative

potential [22]

V
pert

=
⇡2

12

✓
1� b2

S2
d

◆2

(11)

which by itself prefers a trivial holonomy v = 0, b = S
d

.
Including this terms one finds that the phase transition is
pushed to higher densities. By demanding that the sec-
ond order coe�cient of b vanishes, we obtain the equation
for critical temperature of confinement/deconfinement
transition
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Note that all (dimensionfull) quantities above are in
units of T . Since we take that nc
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)2e�Scal(Tc) ⇡ 0.145 we need to have A ⇡
5. While A is much larger than the dyon volume ⇠
4⇡/3(1/⇡)3, including the Coulomb enhancement factor
⇠ exp(O(S

d

)) expected for the pair of “half-annihilated”
dyon-antidyon gives this parameter the correct order of
magnitude.
Let us improve the model a bit by noting that the ex-

cluded volume should be di↵erent for M and L dyons,
and in fact should depend on the holonomy b, in such
a way that r0 / (1 ± b/S

d

)�1. To account for this
A(1± b

Sd
)�3, where ± refers to the instanton-dyon with

factors e⌥b respectively. Further each dyon carries with it
a moduli space metric parameter in front of the densities,
which should also be included and that can be obtained
by replacing n

d
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)e⌥b. This results in a

somewhat longer expression for the e↵ective potential
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4 dyon amplitudes

b magnetic holonomy	

sigma - magnetic one	
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This is the key point: confining regime (the one with
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which expresses Coulomb forces via corresponding po-
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magnetic charges and potentials, the trick is used twice.
The amplitudes for the 4 types of dyons take the expo-
nental form [16]

M ⇠ e�b+i��Sd , M̄ ⇠ e�b�i��Sd (4)

L ⇠ eb�i��Sd , L̄ ⇠ eb+i��Sd . (5)
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which expresses Coulomb forces via corresponding po-
tential field �. Since our objects have both electric and
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sity is su�ciently large.
The third step is inclusion of the one-loop perturbative

potential [22]

V
pert

=
⇡2

12

✓
1� b2

S2
d

◆2

(11)

which by itself prefers a trivial holonomy v = 0, b = S
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.
Including this terms one finds that the phase transition is
pushed to higher densities. By demanding that the sec-
ond order coe�cient of b vanishes, we obtain the equation
for critical temperature of confinement/deconfinement
transition
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)) expected for the pair of “half-annihilated”
dyon-antidyon gives this parameter the correct order of
magnitude.
Let us improve the model a bit by noting that the ex-

cluded volume should be di↵erent for M and L dyons,
and in fact should depend on the holonomy b, in such
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which expresses Coulomb forces via corresponding po-
tential field �. Since our objects have both electric and
magnetic charges and potentials, the trick is used twice.
The amplitudes for the 4 types of dyons take the expo-
nental form [16]
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where A is the subtracted amplitude
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The e↵ect of these factors helps the phase transition to
occur and similar analysis as before gives A ⇡ 2.3. The
resulting holonomy potential at T/T

c

= 0.8, 1., 1.5 are
shown in the upper plot of Fig. 2.

To conclude this section, let us mention that the po-
tentials (9) and (13) are similar to the one discussed in
[16] for the case of pure Yang-Mills. We briefly comment
on two important di↵erences: the “excluded volume” pa-
rameter A and the absence of the magnetic bion cos(2�).
The magnetic bion term in our analysis can be obtained
in a similar way to the subtraction, by a virial-type of
expansion. However since the ML̄ and LM̄ pair repel,
this term will be accompanied by a coulomb suppres-
sion term, rather then coulomb enhancement. Therefore
we believe that such terms in the e↵ective action can
be safely neglected. We also note that the coe�cient
A should formally be temperature dependent, at least
through the coupling constant. The naive way to incor-
porate this dependence would seem to suggest that this
term is growing with temperature, which is unphysical,
as it is expected that instanton-dyon e↵ects and charges
become screened and the e↵ects on the holonomy be-
come less and less important. Since our paper focuses
at describing the physics around T

c

, we assumed the pa-
rameter A to be constant.

PREDICTIONS

Now that the model is fully defined, some of its predic-
tions can be compared to the lattice data. We start with
two important observables usually not associated with
topology and measured directly from propagators: the
(mean-field, bare) electric and magnetic screening masses

m2
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(14)

m2
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= (4S
d
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@2V

eff

@�2

�����
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�=�min

(15)

where b
min

,�
min

are values where the potential takes its
minimum value.

Their comparison with lattice data is shown in the
lower plot of Fig. 2. Our model produces phase transition
of the second order, as is known to be the case for SU(2)
theory. This implies that the bare electric mass must
vanish at T

c

. While this is indeed evident from holonomy
distributions observed on the lattice (see e.g. Fig. 4 of
[19]), the electric mass obtained from gluon propagators
[26] (shown by the open squares in Fig. 2) indicate only
partial downward shift. Note, however, that the lattice
measurements are for the full, physical mass of the glu-
onic propagator, and that our model has infinitely many
b-field self-couplings which should renormalize the mass
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FIG. 2: The upper plot shows the e↵ective potential Veft(b)/T
(13) for T/Tc = 0.8, 1, 1.5 shown by the dashed,solid and dot-
dashed lines, respectively. The plot shows electric mE/T and
magnetic mM/T screening masses versus temperature, indi-
cated by the solid and dashed lines, respectively. Thick lines
are our model, the data points are from lattice propagators
[26], the lines connecting data points are shown simply for
their identification.

especially around T
c

where the fluctuations are most im-
portant (and create critical indices di↵erent from mean
field ones, as e.g. observed on the lattice in [27]).

The behavior of the magnetic mass in the model has
a fairly smooth behavior through the phase transition,
with a small kink at T

c

which is due to the dependence
of the magnetic mass on the density the M and L dyons
which exhibits a non smooth behavior due to the 2nd or-
der phase transition. It can be seen that the SU(2) data
on magnetic mass [26], shown by triangles, have only
two points at two temperatures. However analogous but
much more complete SU(3) data shows a smooth m

M

(T )

In fact the  excluded volume model works 
well for SU(2) YM	

!
the density is deduced from calorons 
n(dyons)=(n(calorons))^(1/Nc)	

and is large enough to make second-order in 
density term do its work	

!
the only parameter A is fixed from known Tc 
and has a reasonable size (including the 
Coulomb enhancement)	

!
electric and magnetic screening masses are 
even factor 2 too large as compared to 
those from lattice propagators:	

!
 their ratio ME/MM is well reproduced

mE

mM
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FIG. 3: Prediction of the model for the temperature depen-
dence of the density of the instanton-dyons are shown by the
lines, those with solid and dashed lines are for M,L type
dyons, respectively. Open (filled) circles show identified M -
type dyons from ref. [19] ([20]). The crosses show “unidenti-
fied topological objects” from [19]. Circles and crosses provide
the lower and the upper bound for the dyon density.

behavior, in spite of the 1-sf order transition in this the-
ory. Note that the absolute scale of the masses are about
factor 2 o↵, which is hardly surprising since the normal-
ization was done in a topological sector with similar un-
certainty (see Fig.1). The ratio m

M

/m
E

predicted by
the model and from the lattice agree rather well. We
thus conclude that the model performs at a qualitative
level well enough.

More specific predictions of the model are of course the
dimensionless (i.e. in units of T ) densities of monopole-
dyons of particular types:

n
M,L

= n
d

(1± b
min

/S
d

)e±bmin

⇥
✓
1� 1

2
An

d

(1± b
min

/S
d

)�2e±bmin

◆
(16)

The densities are shown as curves in Fig. 3. At T > T
c

there are two curves, identifying lighter (and thus more
numerous) M dyons as well as L ones. Below T

c

the
curves collapse into one single curve as the potential de-
velops a minimum at b = 0.

Two examples of the best lattice e↵orts to determine
the densities in SU(2) pure Yang-Mills theory are refs.
[19] and [20]. They use 243 ⇥ 6 and 203 ⇥ 4 lattices, the
former with couplings tuned to three points with T < T

c

and two T > T
c

. The L and M dyons can in principle
be identified by their electric and magnetic charges as
well as by the value of the Polyakov loop at their centers
taking values ±1 for the two type of dyons. In practice,

the heavy L dyon has such a small size that it cannot
be identified by this method at current lattices. The
M instanton-dyons, however, were identified and the re-
sults are shown as circles in Fig. 3. The authors of [19]
note however that the e�ciency of M -dyon identification
is quite low, and depends on the temperature. Crosses
show “unidentified topological objects” from the same
work [19], to be taken as an upper bound. As one can
see from the plot, our predictions lie between the lower
and upper bound. More work is obviously needed to
test these predictions. Apart from the densities of the
instanton-dyons, quite valuable would be lattice studies
of their spatial correlations, as those can help understand
their interactions as well.
Concluding this work, let us comment that while the

model proposed is rather schematic, it represents a poten-
tially important link between the gauge topological sector
– instanton-dyons – and confinement in QCD-like theo-
ries. Its more quantitative forms and generalization to
QCD with fermions of di↵erent kind seem to be straight-
forward. Adding fundamental fermions would induce ex-
tra binding of L̄L pairs via fermonic zero modes: this
will shift the deconfinement transition to lower T and/or
higher instanton-dyon densities, as is indeed observed
phenomenologically. We intend to study topology and
all related phenomena quantitatively, by a direct Monte-
Carlo simulations, elsewhere.
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Classical interactions of the instanton-dyons with antidyons
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Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological con-
stituents of the instantons at nonzero temperature and holonomy. While the interaction between
instanton-dyons have been calculated to one-loop order by a number of authors, that for dyon-
antidyon pairs remains unknown even at the classical level. In this work we are filling this gap, by
performing gradient flow calculations on a 3d lattice. We start with two separated and unmodi-
fied objects, following through the so called “streamline” set of configurations, till their collapse to
perturbative fields.

I. INTRODUCTION

Instantons [1] are Eucliedan 4-dimensional topological
solitons of the Yang-Mills gauge fields known to be im-
portant ingredient of the gauge fields in the QCD vac-
uum, as well as at finite-temperatures comparable to the
critical one T ⇠ T

c

. Chiral anomalies induce sermonic
zero modes of instantons, which provide the so called ’t
Hooft interaction between fermions, which explicitly vi-
olate U

A

(1) chiral symmetry. Furthermore, collectiviza-
tion of instanton zero modes create the so called Zero
Mode Zone of quasi-zero eigenstates, which break spon-
taneously the SU(N

f

) chiral symmetry. Although those
states includes only tiny (⇠ 10�4) subset of all fermionic
states in lattice numerical simulations, they are respon-
sible for a significant fraction of hadronic masses. The
so called Interacting Instanton Liquid Model (IILM) has
been developed, including ’t Hooft interaction to all or-
ders, for a review see [2].

The first step in generalization of instantons to finite
temperatures was finding the so called “caloron” solu-
tions, periodic in Matsubara time. The second [3, 4] –
and much more nontrivial – step was inclusion of the so
called nonzero holonomy – nonzero mean value of the 4-th
component of the gauge field hA4i = v. This reveals the
substructure of the (anti)instanton: at nonzero v it gets
split into N

c

(number of colors) (anti)dyons, (anti)self-
dual 3d solitons with nonzero (Euclidean) electric and
magnetic charges. In this work we will focus on the sim-
plest gauge group SU(2): in it there is only one diagonal
generator and thus one Abelian subgroup which remains
unbroken by v. In total there are four instanton-dyons
corresponding to the di↵erent possible combinations of
electric and magnetic charges. By tradition the selfdual
ones are called M with charges (e,m) = (+,+) and L
with charges (e,m) = (�,�), the anti-selfdual antidyons
are called M̄ , (e,m) = (+,�) and L̄, (e,m) = (�,+).

In the last few years studies of the gauge field topol-
ogy based on instanton-dyons had developed along two
di↵erent but strongly related directions. One of them
[5] starts with a very specific setting – supersymmetric
theories on a R3 ⌦ S1 where the circle is spatial and
fermions are periodic – making coupling weak and topo-
logical e↵ects to be exponentially small but under the
theoretical control. Another [6, 7] study them in the pure

gauge and QCD-like theories. Both groups recently ar-
gued that instanton-dyons are relevant for confinement,
see [5, 8], and not only breaking of the chiral symmetries.
Thus instanton-dyons seem to be crucially important for
understanding of the nonperturbative QCD. Yet an un-
derstanding of the dyon ensemble can only be achieved
if we first understand the forces acting between the pairs
of such solitons.

