Gauge topology and confinement: an update

Edward Shuryak Stony Brook (CPOD 2014, Bielefeld)

Our group's logo emphasizing our interest in topology

outline

- nonzero holonomy => instanton-dyons, interactions
- classical dyon-antidyon interaction (new R.Larsen+ES)
- back reaction to holonomy potential => confinement
 ES and T.Sulejmanpasic,arXiv:1305.0796, inspired by Poppitz, Schafer and Unsal,arXiv:1212.1238
- Numerical simulations of the dyon ensemble (new R.Larsen+ES)
- fermionic zero modes of the dyons, dyon-antidyon pairs ES and T.Sulejmanpasic,arXiv:1201.5624, R.Larsen and ES, in progress
- dyon ensemble+fermions => chiral symmetry breaking P.Faccioli+ES,archive 1301.2523Phys. Rev. D 87, 074009 (2013)

holonomy: P=>0 is the onset of confinement

$$L = \langle P \rangle = \langle \frac{1}{N_c} Tr Pexp(i \int d\tau A_0) \rangle$$
$$= e^{-F(quark)/T}$$

The Polyakov loop

L=I => A0=0 high T full QGP L=I/2 "semi-QGP" (Pisarski) L=>0 no quarks or onset of confinement

popular models like PNJL and PSM, make semi-QGP quantitative

The approximate width of the phase transition in thermodynamical quantities, energy and entropy is small, but P changes between Tc and 2Tc

TABLE I: The charges and the mass (in units of $8\pi^2/e^2T$) for 4 SU(2) dyons.

 terminology
 particle-monopoles, 3d particle-like objects with nonzero magnetic charge. Its Bose condensate makes ``dual superconductor'' and confinement. Not a solution in pure gauge, not to be discussed in this talk, though

=dyon (Diakonov et al, ES et al) instanton- *= monopole (Unsal et al) *=quark (Zhitnitsky et al)

the same object

(anti)selfdual 3dYM solution at nonzero holonomy with electric and magnetic charges, a constituent of the instanton. Not a particle=> no paths or condensates, Z is an integral over locations only

 terminology
 particle-monopoles, 3d particle-like objects with nonzero magnetic charge. Its Bose condensate makes ``dual superconductor'' and confinement. Not a solution in pure gauge, not to be discussed in this talk, though

instanton-*

*=dyon (Diakonov et al, ES et al)

*= monopole (Unsal et al)

the same

object *=quark (Zhitnitsky et al) (anti)selfdual 3dYM solution at nonzero holonomy with electric and magnetic charges, a constituent of the instanton. Not a particle=> no paths or condensates, Z is an integral over locations only

! in N=2 SYM (Seiberg-Witten theory) when both are under control, and can prove that stat.sum Z over particle-monopoles and instanton dyons are equal ! (being low and high-T approaches to the same physics)

 terminology
 particle-monopoles, 3d particle-like objects with nonzero magnetic charge. Its Bose condensate makes ``dual superconductor'' and confinement. Not a solution in pure gauge, not to be discussed in this talk, though

*=dyon (Diakonov et al, ES et al)

the same

*= monopole (Unsal et al) object *=quark (Zhitnitsky et al) (anti)selfdual 3dYM solution at nonzero holonomy

instanton-*

with electric and magnetic charges, a constituent of the instanton. Not a particle=> no paths or condensates, Z is an integral over locations only

! monopoles were used before to understand confinement

instantons were used to understand chiral breaking, and instanton-dyons seem to be able to do both!

on the lattice

Statmech of the dyons

$Z = \int \{dX_i\} e^{-S_c} \det G \det F_{zm} \frac{\det' F_{nzm}}{\sqrt{\det' B}}$

The moduli space metric (Atiyah, Hitchin, Diakonov)

in a dilute case provides electric and magnetic Coulomb with natural charges

If dense produces regularization and repulsive core Fermionic determimant in zero mode approximation (ES.Sulejmanpasic), only for L dyons if fermions are anti-periodic

The screening by the plasma (ES,Pisarski-Yaffe, Diakonov)

Statmech of the dyons

$$Z = \int \{ dX_i \} e^{-S_c} \det G \det F_{zm}$$

The moduli space metric (Atiyah,Hitchin,Diakonov)

in a dilute case provides electric and magnetic Coulomb with natural charges

If dense produces regularization and repulsive core Fermionic determimant in zero mode approximation (ES.Sulejmanpasic), only for L dyons if fermions are anti-periodic

 $\det' F_{nzm}$

 $\sqrt{\det' B}$

classical dyon-antidyon interaction was still unexplored!

The screening by the plasma (ES,Pisarski-Yaffe, Diakonov)

confinement (where the holonomy potential comes from?)