There exists a principal di↵erence between the (i) sin-
gle duality sector (only self- or antiselfdual objects) with
(ii) the interaction between self- or antiselfdual objects.
Inside single duality class the celebrated Bogomolny in-
equality becomes equality, requiring the action of the con-
figuration to be entirely determined by its global topo-
logical or magnetic charge. As it is well known, this elim-
inates interaction at the classical level and leads to the so
called moduli space, well studied in the mathematical lit-
erature. For example, a problem of two monopoles/dyons
has lead to the famous Atiyah-Hitchin manyfold. The
moduli space metric for those and related spaces can
be calculated, and it provides the correct (parameter-
independent) measure of integration over the collective
variables. This metric is traditionally expressed via a
determinant of a certain matrix. For the LM pair this
bosonic matrix has been calculated by Diakonov et al [9].
It contains the Colomb-like interactions O(1/r

LM

), sup-
plemented by the “Debye screening” potential O(r

LM

).
Later Diakonov [10] conjectured a volume element as a
determinant, combining the DGPS one with Gibbons-
Manton approximation to Atiyah-Hitchin metric. This
interaction has been included in the first numerical sim-
ulations [6] .

The second case (ii) – the interaction of self and anti-
selfdual objects – is however much more di�cult to study.
There is no classical BPS protection of the action and
thus no moduli spaces or corresponding solutions. Such
configurations can be mapped via the so called stream-

line one-parameter set of solutions defined by a condi-
tion that the driving force, whole nonzero, is tangent to
the set. The practical way to generate them is to fol-
low the gradient flow, starting from some initial ansatz,
as was done for numerical solution for the double-well
potential in [11]. For gauge field instantons and in the
large-distance approximation this was done analytically
in [12]. The instanton problem is intrinsically conformal,
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gauge and QCD-like theories. Both groups recently ar-
gued that instanton-dyons are relevant for confinement,
see [5, 8], and not only breaking of the chiral symmetries.
Thus instanton-dyons seem to be crucially important for
understanding of the nonperturbative QCD. Yet an un-
derstanding of the dyon ensemble can only be achieved
if we first understand the forces acting between the pairs
of such solitons.

There exists a principal di↵erence between the (i) sin-
gle duality sector (only self- or antiselfdual objects) with
(ii) the interaction between self- or antiselfdual objects.
Inside single duality class the celebrated Bogomolny in-
equality becomes equality, requiring the action of the con-
figuration to be entirely determined by its global topo-
logical or magnetic charge. As it is well known, this elim-
inates interaction at the classical level and leads to the so
called moduli space, well studied in the mathematical lit-
erature. For example, a problem of two monopoles/dyons
has lead to the famous Atiyah-Hitchin manyfold. The
moduli space metric for those and related spaces can
be calculated, and it provides the correct (parameter-
independent) measure of integration over the collective
variables. This metric is traditionally expressed via a
determinant of a certain matrix. For the LM pair this
bosonic matrix has been calculated by Diakonov et al [9].
It contains the Colomb-like interactions O(1/r

LM

), sup-
plemented by the “Debye screening” potential O(r

LM

).
Later Diakonov [10] conjectured a volume element as a
determinant, combining the DGPS one with Gibbons-
Manton approximation to Atiyah-Hitchin metric. This
interaction has been included in the first numerical sim-
ulations [6] .

The second case (ii) – the interaction of self and anti-
selfdual objects – is however much more di�cult to study.
There is no classical BPS protection of the action and
thus no moduli spaces or corresponding solutions. Such
configurations can be mapped via the so called stream-

line one-parameter set of solutions defined by a condi-
tion that the driving force, whole nonzero, is tangent to
the set. The practical way to generate them is to fol-
low the gradient flow, starting from some initial ansatz,
as was done for numerical solution for the double-well
potential in [11]. For gauge field instantons and in the
large-distance approximation this was done analytically
in [12]. The instanton problem is intrinsically conformal,
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To visualize the gauge field it will be useful to plot the
action density using

s(x) =
2N

g20
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Tr
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64
±4X

µ,v=±1
µ<v

(P
µ⌫

(x) + P †
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(x))
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75

1

CA .(14)

We now have to translate eq. (9) into the lattice lan-
guage.

In order to not have too rough corrections to the dyon
configurations coming from O(a2) terms in the definition
of the links, we need |aA

µ

| << 1. Then going to the
gauge where the M and M̄ dyons or the L and L̄ dyons
has the same A4 field at infinity, the fields are no longer a
good solutions to the equations of motion on the lattice.
Therefore all the transformations explained in section II
will be performed on the lattice instead. On the lattice
the gauge transformation is

U
µ

(x) ! ⌦(x)U
µ

(x)⌦†(x+ ê
µ

). (15)

The sum ansatz says that we add up the dyons, which
now becomes multiplication instead. We also do a gauge
transformation in time first to put the asymptotic value
of A4 to zero. This leaves an extra term when we add the
two dyons given as the following element of the temporal
gauge transformation

�⌦
t

= exp(iav
⌧̂3
2
). (16)

(note that the hat reminds us that ⌧̂3 is a matrix). Com-
bining everything gives us the initial configuration as

U4(x) = (17)

S+(x)U1,4(x)S
†
+(x+ ê4)�⌦t

S�(x)U2,4(x)S
†
�(x+ ê4)

U
i

(x) = (18)

S+(x)U1,i(x)S
†
+(x+ ê

i

)S�(x)U2,i(x)S
†
�(x+ ê

i

),

where U1,µ(x) and U2,µ(x) are the links of the M̄ and M
or L and L̄ dyon given in equation 1. The di↵erence be-
tween looking at M̄ and M dyons and L and L̄ dyons is
which gauge transformation you use. ForMM̄ you trans-
form M with S� and M̄ with S+ such that A4 at infinity
becomes (v � 1

r

)⌧̂3. With LL̄ you instead transform L

with S+ and L̄ with S� such that A4 at infinity becomes
(v � 2⇡T + 1

r

)⌧̂3. In order to have the holonomy to be
v, an additional transformation is made, though this is
done after the dyons have been set to zero at infinity and
added up, and the results should therefore been invari-
ant with respect to this transformation unlike the other
transformations made before we add the dyons.

Varying the action with small rotations in SU(2), the
current can be found as

J
µ

(x) =
X

v

�
Tr[P

µ⌫

(x)� P †
µ⌫

(x)]
�

(19)
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(x� ê
v

)� P †
µ⌫

(x� ê
v

)]
�
,

which is simply the imaginary part of all plaquettes that
include U

µ

(x). This is scaled by dt which is the chosen
size of one step in the cooling process. The 3 components
of J

µ

is then calculated

J
i,µ

⌘ dtTr[⌧
i

J
µ

(x)]. (20)

As can be seen, this definition depends on which of the
4 links the ⌧

i

is placed at. In order to get the correction
to U

µ

(x) we need that J
µ

starts from U
µ

(x). The matrix
used for cooling is calculated as

L
µ

(x) =
q

J2
1,µ + J2

2,µ + J2
3,µ (21)

✓
i,µ

(x) = J
i,µ

/L
µ

(22)

C
µ

(x) = cos(L
µ

)I + sin(L
µ

)
X

i

✓
i,µ

⌧
i

. (23)

C
µ

(x) is used to change all the links as

U
µ

(x) ! C
µ

(x)U
µ

(x). (24)

B. Lattice details

Since MM̄ pairs and LL̄ pairs are time independent
(LL̄ pairs are time independent in the gauge where the
Higgs field is (2⇡T � v)), the lattice used is a N3 sized
lattice.
The lattice size in natural units is 40/v in each dimen-

sion. Lattice spacing is such that it has 643 points. This
might seem like a rough lattice since a = 0.625/v. Note
however, that the configurations before combing have
su�ciently small A around the cores, thus we do have
|aA

µ

| ⌧ 1. The combing may appear to produce large
A ⇠ 1/a, yet those are pure gauge and is not spoiling the
action. Some higher gradient lattice corrections of course
exist, but it has not been observed to be important.
The lattice used is not periodic, instead we hold the

sides constant, ie. don’t update with the current on the
surface of our box.
On this setup the analytic solution of one dyon is stable

at a value 5% lower than the analytic value of 4⇡v with an
absolute value of electric and magnetic charge, calculated
by Gaussian flux integrals near the box surface, of exactly
1.
Let us remind that the gauge action can be expressed

in terms of the 3-dimensional action

S =
1

g2

Z 1/T

0
dx4S3 =

S3

g2T
(25)

which itself scales as S3 ⇠ v: thus the M dyon action is
⇠ v/T . We do not care about T and the gauge coupling
g since it is just an overall factor in the action, and work
with the S3 itself. Furthermore, since our classical 3d
theory is invariant under the transformation A

µ

! vA
µ

and r ! vr, the absolute units are unimportant and we
can work with v = 1.
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Apart of the action and electric and magnetic fields,
we also want to observe the Dirac string as the system
evolves (cools). In the continuum the gauge transforma-
tions introduce a singularity in A

µ

, stretching from the
dyon centers out to infinity. If one goes around it, the
total phase should be 2⇡. But as long as the phases of
subsequent links are added together in the ⌧̂3-direction,
using the inverse of the parametrization

U
µ

(x) = cos(�)I + sin(�)
X

i

✓
i,µ

⌧
i

(26)

we do observe the famous 2⇡ phase.

IV. RESULTS

A. Qualitative features of the streamline

Before we present our results in detail, we would like
to give a brief overview of the findings, starting with a re-
minder of the streamline for the instanton-antiinstanton
case. These configurations, either in quantum mechani-
cal setting [11] or gauge fields [13], have the meaning of
tunneling forth and back, with only finite time spent in
the second well (valley). When this time goes to zero,
there is no reason for the configuration itself to be di↵er-
ent from zero (path or gauge fields). Thus the end of the
streamline is expected to be made of weak (perturbative)
fields. Those are supposed to already be treated in the
harmonic approximation in perturbation series, and thus
should not be double counted again in the nonperturba-
tive sector: thus one uses a phenomenological “repulsive
core” in the instanton liquid model.

The case at hand, with the instanton-dyons, is a bit
di↵erent. Two charges – the magnetic and the topological
ones – still add to zero and can annihilate each other, but
there is one remaining – the electric charge, which adds
to 2 units rather than annihilating each other. Those
should of course be conserved and survive till the end
of the gradient flow process, although in a perturbative
form.

The gradient flow process was found to proceed via
the following stages:
(i) near initiation: starting from relatively arbitrary
ansatz one finds rapid disappearance of artifacts and
convergence toward the streamline set
(ii) following the streamline itself. The action decrease
at this stage is small and steady. The dyons basically
approach each other, with relatively small deformations:
thus the concept of an interaction potential between
them makes sense at this stage
(iii) a metastable state at the streamline’s end: the
action remains constant, evolution is very slow and
consists of internal deformation of the dyons rather than
further approach
(iv) rapid collapse into the perturbative fields plus some
(pure gauge) remnants

We will detail properties of these stages below, for
now restricting to general comments. One is the exis-
tence of the stage (iii) which has not been anticipated
on general grounds. Since all configurations correspond-
ing to it have the same action, one can perhaps lump
all of them into a new class of states, corresponding to
the same dyon-antidyon distance. Unlike the instanton-
dyons themselves, such states have not yet been identified
on the lattice.
Our other comment is the action value even at the end

of the streamline is not that far from the sum of the
two dyon masses. In other words, the classical interac-
tion potential happens to be rather small numerically, a
welcoming feature for statistical mechanics simulations.
Last but not least, we do observe the universality of

the streamline. As expected, independent on the ini-
tial dyon separation we found that gradient flow pro-
ceeds through essentially the same set of configurations
at stages (ii-iv). Thus one-parameter characterization of
those is possible. A parameter we found most practi-
cal in this work is simply its lifetime – duration in our
computer time ⌧ needed for a particular configuration to
reach a final collapse. (Of course, for statistical mechan-
ics applications one better map that into some collective
coordinate, such as the dyon separation, whatever way it
can be defined).
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FIG. 2: Action for v = 1 as a function of computer time (in
units of iterations of all links) for a separation |rM�rM̄ |v = 0,
2.5, 5, 7.5, 10 between the M and M̄ dyon from right to left
in the graph. The action of two well separated dyons is 23.88.

B. The action

We now show the results for a M and M̄ dyon sepa-
rated by a distance (in natural units 1/v) of the order 0
to 10 along the z-axis which is cooled using gradient flow.
The action of an individual dyon on the lattice was found
to be 11.94, 5% lower that the analytic value 4⇡. This
gives the action of 23.88 for two well separated dyons.
Any action lower than this therefore is ascribed to an
attractive binary potential between the dyons.
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We now show the results for a M and M̄ dyon sepa-
rated by a distance (in natural units 1/v) of the order 0
to 10 along the z-axis which is cooled using gradient flow.
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FIG. 5: Action density along the z axis in natural units for
a separation |rM � rM̄ |v = 10 between the center of the 2
dyons. The configuration with the maximums furthest from
each other is the start configuration. After 3000 steps it has
moved further towards the center. At 12000 steps the con-
figuration has reached the metastable configuration with a
separation between the maximums of around 4. At 13700 the
configuration has collapsed around halfway, and will continue
to shrink until the action is 0. Times are as shown in Fig. 2.

the original distance between the two dyons. The Higgs
field also goes quicker to its mean value v when you leave
the valley.

For a separation of 5 the cooling only smooths the
Higgs field slightly, while for a separation of 10 we also
get a drop in the minimum while the configuration runs
along the streamline. This means that while we observe
the action of the streamline to be universal, the Higgs
profile around the core of the dyons are not. This is of
course happening because this quantity is not gauge in-
variant. In fact the endpoint of the gradient flow leaves a
rather complicated, although zero action – and thus pure
gauge – configuration.

D. The electric and magnetic charges

As we know the total charge of the setup should be 2 for
electric charge and 0 for magnetic for the ⌧̂3 component.
We observe the electric charge to be held in place for quite
a time when the solution moves along the streamline, see
Fig.7. However when the configuration begin to collapse
the electric charge quickly starts to move away, as is seen
in the same Fig. after time t > 10000.

The dyon collapse is triggered by the very rapid anni-
hilation of the magnetic charges of the dyons, as shown
in Fig. 8. Thus it is clearly the dyon magnetic structure
which is crucial for their individual existence.

E. The Dirac string

While the strings only appear as a result of the comb-
ing gauge transformations for individual dyons, they are
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FIG. 6: Subsequent snapshots of A3
4 along the z axis in natural

units for a separation of 5 (a) and 10 (b) between the center
of the 2 dyons. (a) The configuration which is smallest at
the edges is the start configuration. After 5000 iterations the
gradient flow has raised the minimums slightly, but is overall
the same shape. After 9400 iterations the configuration has
started collapsing. At 10000 the configuration has collapsed
completely. (b) The configuration which is smallest at the
edges is the start configuration. After 3000 iterations the
minimums have moved slightly towards the middle and the
minimums have become smaller. At 10000 the configuration
has reached the stable almost flat area in the action. At 14000
the configuration has collapsed completely.

always present for dyon-antidyon case we study. To look
at the strings we, as mentioned in section III, evaluate
the phase of the spatial loop

R
A3

m

dxm around a closed
line around the string – such as a square. In Fig. 9(a)
we plot the spatial loop phase along the z-axis at the be-
ginning of the gradient flow process. The end of the flow
for the same configurations is shown in fig 9(b).
For the smallest (square) loop used the phase takes a

value close to 0 in between the two strings: there is no
string there. Increasing the size of the loop, the phase get
closer and closer to 2⇡, especially after the cooling has
been done, where we observe that the phase goes quicker
towards 2⇡. It means that the string is there at all times,
but is just less concentrated in between the dyons. Note
also, that if one shifts the position of the loop such that
x = y = 0 is not included, it will drop promptly from
2⇡ to 0. This however only happens for |z| > 2.5 for the
configurations used, where the separation between the
dyons was 5.
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been done, where we observe that the phase goes quicker
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FIG. 7: Electric charge for v = 1 as a function of computer
time (in units of iterations of all links) for a separation |rM �
rM̄ |v = 5 between the dyons. The electric charge is found
from a box of size 623, 463, 303 and 143 points each centered
at the center. The electric charge is biggest for 623. Total
lattice size is 643 points.
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FIG. 8: Magnetic charge for v = 1 as a function of computer
time (in units of iterations of all links) for a separation |rM �
rM̄ |v = 5 between the dyons. The magnetic charge is found
from a box that goes from the center in z and to the edge.
The drop happens at the same time as the drop in action.

In summary, our starting configurations possess singu-
lar Dirac strings from infinity to their centers: the flux
in between appears in the form of dipole magnetic fields
at small z region. At the end of the cooling, all magnetic
fields are gone, and yet a version of the Dirac string for r
|z| < 2.5 is still there. (Once again, recall that the resid-
ual surviving configuration has zero action and is a pure
gauge.)

F. LL̄ pairs

For the LL̄ pairs the story is very much the same. The
di↵erence is that the original combing is done in such
a way that that the Higgs field points in the negative
direction with a value of 2⇡T � v. We of course need
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FIG. 9: The phase from the string divided by 2⇡ for a M and
M̄ dyon at a separation |rM � rM̄ |v = 5 along the z axis in
natural units. (a) Taken at the beginning of the simulation
and (b) Taken at the end of the simulation. The line is for
a square loop with the sides of one link, the dashed is for 5
links and the dotdashed is for 21 links.

to make a time dependent gauge transformation to put
the holonomy to v, but the simulations them self are
here done in the time independent gauge where the Higgs
field of the LL̄ pair is �(2⇡T�v). Since nothing di↵erent
from the MM̄ pairs happens for the charge and action we
won’t show those graphs. More interesting is the Higgs
field which after a time dependent gauge transformation
at the beginning looks like in Fig. 10 (a).

It is seen how the valleys is now instead a mountain
for the L and L̄ dyons. The A4 field is completely time
independent since the ⌧̂1 and ⌧̂2 component of A4 are
zero.

Then the configuration collapses into one big moun-
tain, we do get a time dependent part in A4 from the
now non-zero values of the ⌧̂1 and ⌧̂2 component of A4,
which have gained a core as shown in Fig. 11. As for the
A3

4 component which is the mountain shown in Fig. 10
(b), it stays time independent.

The time dependence that A4 do gain is only for the
⌧̂1 and ⌧̂2 component of A4, since exp(i⇡Tx4⌧̂

3)⌧̂(1,2) =
⌧̂(1,2) exp(�i⇡Tx4⌧̂

3), so we only have a mixing of the ⌧̂1
and ⌧̂2 component of A4 which mix with a time dependent
phase.
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FIG. 7: Electric charge for v = 1 as a function of computer
time (in units of iterations of all links) for a separation |rM �
rM̄ |v = 5 between the dyons. The electric charge is found
from a box of size 623, 463, 303 and 143 points each centered
at the center. The electric charge is biggest for 623. Total
lattice size is 643 points.

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 8: Magnetic charge for v = 1 as a function of computer
time (in units of iterations of all links) for a separation |rM �
rM̄ |v = 5 between the dyons. The magnetic charge is found
from a box that goes from the center in z and to the edge.
The drop happens at the same time as the drop in action.

In summary, our starting configurations possess singu-
lar Dirac strings from infinity to their centers: the flux
in between appears in the form of dipole magnetic fields
at small z region. At the end of the cooling, all magnetic
fields are gone, and yet a version of the Dirac string for r
|z| < 2.5 is still there. (Once again, recall that the resid-
ual surviving configuration has zero action and is a pure
gauge.)

F. LL̄ pairs

For the LL̄ pairs the story is very much the same. The
di↵erence is that the original combing is done in such
a way that that the Higgs field points in the negative
direction with a value of 2⇡T � v. We of course need
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FIG. 9: The phase from the string divided by 2⇡ for a M and
M̄ dyon at a separation |rM � rM̄ |v = 5 along the z axis in
natural units. (a) Taken at the beginning of the simulation
and (b) Taken at the end of the simulation. The line is for
a square loop with the sides of one link, the dashed is for 5
links and the dotdashed is for 21 links.

to make a time dependent gauge transformation to put
the holonomy to v, but the simulations them self are
here done in the time independent gauge where the Higgs
field of the LL̄ pair is �(2⇡T�v). Since nothing di↵erent
from the MM̄ pairs happens for the charge and action we
won’t show those graphs. More interesting is the Higgs
field which after a time dependent gauge transformation
at the beginning looks like in Fig. 10 (a).

It is seen how the valleys is now instead a mountain
for the L and L̄ dyons. The A4 field is completely time
independent since the ⌧̂1 and ⌧̂2 component of A4 are
zero.

Then the configuration collapses into one big moun-
tain, we do get a time dependent part in A4 from the
now non-zero values of the ⌧̂1 and ⌧̂2 component of A4,
which have gained a core as shown in Fig. 11. As for the
A3

4 component which is the mountain shown in Fig. 10
(b), it stays time independent.

The time dependence that A4 do gain is only for the
⌧̂1 and ⌧̂2 component of A4, since exp(i⇡Tx4⌧̂

3)⌧̂(1,2) =
⌧̂(1,2) exp(�i⇡Tx4⌧̂

3), so we only have a mixing of the ⌧̂1
and ⌧̂2 component of A4 which mix with a time dependent
phase.

Electric and magnetic charges



Interacting Ensemble of the Instanton-dyons

and Confinement in SU(2) Gauge Theory
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Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological con-
stituents of the instantons at nonzero temperature and holonomy. We perform numerical simula-
tions of the ensemble of interacting dyons for SU(2) pure gauge theory, and calculate its free energy
as a function of the holonomy and the dyon density. We observe that at the dyon density grows, its
minimum moves from zero to a value corresponding to confinement.

I. INTRODUCTION

Euclidean formulation of the gauge theory introduces
periodic Matsubara time, with the period equal to the
inverse temperature ⌧ = 0..1/T . Polyakov introduced
the so called Polyakov line

P = (1)

which is gauge invariant due to periodicity. As a func-
tion of temperature its expectation value < P > changes
from 1 at high T to (near) zero at the deconfinement tem-
perature T

c

. In the simplest SU(2) gauge theory we will
discuss in this work < P >= cos(⌫⇡), and the holonomy
parameter (or just holonomy, for short) ⌫ changes from
0 to 1/2.

All these statement are well known, reproduces count-
less times from the first finite T lattice gauge theory sim-
ulations 30 years ago. The corresponding e↵ective poten-
tial V (⌫) has been studies and parameterized, and used
in many models of finite-T QCD such as for example
Polyakov-Nambu-Jona-Lasinio (PNJL) model [].

What remains unknown is the physical origin of this
potential. Perturbatively, the e↵ect of the holonomy
is appearance of nonzero masses of quarks and (non-
diagonal) gluons, and the corresponding potential [? ]
V

GPY

(⌫) is minimal at ⌫ = 0 (and its periodic copies).
Instantons [1] are Eucliedan 4-dimensional topological

solitons of the Yang-Mills gauge fields known to be im-
portant ingredient of the gauge fields in the QCD vac-
uum, as well as at finite-temperatures comparable to the
critical one T ⇠ T

c

. Chiral anomalies induce sermonic
zero modes of instantons, which provide the so called ’t
Hooft interaction between fermions, which explicitly vi-
olate U

A

(1) chiral symmetry. Furthermore, collectiviza-
tion of instanton zero modes create the so called Zero
Mode Zone of quasi-zero eigenstates, which break spon-
taneously the SU(N

f

) chiral symmetry. Although those
states includes only tiny (⇠ 10�4) subset of all fermionic
states in lattice numerical simulations, they are respon-
sible for a significant fraction of hadronic masses. The
so called Interacting Instanton Liquid Model (IILM) has
been developed, including ’t Hooft interaction to all or-
ders, for a review see [2]. Instanton action is however
protected by their topology, which cannot change even
at nonzero holonomy. Therefore they do not contribute

directly to the holonomy potential. So it has been em-
phasized many times that instantons explain chiral sym-
metry breaking but not confinement, see e.g. [2]

Generalization of the instantons to nonzero holonomy
has been made by Lee,Lu,van Baal and Kraan [3, 4].
It turned out that instantons get split into N

c

(num-
ber of colors) (anti)dyons, (anti)self-dual 3d solitons with
nonzero (Euclidean) electric and magnetic charges. By
tradition the selfdual ones are called M with charges
(e, m) = (+,+) and L with charges (e, m) = (�,�),
the anti-selfdual antidyons are called M̄ , (e, m) = (+,�)
and L̄, (e, m) = (�,+).