Holonomy potential and confinement from a simple model of the gauge topology

E. Shuryak^{1, *} and T. Sulejmanpasic^{2, †}

¹Department of Physics and Astronomy, Stony Brook University, Stony Brook 11794, USA ²Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

Close \overline{II} pairs correspond to weak fields, which cannot be treated semiclassically and should be subtracted from the semiclassical configurations. This physical idea has been implemented in the Instanton Liquid Model via an "excluded volume", which generates a repulsive core and stabilizes the density.

In a few important cases, in which the partition function is independently known, such subtraction can be performed exactly, without any parameters. The $\bar{I}I$ pair contribution to the partition function in QM instanton problem has been done via the analytic continuation in the coupling constant $g^2 \rightarrow -g^2$ by Bogomolny [14] and Zinn-Justin [15] (BZJ), who verified it via known semiclassical series. Another analytic continuation has been used by Balitsky and Yung [13] for supersymmetric quantum mechanics.

Recently Poppitz, Schäfer and Ünsal (PSU) [16, 17] used BZJ approach in the N = 1 Super-Yang-Mills theory on $R^3 \times S^1$, observing that the result obtained matches exactly the result derived via supersymmetry [18]. PSU papers are the most relevant for this work, as they focus on the instanton-dyons (referred to as v=<A0> is Higgs VEV
shifted and rescaled,
v=0 trivial limit (high T)
b=0 confining (T<Tc)</pre>

$$\frac{1}{2}\operatorname{Tr} P(x) = \cos\left(\frac{v(x)}{2T}\right) , \quad b = \frac{4\pi^2}{g^2}\left(\frac{v}{\pi T} - 1\right)$$

Similarly to electric holonomy Polyakov introduced magnetic one <C0>=sigma

unlike in the SUSY setting of PSU, non-SUSY theories have nonzero perturbative holonomy potential to be overcomed! In fact the excluded volume model works well for SU(2) YM

the density is deduced from calorons n(dyons)=(n(calorons))^(I/Nc) and is large enough to make second-order in density term do its work

the only parameter A is fixed from known Tc and has a reasonable size (including the Coulomb enhancement)

electric and magnetic screening masses are even factor 2 too large as compared to those from lattice propagators:

their ratio ME/MM is well reproduced

FIG. 2: The upper plot shows the effective potential $V_{eft}(b)/T$ (13) for $T/T_c = 0.8, 1, 1.5$ shown by the dashed, solid and dotdashed lines, respectively. The plot shows electric m_E/T and magnetic m_M/T screening masses versus temperature, indicated by the solid and dashed lines, respectively. Thick lines are our model, the data points are from lattice propagators [26], the lines connecting data points are shown simply for their identification.

predictions: densities of the M and L dyons

crosses:"unidentified topological objects", an upper limit

circles: identified M

L dyon size is very small and measuring <P> at its center is hard, as well as E and M charges: not done yet

FIG. 3: Prediction of the model for the temperature dependence of the density of the instanton-dyons are shown by the lines, those with solid and dashed lines are for M, L type dyons, respectively. Open (filled) circles show identified Mtype dyons from ref. [19] ([20]). The crosses show "unidentified topological objects" from [19]. Circles and crosses provide the lower and the upper bound for the dyon density.

Classical interactions of the instanton-dyons with antidyons

Rasmus Larsen and Edward Shuryak

Department of Physics and Astronomy, Stony Brook University, Stony Brook NY 11794-3800, USA

Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological constituents of the instantons at nonzero temperature and holonomy. While the interaction between instanton-dyons have been calculated to one-loop order by a number of authors, that for dyonantidyon pairs remains unknown even at the classical level. In this work we are filling this gap, by performing gradient flow calculations on a 3d lattice. We start with two separated and unmodified objects, following through the so called "streamline" set of configurations, till their collapse to perturbative fields.

M Mbar pair on a 3d lattice (not periodic) start with a "combed" sum ansatz and then do action gradient flow =>"streamline configurations" found, total magnetic charge =0 => only Dirac string is left total electric charge =2 (unlike instanton-antiinstanton pair) => massive charged gluons leave the box

Let us remind that the gauge action can be expressed in terms of the 3-dimensional action

$$S = \frac{1}{g^2} \int_0^{1/T} dx_4 S_3 = \frac{S_3}{g^2 T}$$
(25)

which itself scales as $S_3 \sim v$: thus the M dyon action is $\sim v/T$. We do not care about T and the gauge coupling g since it is just an overall factor in the action, and work with the S_3 itself. Furthermore, since our classical 3d theory is invariant under the transformation $A_{\mu} \rightarrow vA_{\mu}$ and $r \rightarrow vr$, the absolute units are unimportant and we can work with v = 1.