Diakonov [] was the first who suggested that additional
– and confining –part of the potential may be generated
by the instanton-dyons, but was unable to show it. The
issue re-surfaced by Poppitz et al [5] in a very specific
setting – supersymmetric theories on a R3 ⌦ S1 where
the circle is spatial and fermions are periodic – making
coupling weak and topological e↵ects to be exponentially
small but under the theoretical control. Supersymmetry
cancels the perturbative potential V

GPY

(⌫) and allows
confinement at exponentially small density of the dyons.
These authors have been able to trace the crucial e↵ect to
the repulsive dyon-antidyon interaction. A phenomeno-
logical model of similar nature has been proposed for
QCD-like theories by one of us and Sulejmanpasic [10],
which reached qualitative description of the deconfine-
ment phase transition and other properties of the ther-
mal SU(2) pure gauge system above T

c

, in qualitative
agreement with available lattice data.

Although the interaction between the instanton-dyons
have been studied for a long time, the leading-order ef-
fect – classical dyon-antidyon interaction has been miss-
ing. The corresponding studies, using the gradient flow
method, has been done in our previous work [14]: its re-
sult are incorporated in the statistical ensembles of the
dyons studied in this paper.

II. THE INSTANTON-DYONS

III. THE SETTING OF THE MODEL

The setting of the model is basically the same as in
[8]. The instanton-dyons are placed on the 3-dimensional
sphere S3 and their coordinates are updated with the

The instanton-dyons are placed on the 3-dimensional sphere S3 and	

 their coordinates are updated with  the Metropolis algorithm.	


new element is the inclusion of the leading order dyon-
antidyon interaction	

new account for Debye screening	

evaluation of the total free energy, including PGPY(v)

2

Metropolis algorithm.
Important new element is the inclusion of the leading

order dyon-antidyon interaction recently studied in our
previous paper [14]. We will use the following parame-
terization

�S
DD̄

= �⌫102.25
g2

(x� 0.907)2

x3 + 15.795
(2)

x = 2⇡T⌫r (3)

for distances larger than x > 4. For x smaller than 4 we
have a core which we describe by

�S
DD̄

=
⌫V0

1 + exp(�(x� 4))
(4)

where we scale the core also by ⌫ since we want the in-
teraction to disappear at ⌫ = 0. The volume element of
the space of collective variables we will use is in the form
of the so called Diakonov determinant

p
g = detG (5)

G = �
mn

�
ij

(4⇡⌫
m

� 2
X

k 6=i

1
T |x
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� x
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A. The screening interaction

The screening of calorons has been first calculated by
Pisarski and Ya↵e [6], and re-derived using the scattering
amplitude of heat bath patrons on a caloron in [7].

At nonzero holonomy Diakonov et al [11] have obtained
it in a form exp(�2⇡P 00(v)r

LM

in the caloron weight,
with the second derivative of the e↵ective holonomy po-
tential. Since they used only perturbative potential, they
observed that P 00(v) changes sign at some v and specu-
late of what e↵ect this would produce. We however will
only use full e↵ective potential which has a minimum at
physical value of the holonomy, so it will always be pos-
itive.

In the first simulations [8] quasi-confining linear po-
tential between the dyons was generalized to manybody
setting via a factor

exp

2

4�2⇡T
X

i>j

r
ij

Q
i

Q
j

3

5 (7)

where Q
i

is the electric charge for the i0th dyons defined
in the table I. It was su�cient for the purposes of that
work to use only the non-diagonal terms in the sum, as
only those depend on dyon locations.

Since in this work we are also interested in the absolute
value of the dyon free energy, we need to include all the
terms. The original expression for the modified holonomy
|�A4|2 we will write as the double sum over all dyons

Z
d3x

X

i,j

Q
i

Q
j

e�MDri

r
i

e�MDrj

r
j

(8)

including the diagonal terms and the screening induced
by the Debye mass. Therefore, the diagonal terms are no
longer divergent, but equal to

Z
d3r

e�2MDr

r2
=

2⇡

M
D

(9)

Note that if the screening is pure perturbative M
D

=
gT (N

c

/3+N
f

/6) the diagonal screening term is O(1/g),
which is at weak coupling large compared to the O(1)
screening terms used before but still much smaller than
the classical action O(1/g2) of the dyon.

The non-diagonal term

�2
Z

d3r
e�MDr1

r1

e�MDr2

r2
= � 2⇡

M
D

e�2MDr12 (10)

at small r12 cancels the diagonal ones and reproduce to
first order the linear potential of Diakonov et al.

M L M̄ L̄

Q -1 1 -1 1

TABLE I:

One important remark concerning the setting needs
to be made here. A calculation starting with a thermal
state with certain holonomy value ⌫ is not by itself stable
unless this value is at the minimum of some holonomy
potential V (⌫)

IV. SIMULATIONS

We use the following strategy: (i) in the first round of
studies discussed in this section we treat all model param-
eters – the density of M and L-type dyons, holonomy and
the Debye mass – as external parameters, and derive the
statistical properties of the dyon ensemble. The resulting
free energy is used in the second “self-consistency” round
of calculations – to be considered in the next section –
which puts it together with the perturbative potential
and locates the minimum of the sum.

In order to get the free energy we di↵erentiate with
respect to a proportional factor introduced in front of
the action

e�F (�)/T =
Z

Dx exp(��S(x)) (11)

@F

@�
= T < S > (12)
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FIG. 1: Total free energy as a function of holonomy
⌫. Green, brown, red and blue (top to bottom at the
r.h.s.) curves are for increasing density of the dyons, nd =
0.605, 0.207, 0.0944, 0.0507 respectively.

The dependence of V on holonomy is shown in Fig.1.
Note that as the dyon density increases, it changes its
shape, producing a non-trivial minimum at ⌫ 6= 0. Fur-
thermore, at high density this minimum moves to ⌫ =
1/2, the confining value.

The densities of both kinds of dyons n
L

, n
M

are not
in general equal: the model should be able to do this by
adding compensating charge to the whole sphere.

VI. SELF-CONSISTENT ENSEMBLE

So far the parameters of the model – the holonomy
⌫, the densities of both kinds of dyons n

L

, n
M

and the
Debye mass M

D

– were treated as independent.
The self-consistent value of the holonomy and density

should now be taken at the global minima, for each T .
The absolute densities of the dyons of each kind are then
corrected due to their interactions as follows

nL,M = nL,M

noninteracting

e��S

L,M

(23)

The self-consistent value of the Debye mass is equal to
the second derivative of the potential at its minimum.

VII. SUMMARY AND DISCUSSION
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VIII. APPENDIX

Our start is the KvBLL caloron partition function

Z
KvBLL

=
Z

d3z1d
3z2T

6C

✓
8⇡2

g2

◆ ✓
⇤e�E

4⇡T

◆ ✓
1

Tr12

◆ 5
3

⇥(2⇡ + 4⇡2⌫⌫̄Tr12)(2⇡⌫Tr12 + 1)
8⌫
3 �1(2⇡⌫̄Tr12 + 1)

8⌫̄
3 �1(24)

exp(�V3T
3 4⇡2

3
⌫2⌫̄2 � 2⇡Tr12P

00(⌫))(25)

Taking the limit to very dilute situation we find that all
powers of Tr12 not in the exponential cancel, and we end
with

Z
KvBLL

=
Z

d3z1d
3z2T

6C

✓
8⇡2

g2

◆ ✓
⇤e�E

4⇡T

◆

⇥(4⇡2⌫⌫̄)(2⇡⌫)
8⌫
3 �1(2⇡⌫̄)

8⌫̄
3 �1 (26)

exp(�V3T
3 4⇡2

3
⌫2⌫̄2 � 2⇡Tr12P

00(⌫)) (27)

The two terms in the exponential corresponds to our
screening potential and perturbative holonomy potential.
The diakonov determinant which we have included is seen
to return to a product of the holonomies in the dilute
limit

lim
Tr12!1

detG =
Y

i

4⇡⌫
i

(28)

By comparison we see that we have to take equation [??]
and divide by equation [??] in order to get the correct
weight for our partition function.
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Chiral symmetry 
breaking and ZMZ



Instanton liquid at T=0 and T>Tc 
(schematic pictures) 

Non-zero density
signal sponatenous

SU(Nf) chiral symmetry
breaking at T<Tc

at T>Tc chiral symmetry gets restored

density of states (0) =>	

nonzero quark condensate	


``conductor” at low T

fundamental concept: 	

ZMZ,	


a collectivized set of 	

topological zero modes

zero density of states (0) =>	

zero quark condensate	

``insulator” at high T

Dµ�µ � = � �

chiral symmetry transition is thus	

understood in a ``single-body” language	

as conductor-insulator transition in 4d
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Fig. 4.5 Spectrum of the Dirac operator for different values of the number of flavors Nf , from
[236]. The eigenvalue is given in units of the scale parameter ΛQCD and the distribution function
is normalized to one.

quark mass is increased, the influence of the fermion determinant is reduced, and
eventually “spontaneous” symmetry breaking is recovered. As a consequence, QCD
has an interesting phase structure as a function of the number of flavors and their
masses, even at zero temperature.

The spectrum of the Dirac eigenvalues

Smilga-Stern theorem 
-|lambda|(Nf-2)



the width of the ZMZ 
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the width of the ZMZ 
is surprisingly small

• that is why quark mass dependence is 
nontrivial when m is of this order, and 
chiral perturbation extrapolations are not 
as good as people hoped!

TIĪ ⇠ ⇢2

R3
⇠ (0.3fm)2

(1fm)3
⇠ 20MeV

the magnitude of the hopping from one instanton to the next	

can be estimated as



recently the opposite exercise was done by the Graz 
group

Symmetries of hadrons after unbreaking the chiral symmetry

L. Ya. Glozman,⇤ C. B. Lang,† and M. Schröck‡

Institut für Physik, FB Theoretische Physik, Universität Graz, A–8010 Graz, Austria

(Dated: July 20, 2012)

We study hadron correlators upon artificial restoration of the spontaneously broken chiral symme-
try. In a dynamical lattice simulation we remove the lowest lying eigenmodes of the Dirac operator
from the valence quark propagators and study evolution of the hadron masses obtained. All mesons
and baryons in our study, except for a pion, survive unbreaking the chiral symmetry and their
exponential decay signals become essentially better. From the analysis of the observed spectro-
scopic patterns we conclude that confinement still persists while the chiral symmetry is restored.
All hadrons fall into di↵erent chiral multiplets. The broken U(1)A symmetry does not get restored
upon unbreaking the chiral symmetry. We also observe signals of some higher symmetry that in-
cludes chiral symmetry as a subgroup. Finally, from comparison of the � � N splitting before
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parity doubling [1–10] and possibly some higher symme-
try. It was conjectured that this parity doubling reflects
e↵ective restoration of chiral symmetry, i.e., insensitivity
of the hadron mass generation mechanism to the e↵ects of
chiral symmetry breaking in the vacuum [1–6]. Whether
this conjecture is correct or not can be answered exper-
imentally since the conjectured symmetry requires exis-
tence of some not yet observed states.

Recent and most complete experimental analysis on
highly excited nucleons that includes not only elastic ⇡N ,
but also the photoproduction data, does report evidence
for some of the missing states and the parity doubling
patterns look now even better than before [11].

The question of a possible symmetry in hadron spectra
is one of the central questions for QCD since it would
help to understand dynamics of confinement and chiral
symmetry breaking as well as their role for the hadron
mass generation.

Another “experimental” tool to address the issue of the
hadron mass generation is lattice QCD. Equipped with
the QCD Lagrangian and Monte-Carlo techniques, one
can calculate, at least in principle, hadron masses and
other hadron properties from first principles. Enormous
progress has been achieved for the hadron ground states.
The problem of excited states, especially above the mul-
tihadron thresholds like ⇡N , �⇡, ⇡⇡, ⇡⇢, . . . turns out
to be much more di�cult and demanding than was ini-
tially anticipated. When it is solved lattice results should
reproduce experimental patterns and possibly indicate
some still missing states.
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Still, the mass of a hadron by itself, obtained from the
experiment or from the lattice simulations, tells us not so
much about the physics which is behind the mass gener-
ation. The pattern of all hadrons, on the contrary, could
shed some light on the underlying dynamics if there are
some obvious symmetries in the pattern or if its regular-
ities can be systematically explained.

The most interesting issue is to get some insight on
how QCD “works” in some important cases and under-
stand the underlying physical picture. In this sense one
can use lattice QCD as a tool to explore the interrela-
tions between confinement and chiral symmetry break-
ing. In particular, we can ask the question whether
hadrons and confinement will survive after having artifi-
cially removed the quark condensate of the vacuum. This
can be achieved via removal of the low-lying eigenmodes
of the Dirac operator, which is a well defined procedure
[12, 13].

In the past mainly the opposite was explored. After
suggestions within the instanton liquid model [14] the
e↵ect of the low-lying chiral modes on the ⇢ and other
correlators was studied on the lattice. In a series of pa-
pers [12, 15–17] it was shown that low modes saturate
the pseudoscalar and axial vector correlators at large dis-
tances and do not a↵ect the part where high-lying states
appear. In [12, 18] low mode saturation and also ef-
fects of low mode removal for mesons were studied for
quenched configurations with the overlap Dirac opera-
tor [19, 20]. Subsequently low modes were utilized to
improve the convergence of the determination of hadron
propagators [12, 18, 21–24] studying the e�ciency when
using the low modes of the Dirac operator or the Hermi-
tian Dirac operator.

We are studying the complementary case, i.e., removal
of the low modes and we will refer to this as “unbreak-
ing” the chiral symmetry. This issue has been addressed
in a recent paper [25, 26] where the low-lying eigenmodes
of the Dirac operator have been removed from the quark
Green’s function and masses of the lowest mesons ⇡, ⇢, a0
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D. Baryon chiral multiplets

If chiral symmetry is restored and baryons are still
there they have to fall into (some of) the possible bary-
onic parity-chiral multiplets. There are three di↵erent
irreducible representations of SU(2)L ⇥ SU(2)R ⇥Ci for
baryons of any fixed spin:

( 1
2 , 0) + (0, 1

2 ) , ( 3
2 , 0) + (0, 3

2 ) , ( 1
2 , 1) + (1, 1

2 ) . (7)

The first representation combines nucleons of positive
and negative parity into a parity doublet. The second
representation consists of both positive and negative par-
ity �’s of the same spin. Finally, the third representa-
tion, that is a quartet, includes one nucleon and one Delta
parity doublet with the same spin.

Extraction of the chiral eigenmodes of the Dirac oper-
ator leads to a systematic appearance of the parity dou-
blets, as it is clearly seen from Figs. 13 and 14. There
are two degenerate nucleon parity doublets with the same
mass. There are also two distinct � parity doublets, but
with di↵erent mass. Since our interpolators have spin
J = 1

2 for nucleons and J = 3
2 for Delta’s, we cannot see

possible quartets of the ( 1
2 , 1) + (1, 1

2 ) type.
It is very interesting that the two nucleon parity dou-

blets get degenerate, while the two Delta doublets are
well split. The former hints at a higher symmetry for the
J = I = 1

2 states, while this higher symmetry is absent
for the J = I = 3

2 states.

E. On the origin of the hyperfine splitting in QCD

The ��N splitting is usually attributed to the hyper-
fine spin-spin interaction between valence quarks. The
realistic candidates for this interaction are the spin-spin
color-magnetic interaction [53, 54] and the flavor-spin
interaction related to the spontaneous chiral symmetry
breaking [55]. It is an old debated issue which one is
really responsible for the hyperfine splittings in baryons.
Our results suggest some answer to this question. Once
chiral symmetry breaking is removed, which happens for
the ground N and � states after extraction of the 50–60
lowest eigenmodes, the��N splitting is reduced roughly
by the factor 2. With the restored chiral symmetry the
e↵ective flavor-spin quark-quark interaction is impossi-
ble. The color-magnetic interaction is still there. This
result suggests that in our real world the contribution of
both these mechanisms to the ��N splitting is of equal
importance.

VI. CONCLUSIONS

We have studied what happens with di↵erent mesons
and baryons upon modifying the valence quark propa-
gators by removing the lowest lying eigenmodes of the
Dirac operator. These eigenmodes are directly related
to the quark condensate of the vacuum via the Banks–
Casher relation. Consequently, upon removal of the low-
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of the hadron mass generation mechanism to the e↵ects of
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imentally since the conjectured symmetry requires exis-
tence of some not yet observed states.

Recent and most complete experimental analysis on
highly excited nucleons that includes not only elastic ⇡N ,
but also the photoproduction data, does report evidence
for some of the missing states and the parity doubling
patterns look now even better than before [11].

The question of a possible symmetry in hadron spectra
is one of the central questions for QCD since it would
help to understand dynamics of confinement and chiral
symmetry breaking as well as their role for the hadron
mass generation.

Another “experimental” tool to address the issue of the
hadron mass generation is lattice QCD. Equipped with
the QCD Lagrangian and Monte-Carlo techniques, one
can calculate, at least in principle, hadron masses and
other hadron properties from first principles. Enormous
progress has been achieved for the hadron ground states.
The problem of excited states, especially above the mul-
tihadron thresholds like ⇡N , �⇡, ⇡⇡, ⇡⇢, . . . turns out
to be much more di�cult and demanding than was ini-
tially anticipated. When it is solved lattice results should
reproduce experimental patterns and possibly indicate
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Still, the mass of a hadron by itself, obtained from the
experiment or from the lattice simulations, tells us not so
much about the physics which is behind the mass gener-
ation. The pattern of all hadrons, on the contrary, could
shed some light on the underlying dynamics if there are
some obvious symmetries in the pattern or if its regular-
ities can be systematically explained.

The most interesting issue is to get some insight on
how QCD “works” in some important cases and under-
stand the underlying physical picture. In this sense one
can use lattice QCD as a tool to explore the interrela-
tions between confinement and chiral symmetry break-
ing. In particular, we can ask the question whether
hadrons and confinement will survive after having artifi-
cially removed the quark condensate of the vacuum. This
can be achieved via removal of the low-lying eigenmodes
of the Dirac operator, which is a well defined procedure
[12, 13].

In the past mainly the opposite was explored. After
suggestions within the instanton liquid model [14] the
e↵ect of the low-lying chiral modes on the ⇢ and other
correlators was studied on the lattice. In a series of pa-
pers [12, 15–17] it was shown that low modes saturate
the pseudoscalar and axial vector correlators at large dis-
tances and do not a↵ect the part where high-lying states
appear. In [12, 18] low mode saturation and also ef-
fects of low mode removal for mesons were studied for
quenched configurations with the overlap Dirac opera-
tor [19, 20]. Subsequently low modes were utilized to
improve the convergence of the determination of hadron
propagators [12, 18, 21–24] studying the e�ciency when
using the low modes of the Dirac operator or the Hermi-
tian Dirac operator.

We are studying the complementary case, i.e., removal
of the low modes and we will refer to this as “unbreak-
ing” the chiral symmetry. This issue has been addressed
in a recent paper [25, 26] where the low-lying eigenmodes
of the Dirac operator have been removed from the quark
Green’s function and masses of the lowest mesons ⇡, ⇢, a0
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improve the convergence of the determination of hadron
propagators [12, 18, 21–24] studying the e�ciency when
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D. Baryon chiral multiplets

If chiral symmetry is restored and baryons are still
there they have to fall into (some of) the possible bary-
onic parity-chiral multiplets. There are three di↵erent
irreducible representations of SU(2)L ⇥ SU(2)R ⇥Ci for
baryons of any fixed spin:

( 1
2 , 0) + (0, 1

2 ) , ( 3
2 , 0) + (0, 3

2 ) , ( 1
2 , 1) + (1, 1

2 ) . (7)

The first representation combines nucleons of positive
and negative parity into a parity doublet. The second
representation consists of both positive and negative par-
ity �’s of the same spin. Finally, the third representa-
tion, that is a quartet, includes one nucleon and one Delta
parity doublet with the same spin.

Extraction of the chiral eigenmodes of the Dirac oper-
ator leads to a systematic appearance of the parity dou-
blets, as it is clearly seen from Figs. 13 and 14. There
are two degenerate nucleon parity doublets with the same
mass. There are also two distinct � parity doublets, but
with di↵erent mass. Since our interpolators have spin
J = 1

2 for nucleons and J = 3
2 for Delta’s, we cannot see

possible quartets of the ( 1
2 , 1) + (1, 1

2 ) type.
It is very interesting that the two nucleon parity dou-

blets get degenerate, while the two Delta doublets are
well split. The former hints at a higher symmetry for the
J = I = 1

2 states, while this higher symmetry is absent
for the J = I = 3

2 states.

E. On the origin of the hyperfine splitting in QCD

The ��N splitting is usually attributed to the hyper-
fine spin-spin interaction between valence quarks. The
realistic candidates for this interaction are the spin-spin
color-magnetic interaction [53, 54] and the flavor-spin
interaction related to the spontaneous chiral symmetry
breaking [55]. It is an old debated issue which one is
really responsible for the hyperfine splittings in baryons.
Our results suggest some answer to this question. Once
chiral symmetry breaking is removed, which happens for
the ground N and � states after extraction of the 50–60
lowest eigenmodes, the��N splitting is reduced roughly
by the factor 2. With the restored chiral symmetry the
e↵ective flavor-spin quark-quark interaction is impossi-
ble. The color-magnetic interaction is still there. This
result suggests that in our real world the contribution of
both these mechanisms to the ��N splitting is of equal
importance.

VI. CONCLUSIONS

We have studied what happens with di↵erent mesons
and baryons upon modifying the valence quark propa-
gators by removing the lowest lying eigenmodes of the
Dirac operator. These eigenmodes are directly related
to the quark condensate of the vacuum via the Banks–
Casher relation. Consequently, upon removal of the low-
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Still, the mass of a hadron by itself, obtained from the
experiment or from the lattice simulations, tells us not so
much about the physics which is behind the mass gener-
ation. The pattern of all hadrons, on the contrary, could
shed some light on the underlying dynamics if there are
some obvious symmetries in the pattern or if its regular-
ities can be systematically explained.

The most interesting issue is to get some insight on
how QCD “works” in some important cases and under-
stand the underlying physical picture. In this sense one
can use lattice QCD as a tool to explore the interrela-
tions between confinement and chiral symmetry break-
ing. In particular, we can ask the question whether
hadrons and confinement will survive after having artifi-
cially removed the quark condensate of the vacuum. This
can be achieved via removal of the low-lying eigenmodes
of the Dirac operator, which is a well defined procedure
[12, 13].

In the past mainly the opposite was explored. After
suggestions within the instanton liquid model [14] the
e↵ect of the low-lying chiral modes on the ⇢ and other
correlators was studied on the lattice. In a series of pa-
pers [12, 15–17] it was shown that low modes saturate
the pseudoscalar and axial vector correlators at large dis-
tances and do not a↵ect the part where high-lying states
appear. In [12, 18] low mode saturation and also ef-
fects of low mode removal for mesons were studied for
quenched configurations with the overlap Dirac opera-
tor [19, 20]. Subsequently low modes were utilized to
improve the convergence of the determination of hadron
propagators [12, 18, 21–24] studying the e�ciency when
using the low modes of the Dirac operator or the Hermi-
tian Dirac operator.

We are studying the complementary case, i.e., removal
of the low modes and we will refer to this as “unbreak-
ing” the chiral symmetry. This issue has been addressed
in a recent paper [25, 26] where the low-lying eigenmodes
of the Dirac operator have been removed from the quark
Green’s function and masses of the lowest mesons ⇡, ⇢, a0
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In a dynamical lattice simulation with the overlap Dirac operator and Nf = 2 mass degenerate
quarks we study all possible J=0 and J=1 correlators upon exclusion of the low lying “quasi-zero”
modes from the valence quark propagators. After subtraction of a small amount of such Dirac
eigenmodes all disconnected contributions vanish and all possible point-to-point J=0 correlators with
di↵erent quantum numbers become identical, signaling a restoration of the SU(2)L⇥SU(2)R⇥U(1)A.
The original ground state of the ⇡ meson does not survive this truncation, however. In contrast, in
the I=0 and I=1 channels for the J=1 correlators the ground states have a very clean exponential
decay. All possible chiral multiplets for the J=1 mesons become degenerate, indicating a restoration
of an SU(4) symmetry of the dynamical QCD-like string.
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I. INTRODUCTION

In Ref. [1] we have studied the behavior of masses
of the isovector J = 1 mesons ⇢, ⇢

0
, a1, b1 upon sub-

traction of the lowest-lying eigenmodes of the manifestly
chirally-invariant overlap Dirac operator [2] from the va-
lence quark propagators (for a previous lattice study
with a chirally-improved Dirac operator see Refs. [3, 4]).
A non-vanishing density of the quasi-zero modes of the
Dirac operator (in the infinite volume limit) represents,
through the Banks-Casher relation [5], the quark con-
densate of the vacuum. Consequently, a removal of a
su�cient amount of the lowest-lying Dirac eigenmodes
should eventually lead to the artificial restoration (”un-
breaking”) of chiral symmetry.

Of course, correlators obtained after such a truncation
do not correspond to a local quantum field theory [6]
and we call that case QCDr in order to distinguish it
from the full, untruncated QCD. Despite that fact the
correlators shown intriguing behavior. Firstly, they have
a very clean exponential decay for all isovector J = 1
mesons, suggesting that these states survive the unbreak-
ing procedure. Secondly, they have interesting symmetry
patterns: All ⇢, ⇢0, a1, b1 states become degenerate. Cer-
tainly this degeneracy is not accidental and tells us some-
thing important about the underlying dynamics. From
this degeneracy we could infer a simultaneous restoration
of both SU(2)

L

⇥ SU(2)
R

and U(1)
A

symmetries. How-
ever, a degeneracy of all isovector states implies a larger
symmetry that includes SU(2)

L

⇥SU(2)
R

and U(1)
A

as
subgroups. This larger symmetry would require a degen-
eracy of all possible chiral multiplets that contain both
isovector and isoscalar J = 1 mesons. One of the prin-
cipal purposes of the present study is to investigate the
isoscalar J = 1 states from all possible chiral multiplets
and clarify whether they become degenerate upon un-
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breaking of the chiral symmetry.
This larger symmetry has been identified in Ref. [8]

as an SU(4) � SU(2)
L

⇥ SU(2)
R

⇥ U(1)
A

, that mixes
components of the fundamental four-component vector
(u

L

, u

R

, d

L

, d

R

). This symmetry, which is a symmetry of
the confining interaction in QCDr , is not a symmetry of
the original QCD Lagrangian and should be considered
as an emergent symmetry that appears from the QCD
dynamics upon subtraction of the quasi-zero modes of
the Dirac operator. From the degeneracy of all possible
J = 1 chiral multiplets and from this symmetry it was
possible to conclude that there is no color-magnetic field
in the system suggesting that we observe quantum levels
of a dynamical QCDr string.
Our second aim in the present paper is to study the

fate of the ground states of the ⇡,�, a0, ⌘ mesons upon
unbreaking of the chiral symmetry. One naturally ex-
pects a disappearance of the pion as a Goldstone bo-
son from the spectrum. However, apriori it is not clear
what behavior to expect for the other J = 0 mesons.
We find that the disconnected contributions vanish and
that the point-to-point correlation functions in all J = 0
channels become indistinguishable after removal of the
lowest-lying modes. This confirms a restoration of the
SU(2)

L

⇥ SU(2)
R

and U(1)
A

symmetries. The eigen-
values of the correlation matrices that correspond to the
ground states of ⇡,�, a0, ⌘ mesons loose, however, the ex-
ponential decay property implying that the unbreaking
removes the physical ground states of ⇡,�, a0, ⌘ mesons
from the spectrum.

II. LATTICE TECHNIQUES

A. Quark propagators

As was discussed in the Introduction we use in our
study the overlap Dirac operator. The gauge ensem-
ble consists of 100 gauge configurations generated with
N

f

= 2 mass degenerate dynamical overlap fermions on
a 163 ⇥ 32 lattice with a lattice spacing a ⇠ 0.12 fm at a
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FIG. 5: ⇡, �, a0, ⌘ correlators upon exclusion of the near-zero modes, k = 0, 30.

ter subtraction of 10 lowest eigenmodes of the Dirac op-
erator (k = 10). It is clearly seen that in the untruncated
case both the connected and disconnected contributions
are equally important, which provides an essential di↵er-
ence of the ⇡ and ⌘ masses. Actually, for the ⌘ propaga-
tor they almost cancel, prohibiting a determination of the
mass. This is due to the fixing of the global topological
charge which leads to a vanishing topological susceptibil-
ity �

T

(In Ref. [18] it is discussed how to estimate �
T

in
this case from the disconnected part of the ⌘ correlator).

In the figures we exhibit both, the propagators with
and without the stochastic contributions to the quark
propagators (see Eq. (1)). We see, that this stochastic
part is very small beyond t > 5 and negligible for the
disconnected parts. The dependence of the disconnected
parts with truncation is remarkable. Upon elimination
of 10 lowest Dirac eigenmodes the disconnected contri-
bution practically vanishes. This signals a simultaneous
restoration of both symmetries.

The same observation holds for the connected and dis-
connected contributions in the a0 and � channels. The
ratios of the corresponding contributions are shown in
Fig. 4. We conclude that the same lowest-lying eigen-
modes of the Dirac operator are responsible for both
SU(2)

L

⇥ SU(2)
R

and U(1)
A

breakings which is con-
sistent with the instanton-induced mechanism of both
breakings [20–22].

The total (F ) point-to-point correlators in all ⇡,�, a0, ⌘
channels are shown on Fig. 5. Without truncation of

the lowest-lying Dirac modes they are all very di↵erent
because of breakings of both SU(2)

L

⇥SU(2)
R

and U(1)
A

symmetries. After truncation of a small amount of the
quasi-zero modes they become all identical. This tells
once again that both symmetries are restored.
The next natural question is to ask whether the states

still exist as physical states in this chirally restored
regime. To answer this question we concentrate on the
pion channel for the following reason: The original ⇡

states can be easily identified in the untruncated case.
Extraction of good e↵ective mass plateaus in other quan-
tum channels requires much better statistics.
On exclusion of the near-zero modes the ground state

e↵ective mass plateau of the pion deteriorates and disap-
pears, see Fig. 6. The correlation function decays with
time not exponentially and thus the eigenstate is not a
physical state. Hence unbreaking of the chiral symmetry
removes the pion from the physical spectrum. This is
consistent with the Goldstone boson nature of the pion.
The quasi-zero modes play an important role in the pion
and are crucial for its existence. The ⇡0 state might how-
ever survive the unbreaking, though to firmly conclude it
one needs better statistics.
Now, we have noted earlier from the point-to-point cor-

relators that upon elimination of the lowest-lying Dirac
modes the SU(2)

L

⇥ SU(2)
R

⇥ U(1)
A

symmetry is re-
stored. Consequently, even though we cannot extract
directly the ground states of the �, ⌘, a0 mesons, we con-
clude that they all should disappear from the spectrum
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I. INTRODUCTION

Topological phenomena in gauge theories have been
discovered more than three decades ago, and remain the
subject of intense theoretical research ever since. In par-
ticular, magnetic objects (monopoles) have been identified
as a possible source of confinement [1,2], while instantons
have been proposed as the driving mechanism for chiral
symmetry breaking [3,4].

The index theorem establishes a direct connection be-
tween the vacuum topology and zero-eigenvalue solutions
of the Dirac equation, i.e., the so-called fermionic zero
modes. These quark states are insensitive to any perturba-
tive fluctuation of the gauge field, hence encode purely
nonperturbative QCD dynamics. Furthermore, lattice
simulations have shown that the Dirac eigenstates with
near-zero eigenvalues—also known as the ‘‘zero-mode
zone’’ (ZMZ)—directly correlate with local fluctuations
of the topological charge density. After filtering out quan-
tum fluctuations, lattice fields reveal nearly (anti-)self-dual
smooth fields responsible for topology and ZMZ states [5].
Using only fermionic states attributed to the ZMZ (a tiny
subset of Dirac eigenstates, of only about !10"4 of all
eigenstates) one finds the correct pion mass, quark con-
densate as well as many other hadronic properties. On the
other hand, filtering out the ZMZ states removes the chiral
symmetry breaking and leads to drastic changes in the
hadronic spectrum computed on the lattice. In particular,
some masses get shifted by as much as !30% and parity
doublets appear (for a recent analysis, see e.g., Ref. [6]).

This body of results coherently supports a picture inwhich
the nonperturbative chiral dynamics in vacuum is mediated
by instantons. Indeed, instanton model calculations (for a

review see Ref. [7]) have been very successful in
reproducing the mass and electromagnetic structure of
pions [8], vector mesons [9], nucleons [10–15] and even
the !I ¼ 1=2 rule for hyperon [16] and kaon [17] nonlep-
tonic decays.
In the instanton picture, the width of the ZMZ depends

on the size of the typical ‘‘hopping’’ matrix element of
the Dirac operator between two instantons, which is
of the order ! "!2= "R3 ! 20 MeV, where "! is the typical
instanton size and "R the typical interinstanton
density [3]. This value is comparable to the typical light
quark masses used in many lattice simulations, and this
explains why the corresponding results display significant
deviations from the naive chiral perturbation theory pre-
dictions. Furthermore, the specific shape of the density
of eigenvalues !ð"Þ in the ZMZ depends crucially
on the theory parameters, such as the number of light
fermions Nf.
In this work, we will further investigate topological

phenomena in the semiclassical picture, focusing on tem-
peratures close to those at which the expectation value of
the Polyakov line

hPðxÞi ¼
!
exp

"
i
Z #

0
dx4A

a
4ðx; x4Þ

"a

2

#$
(1)

drastically changes from 1 to 0.
The gauge invariant expectation value (1) defines the

holonomy of the gauge connection corresponding to a full
circle around the periodic time direction and is related to
the free energy Fq of a single static quark:

hPi! exp ð"Fq=TÞ: (2)
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I. INTRODUCTION

Topological phenomena in gauge theories have been
discovered more than three decades ago, and remain the
subject of intense theoretical research ever since. In par-
ticular, magnetic objects (monopoles) have been identified
as a possible source of confinement [1,2], while instantons
have been proposed as the driving mechanism for chiral
symmetry breaking [3,4].

The index theorem establishes a direct connection be-
tween the vacuum topology and zero-eigenvalue solutions
of the Dirac equation, i.e., the so-called fermionic zero
modes. These quark states are insensitive to any perturba-
tive fluctuation of the gauge field, hence encode purely
nonperturbative QCD dynamics. Furthermore, lattice
simulations have shown that the Dirac eigenstates with
near-zero eigenvalues—also known as the ‘‘zero-mode
zone’’ (ZMZ)—directly correlate with local fluctuations
of the topological charge density. After filtering out quan-
tum fluctuations, lattice fields reveal nearly (anti-)self-dual
smooth fields responsible for topology and ZMZ states [5].
Using only fermionic states attributed to the ZMZ (a tiny
subset of Dirac eigenstates, of only about !10"4 of all
eigenstates) one finds the correct pion mass, quark con-
densate as well as many other hadronic properties. On the
other hand, filtering out the ZMZ states removes the chiral
symmetry breaking and leads to drastic changes in the
hadronic spectrum computed on the lattice. In particular,
some masses get shifted by as much as !30% and parity
doublets appear (for a recent analysis, see e.g., Ref. [6]).

This body of results coherently supports a picture inwhich
the nonperturbative chiral dynamics in vacuum is mediated
by instantons. Indeed, instanton model calculations (for a

review see Ref. [7]) have been very successful in
reproducing the mass and electromagnetic structure of
pions [8], vector mesons [9], nucleons [10–15] and even
the !I ¼ 1=2 rule for hyperon [16] and kaon [17] nonlep-
tonic decays.
In the instanton picture, the width of the ZMZ depends

on the size of the typical ‘‘hopping’’ matrix element of
the Dirac operator between two instantons, which is
of the order ! "!2= "R3 ! 20 MeV, where "! is the typical
instanton size and "R the typical interinstanton
density [3]. This value is comparable to the typical light
quark masses used in many lattice simulations, and this
explains why the corresponding results display significant
deviations from the naive chiral perturbation theory pre-
dictions. Furthermore, the specific shape of the density
of eigenvalues !ð"Þ in the ZMZ depends crucially
on the theory parameters, such as the number of light
fermions Nf.
In this work, we will further investigate topological
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peratures close to those at which the expectation value of
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3 = 0.31, 1.04.

monly adopted by lattice practitioners, the ac-
tual value of this mass used in our simulations
is not zero and is not directly related to physical
light quark masses: its role is to prevent influ-

ence of the finite volume e↵ects. In particular,
we will see below that, in order to correctly
monitor the chiral symmetry breaking, we are
bound to consider masses m/T & 0.2,
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I. INTRODUCTION

Topological phenomena in gauge theories have been
discovered more than three decades ago, and remain the
subject of intense theoretical research ever since. In par-
ticular, magnetic objects (monopoles) have been identified
as a possible source of confinement [1,2], while instantons
have been proposed as the driving mechanism for chiral
symmetry breaking [3,4].

The index theorem establishes a direct connection be-
tween the vacuum topology and zero-eigenvalue solutions
of the Dirac equation, i.e., the so-called fermionic zero
modes. These quark states are insensitive to any perturba-
tive fluctuation of the gauge field, hence encode purely
nonperturbative QCD dynamics. Furthermore, lattice
simulations have shown that the Dirac eigenstates with
near-zero eigenvalues—also known as the ‘‘zero-mode
zone’’ (ZMZ)—directly correlate with local fluctuations
of the topological charge density. After filtering out quan-
tum fluctuations, lattice fields reveal nearly (anti-)self-dual
smooth fields responsible for topology and ZMZ states [5].
Using only fermionic states attributed to the ZMZ (a tiny
subset of Dirac eigenstates, of only about !10"4 of all
eigenstates) one finds the correct pion mass, quark con-
densate as well as many other hadronic properties. On the
other hand, filtering out the ZMZ states removes the chiral
symmetry breaking and leads to drastic changes in the
hadronic spectrum computed on the lattice. In particular,
some masses get shifted by as much as !30% and parity
doublets appear (for a recent analysis, see e.g., Ref. [6]).

This body of results coherently supports a picture inwhich
the nonperturbative chiral dynamics in vacuum is mediated
by instantons. Indeed, instanton model calculations (for a

review see Ref. [7]) have been very successful in
reproducing the mass and electromagnetic structure of
pions [8], vector mesons [9], nucleons [10–15] and even
the !I ¼ 1=2 rule for hyperon [16] and kaon [17] nonlep-
tonic decays.
In the instanton picture, the width of the ZMZ depends

on the size of the typical ‘‘hopping’’ matrix element of
the Dirac operator between two instantons, which is
of the order ! "!2= "R3 ! 20 MeV, where "! is the typical
instanton size and "R the typical interinstanton
density [3]. This value is comparable to the typical light
quark masses used in many lattice simulations, and this
explains why the corresponding results display significant
deviations from the naive chiral perturbation theory pre-
dictions. Furthermore, the specific shape of the density
of eigenvalues !ð"Þ in the ZMZ depends crucially
on the theory parameters, such as the number of light
fermions Nf.
In this work, we will further investigate topological

phenomena in the semiclassical picture, focusing on tem-
peratures close to those at which the expectation value of
the Polyakov line
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dyons R(S3)T V T

3
/dyon

64 4.5 28.

64 3.0 8.3

64 2.5 4.8

64 2.2 3.28

64 1.5 1.04

64 1.2 0.53

64 1. 0.31

TABLE II: The list of the radii and volumes/dyon
used in the simulations

V. SIMULATION RESULTS

Simulations are performed according to the
standard MC algorithm, with one-by-one up-
dates of all the dyon positions on the S3 sphere
and an acceptance/rejection based on the stan-
dard Metropolis algorithm. The boldness of the
MC moves was adapted in order to obtain an
acceptance ratio between 50% and 80%.

We then estimate the number of subse-
quent configurations needed to achieve ther-
malization, by standard auto-correlation anal-
ysis based on the dyons’ position. Our typical
runs include a total of 256 independent (un-
correlated) configurations, obtained from 32 in-
dependent Markov chains, each consisting of
64000 Metropolis steps. All simulations were
performed on 32 processors on the Wiglaf clus-
ter located at the Interdisciplinary Laboratory
for Computational Science (LISC), at Trento.

A. The spatial correlations between dyons

One of the benefits of going from 4-d torus to
the S1 ⇥ S3 geometry is that in the latter case
the system is truly homogeneous. Also, on a
sphere the interparticle distance can be defined
by a scalar product

r
ij

= R ↵
ij

= R arcos (~n
i

~n
j

) (33)

where cos(�
ij

) is the angle between two points
defined via the scalar product of their unit po-
sition vectors on S3 and R is its radius. Study
of Coulomb fields on a sphere is given in the
Appendix.

(On a torus, there exist also distances to mul-
tiple images of charges, which were summed
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FIG. 3: The spectrum of the Dirac eigenvalues in
the quenched ensemble, comparing two ensembles
of 64 and 128 dyons at the same density, with zero
current mass. The shaded area denotes the region
of the spectrum where volume artifacts become sig-
nificant.

over in fields and propagators in our previous
instanton-based studies. However in the case
of dyons, with their long-range fields, conver-
gence of such sums is much worse than for the
instantons, and this was the primary reason we
switched to a sphere. )

We collected histograms of the various two-
particle correlation functions as a function of
the (dimensionless) distance RT on the sphere
are normalized by dividing out the volume ele-
ment dV/d�

ij

⇠ sin2(�
ij

) corresponding to ran-
dom occupation on the S3 sphere. A sample of
the results for di↵erent values of N

f

and di↵er-
ent dyonic densities is shown in Fig. 2. One can
immediately identify a number of feature which
are common to all such correlation functions:

• repulsive correlation between identical
dyons,

• attractive interaction between, the dyon
and antidyon,

• the radius of the correlation decreases as
N

f

grows.

14

0 0.25 0.5 0.75 1

 λ / Τ
0

1

2

3

4

5

 ρ
(λ

) 
/Τ

Nf=1
Nf=2
Nf=4

0 0.25 0.5 0.75 1

 λ / Τ
0

1

2

3

4

5

6

 ρ
(λ

) 
/Τ

Nf=1
Nf=2
Nf=4

0 0.25 0.5 0.75 1

 λ / Τ
0

2

4

6

8

 ρ
(λ

) 
/ Τ

Nf=1
Nf=2
Nf=4

0 0.25 0.5 0.75 1

 λ / Τ
0

5

 ρ
(λ

) 
/ Τ

Nf=1
Nf=2
Nf=4

0 0.25 0.5 0.75 1

 λ / Τ
0

5

10

15

20

 ρ
(λ

) 
/ Τ

Nf=1
Nf=2

FIG. 5: The Dirac eigenvalue distributions for three values of the Nf = 1, 2, 4. The plots, ordered from
top-left to right-bottom are performed on di↵erent radius of the 3-sphere (R=1.0 T,R=1.5 T ,R=2.2 T,
R=3.0 T ,R=4.5 T), from high to low dyon density. The current quark mass was set to m/T = 0.25.

range with 0.2 < �/T < 0.4. This way, we
identified constants Q and C with the quark
condensate and the Smilga-Stern constant, re-
spectively. The result of the fit is shown in
Fig.6. The nonzero condensate observed for the
N

f

= 1 and N
f

= 2 ensembles at high dyon
density is rather density-independent.

More systematic account for the finite-
volume e↵ects and more accurate determina-
tion of the condensate can be done by compar-

ing our data with the expectations for the so
called “mesoscopic regime”, in which the vol-
ume is not macroscopically large. Quantitative
predictions of the shape are known from chi-
ral random matrix models [35], which are well
confirmed on the lattice. We plan to do so else-
where.
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TABLE II: The list of the radii and volumes/dyon
used in the simulations

V. SIMULATION RESULTS

Simulations are performed according to the
standard MC algorithm, with one-by-one up-
dates of all the dyon positions on the S3 sphere
and an acceptance/rejection based on the stan-
dard Metropolis algorithm. The boldness of the
MC moves was adapted in order to obtain an
acceptance ratio between 50% and 80%.

We then estimate the number of subse-
quent configurations needed to achieve ther-
malization, by standard auto-correlation anal-
ysis based on the dyons’ position. Our typical
runs include a total of 256 independent (un-
correlated) configurations, obtained from 32 in-
dependent Markov chains, each consisting of
64000 Metropolis steps. All simulations were
performed on 32 processors on the Wiglaf clus-
ter located at the Interdisciplinary Laboratory
for Computational Science (LISC), at Trento.

A. The spatial correlations between dyons

One of the benefits of going from 4-d torus to
the S1 ⇥ S3 geometry is that in the latter case
the system is truly homogeneous. Also, on a
sphere the interparticle distance can be defined
by a scalar product

r
ij

= R ↵
ij

= R arcos (~n
i

~n
j

) (33)

where cos(�
ij

) is the angle between two points
defined via the scalar product of their unit po-
sition vectors on S3 and R is its radius. Study
of Coulomb fields on a sphere is given in the
Appendix.

(On a torus, there exist also distances to mul-
tiple images of charges, which were summed
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the quenched ensemble, comparing two ensembles
of 64 and 128 dyons at the same density, with zero
current mass. The shaded area denotes the region
of the spectrum where volume artifacts become sig-
nificant.

over in fields and propagators in our previous
instanton-based studies. However in the case
of dyons, with their long-range fields, conver-
gence of such sums is much worse than for the
instantons, and this was the primary reason we
switched to a sphere. )

We collected histograms of the various two-
particle correlation functions as a function of
the (dimensionless) distance RT on the sphere
are normalized by dividing out the volume ele-
ment dV/d�

ij

⇠ sin2(�
ij

) corresponding to ran-
dom occupation on the S3 sphere. A sample of
the results for di↵erent values of N

f

and di↵er-
ent dyonic densities is shown in Fig. 2. One can
immediately identify a number of feature which
are common to all such correlation functions:

• repulsive correlation between identical
dyons,

• attractive interaction between, the dyon
and antidyon,

• the radius of the correlation decreases as
N

f

grows.
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range with 0.2 < �/T < 0.4. This way, we
identified constants Q and C with the quark
condensate and the Smilga-Stern constant, re-
spectively. The result of the fit is shown in
Fig.6. The nonzero condensate observed for the
N

f

= 1 and N
f

= 2 ensembles at high dyon
density is rather density-independent.

More systematic account for the finite-
volume e↵ects and more accurate determina-
tion of the condensate can be done by compar-

ing our data with the expectations for the so
called “mesoscopic regime”, in which the vol-
ume is not macroscopically large. Quantitative
predictions of the shape are known from chi-
ral random matrix models [35], which are well
confirmed on the lattice. We plan to do so else-
where.
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V. SIMULATION RESULTS

Simulations are performed according to the
standard MC algorithm, with one-by-one up-
dates of all the dyon positions on the S3 sphere
and an acceptance/rejection based on the stan-
dard Metropolis algorithm. The boldness of the
MC moves was adapted in order to obtain an
acceptance ratio between 50% and 80%.

We then estimate the number of subse-
quent configurations needed to achieve ther-
malization, by standard auto-correlation anal-
ysis based on the dyons’ position. Our typical
runs include a total of 256 independent (un-
correlated) configurations, obtained from 32 in-
dependent Markov chains, each consisting of
64000 Metropolis steps. All simulations were
performed on 32 processors on the Wiglaf clus-
ter located at the Interdisciplinary Laboratory
for Computational Science (LISC), at Trento.

A. The spatial correlations between dyons

One of the benefits of going from 4-d torus to
the S1 ⇥ S3 geometry is that in the latter case
the system is truly homogeneous. Also, on a
sphere the interparticle distance can be defined
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) is the angle between two points
defined via the scalar product of their unit po-
sition vectors on S3 and R is its radius. Study
of Coulomb fields on a sphere is given in the
Appendix.

(On a torus, there exist also distances to mul-
tiple images of charges, which were summed
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gence of such sums is much worse than for the
instantons, and this was the primary reason we
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particle correlation functions as a function of
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the results for di↵erent values of N

f
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ent dyonic densities is shown in Fig. 2. One can
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range with 0.2 < �/T < 0.4. This way, we
identified constants Q and C with the quark
condensate and the Smilga-Stern constant, re-
spectively. The result of the fit is shown in
Fig.6. The nonzero condensate observed for the
N

f

= 1 and N
f

= 2 ensembles at high dyon
density is rather density-independent.

More systematic account for the finite-
volume e↵ects and more accurate determina-
tion of the condensate can be done by compar-

ing our data with the expectations for the so
called “mesoscopic regime”, in which the vol-
ume is not macroscopically large. Quantitative
predictions of the shape are known from chi-
ral random matrix models [35], which are well
confirmed on the lattice. We plan to do so else-
where.
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D. Free energy, dyons’ interaction, the
back-reaction and confinement

The well known perturbative holonomy po-
tential, which has a minimum at zero holon-
omy, has been argued by Polyakov’s original
work to get cancelled by the nonperturbative
e↵ects, resulting in a vanishing Polyakov line
and thus confinement. Lattice study of the ef-
fective holonomy potential, in particularly re-
cent Ref.[36], have indeed found such behavior.
Diakonov [23] further argued that the nonper-
turbative contribution comes from the back re-
action of the dyons. He also argued that (at
least the Coulomb-like moduli part of) the dyon
interaction is small and can be approximately
ignored. In this section we make the first step
toward understanding of whether those ideas
are correct.

We calculate the change in the free energy of
the system, between the interacting and nonin-
teracting dyon gas using a standard thermody-
namic integration method, based on the adia-
batic switching of the interaction between the
particles. One splits the action into indepen-
dent particles and their interaction, introducing
the adiabatic parameter �

S = S
0

+ �S
int

(39)

and do simulations with � changing from 0 to 1.
The resulting free-energy is recovered as follows

F = F
0

+
Z

1

0

d� < S
int

> |
�

(40)
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FIG. 7: The dependence of the average interaction
free energy on the dimensionless adiabatic param-
eter �.

The resulting dependence of the action as a
function of the adiabatic parameter is shown
in Fig.7. Of course, we include all three ingre-
dients of the interaction, the moduli, screening
and the fermions, and measure them separately
as well: but for brevity we will not discuss those
details here.

As one simulates an ensemble with a fixed
number of dyons, one can disregard any con-
stant factors in the partition function, as the
relative weights of the ensemble configurations
depends only on terms which are functions of
the dyonic collective coordinates. This explains
why one has positive free-energy of the nonin-
teracting ensemble at � = 0, which is not really
physical and depends of what factors we do or
do not include in the free gas expression. To-
tal integrated free-energy change �F ⇡ �20T .
Note that a shift to negative values is typical for
liquids. The value itself is for the entire system
of 64 dyons: it thus corresponds to a free energy
change per particle of �F/N ⇡ �1/3 T , due to
the attraction in the system. To put it in per-
spective, one should know the action per dyon
on the lattice. We will discuss available lattice
data in the Appendix: the e↵ective action fitted
to those are about S ⇡ 3 per dyon. The result
of this section show that the average interaction
shift of the free energy per dyon is reasonably
small, ⇠ 1/10. On the other hand, the partition
function is enhanced by about exp(0.34) = 1.4
per dyon, not a so negligible enhancement.

As for the back reaction to the total holon-
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Simulations are performed according to the
standard MC algorithm, with one-by-one up-
dates of all the dyon positions on the S3 sphere
and an acceptance/rejection based on the stan-
dard Metropolis algorithm. The boldness of the
MC moves was adapted in order to obtain an
acceptance ratio between 50% and 80%.

We then estimate the number of subse-
quent configurations needed to achieve ther-
malization, by standard auto-correlation anal-
ysis based on the dyons’ position. Our typical
runs include a total of 256 independent (un-
correlated) configurations, obtained from 32 in-
dependent Markov chains, each consisting of
64000 Metropolis steps. All simulations were
performed on 32 processors on the Wiglaf clus-
ter located at the Interdisciplinary Laboratory
for Computational Science (LISC), at Trento.

A. The spatial correlations between dyons

One of the benefits of going from 4-d torus to
the S1 ⇥ S3 geometry is that in the latter case
the system is truly homogeneous. Also, on a
sphere the interparticle distance can be defined
by a scalar product
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) (33)

where cos(�
ij

) is the angle between two points
defined via the scalar product of their unit po-
sition vectors on S3 and R is its radius. Study
of Coulomb fields on a sphere is given in the
Appendix.

(On a torus, there exist also distances to mul-
tiple images of charges, which were summed
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instanton-based studies. However in the case
of dyons, with their long-range fields, conver-
gence of such sums is much worse than for the
instantons, and this was the primary reason we
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particle correlation functions as a function of
the (dimensionless) distance RT on the sphere
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) corresponding to ran-
dom occupation on the S3 sphere. A sample of
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ent dyonic densities is shown in Fig. 2. One can
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are common to all such correlation functions:
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• attractive interaction between, the dyon
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• the radius of the correlation decreases as
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range with 0.2 < �/T < 0.4. This way, we
identified constants Q and C with the quark
condensate and the Smilga-Stern constant, re-
spectively. The result of the fit is shown in
Fig.6. The nonzero condensate observed for the
N

f

= 1 and N
f

= 2 ensembles at high dyon
density is rather density-independent.

More systematic account for the finite-
volume e↵ects and more accurate determina-
tion of the condensate can be done by compar-

ing our data with the expectations for the so
called “mesoscopic regime”, in which the vol-
ume is not macroscopically large. Quantitative
predictions of the shape are known from chi-
ral random matrix models [35], which are well
confirmed on the lattice. We plan to do so else-
where.
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D. Free energy, dyons’ interaction, the
back-reaction and confinement

The well known perturbative holonomy po-
tential, which has a minimum at zero holon-
omy, has been argued by Polyakov’s original
work to get cancelled by the nonperturbative
e↵ects, resulting in a vanishing Polyakov line
and thus confinement. Lattice study of the ef-
fective holonomy potential, in particularly re-
cent Ref.[36], have indeed found such behavior.
Diakonov [23] further argued that the nonper-
turbative contribution comes from the back re-
action of the dyons. He also argued that (at
least the Coulomb-like moduli part of) the dyon
interaction is small and can be approximately
ignored. In this section we make the first step
toward understanding of whether those ideas
are correct.

We calculate the change in the free energy of
the system, between the interacting and nonin-
teracting dyon gas using a standard thermody-
namic integration method, based on the adia-
batic switching of the interaction between the
particles. One splits the action into indepen-
dent particles and their interaction, introducing
the adiabatic parameter �

S = S
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and do simulations with � changing from 0 to 1.
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The resulting dependence of the action as a
function of the adiabatic parameter is shown
in Fig.7. Of course, we include all three ingre-
dients of the interaction, the moduli, screening
and the fermions, and measure them separately
as well: but for brevity we will not discuss those
details here.

As one simulates an ensemble with a fixed
number of dyons, one can disregard any con-
stant factors in the partition function, as the
relative weights of the ensemble configurations
depends only on terms which are functions of
the dyonic collective coordinates. This explains
why one has positive free-energy of the nonin-
teracting ensemble at � = 0, which is not really
physical and depends of what factors we do or
do not include in the free gas expression. To-
tal integrated free-energy change �F ⇡ �20T .
Note that a shift to negative values is typical for
liquids. The value itself is for the entire system
of 64 dyons: it thus corresponds to a free energy
change per particle of �F/N ⇡ �1/3 T , due to
the attraction in the system. To put it in per-
spective, one should know the action per dyon
on the lattice. We will discuss available lattice
data in the Appendix: the e↵ective action fitted
to those are about S ⇡ 3 per dyon. The result
of this section show that the average interaction
shift of the free energy per dyon is reasonably
small, ⇠ 1/10. On the other hand, the partition
function is enhanced by about exp(0.34) = 1.4
per dyon, not a so negligible enhancement.

As for the back reaction to the total holon-
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Summary
• Nonzero <Polyakov loop> => instantons split into Nc instanton-

dyons (van Baal) which have electric and magnetic charges=> 
Coulomb plasma

• dion-antidyon repulsion => back reaction on holonomy 

=>L-M symmetry=> confinement 

• first simulation done, total free energy dyons+PGPY

• dyonic ZMZ and chiral restoration also 
calculated for Nf=0..4

• so we understand now why both needs large density of 
instanton-dyons, and why it grows with Nf ( so 
confinement shifts to stronger coupling, lower T etc)



“near-confinement” of the instanton-quarks	

(Diakonov et al)

6

sonably large, and it needs to be regulated: af-
ter all, a dyon is not a point charge and has
a finite size. In the present work, we adopt a
regulation based on the substitution

2
r
! 2p

r2 + a2

, (13)

where we have chosen in the simulation the
value of the cuto↵ parameter a = ⇡/T , leading
to vanishing measure for two identical dyons,
in the limit r ! 0 (to be referred to as “soft
core” ). This is in contrast with imposing that
the measure should vanish at some finite r, as
in the famous Attyah-Hitchin metric (to be re-
ferred to as “hard core”).

The configuration space of a multi-dyon
ensemble can be sampled with a standard
Metropolis-based MC algorithm. Within such
an approach, we shall not only enforce the
global positivity of the metric determinant, but
also we will require each eigenvalue of Ĝ to be
positive. This condition is becoming restrictive
at high dyon densities, i.e. when fraction of the
total volume filled by dyons is V T 3 ⇠ O(1),
eventually making the MC sampling of a very
dense dyon ensemble rather ine�cient. (This
kind of computational di�culty is well known,
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Note that we consider here neutral L�M pair
(i.e. the splitting of one instanton), as a result
of which their Coulomb potential cancels out at
large distances from the pair and the volume in-
tegral is convergent. Clearly, non-neutral con-
figurations cannot be treated this way.

We further note that the form (14) can be ob-
tained directly by the instanton screening term
calculated by Pisarski and Ya↵e [30] by recall-
ing that the instanton size ⇢ and the L � M
separation are related by the expression
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from all non-diagonal terms. Unless total neu-
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this integral is divergent at large distances. If
there is an overall neutrality, one can regulate
the sum term by term, by subtracting the cor-
responding (r-independent) divergency. Let us
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 =>electric/magnetic couplings (e/g) 
 must run in the opposite directions!    

Old good Dirac 
condition  

the  �equilibrium line� 

αs(el)= αs(mag) =1 
needs to be in the 
plasma phase 

  monopoles should be dense  enough and 
sufficiently weakly coupled before 
deconfinement to get BEC 

 =>αs(mag) < αs(el): how small 

can αs(mag)  be?  

αs(electric)  αs(magnetic)=1 
``magnetic scenario�: Liao,ES hep-ph/0611131,Chernodub+Zakharov  

αs(el) 

αs(mag) 
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lattice puzzle 	

(which worried me from around 2000)	


• (Gattringer et al): while quenched (pure YM) gauge 
ensembles show chiral restoration at T>TC for 
antiperiodic quarks, 	


• and yet, it is  not so for periodic quarks!                               
(not physical but need to be understood anyway. One can do arbitrary 
periodicity angle as well, and see a gradual transition as well)	


•  an instanton has one zero mode, whatever fermions one 
uses!	


• let me repeat, the ensemble is quenched, so no back reaction. It 
is the same gauge fields, and this makes the puzzle harder to 
solve