The gradient flow process was found to proceed via the following stages:

(i) *near initiation*: starting from relatively arbitrary ansatz one finds rapid disappearance of artifacts and convergence toward the streamline set

(ii) following the *streamline itself*. The action decrease at this stage is small and steady. The dyons basically approach each other, with relatively small deformations: thus the concept of an interaction potential between them makes sense at this stage

(iii) a *metastable state* at the streamline's end: the action remains constant, evolution is very slow and consists of internal deformation of the dyons rather than further approach

(iv) *rapid collapse* into the perturbative fields plus some (pure gauge) remnants

FIG. 2: Action for v = 1 as a function of computer time (in units of iterations of all links) for a separation $|r_M - r_{\bar{M}}|v = 0$, 2.5, 5, 7.5, 10 between the M and \bar{M} dyon from right to left in the graph. The action of two well separated dyons is 23.88.

a stream, a pool, and then waterfall observed

FIG. 5: Action density along the z axis in natural units for a separation $|r_M - r_{\bar{M}}|v| = 10$ between the center of the 2 dyons. The configuration with the maximums furthest from each other is the start configuration. After 3000 steps it has moved further towards the center. At 12000 steps the configuration has reached the metastable configuration with a separation between the maximums of around 4. At 13700 the configuration has collapsed around halfway, and will continue to shrink until the action is 0. Times are as shown in Fig. 2.

Electric and magnetic charges

FIG. 7: Electric charge for v = 1 as a function of computer time (in units of iterations of all links) for a separation $|r_M - r_{\overline{M}}|v = 5$ between the dyons. The electric charge is found from a box of size 62^3 , 46^3 , 30^3 and 14^3 points each centered at the center. The electric charge is biggest for 62^3 . Total lattice size is 64^3 points.

Interacting Ensemble of the Instanton-dyons and Confinement in SU(2) Gauge Theory

Rasmus Larsen and Edward Shuryak Department of Physics and Astronomy, Stony Brook University, Stony Brook NY 11794-3800, USA

Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological constituents of the instantons at nonzero temperature and holonomy. We perform numerical simulations of the ensemble of interacting dyons for SU(2) pure gauge theory, and calculate its free energy as a function of the holonomy and the dyon density. We observe that at the dyon density grows, its minimum moves from zero to a value corresponding to confinement.

The instanton-dyons are placed on the 3-dimensional sphere S³ and their coordinates are updated with the Metropolis algorithm. **new element is the inclusion of the leading order dyonantidyon interaction**

new account for Debye screening

evaluation of the total free energy, including $P_{GPY}(v)$

$$\Delta S_{D\bar{D}} = -\frac{\nu 102.25}{g^2} \frac{(x-0.907)^2}{x^3+15.795}$$
(2)

$$x = 2\pi T \nu r$$
(3) $-2 \int d^3 r \frac{e^{-M_D r_1}}{r_1} \frac{e^{-M_D r_2}}{r_2} = -\frac{2\pi}{M_D} e^{-2M_D r_{12}}$

for distances larger than x > 4. For x smaller than 4 we have a core which we describe by

$$\Delta S_{D\bar{D}} = \frac{\nu V_0}{1 + \exp(-(x - 4))} \tag{4}$$

FIG. 1: Total free energy as a function of holonomy ν . Green, brown, red and blue (top to bottom at the r.h.s.) curves are for increasing density of the dyons, $n_d = 0.605, 0.207, 0.0944, 0.0507$ respectively.

projections: 1/2 S3 sphere

low density pairs (calorons) are visible

Chiral symmetry breaking and ZMZ

zero density of states (0) => zero quark condensate ``insulator'' at high T

density of states (0) =>
nonzero quark condensate
``conductor'' at low T

chiral symmetry transition is thus understood in a ``single-body'' language as conductor-insulator transition in 4d

the width of the ZMZ is surprisingly small

the magnitude of the hopping from one instanton to the next can be estimated as

$$T_{I\bar{I}} \sim \frac{\rho^2}{R^3} \sim \frac{(0.3fm)^2}{(1fm)^3} \sim 20MeV$$

the width of the ZMZ is surprisingly small

the magnitude of the hopping from one instanton to the next can be estimated as

$$T_{I\bar{I}} \sim \frac{\rho^2}{R^3} \sim \frac{(0.3fm)^2}{(1fm)^3} \sim 20MeV$$

 that is why quark mass dependence is nontrivial when m is of this order, and chiral perturbation extrapolations are not as good as people hoped!

recently the opposite exercise was done by the Graz

group Symmetries of hadrons after unbreaking the chiral symmetry

L. Ya. Glozman,^{*} C. B. Lang,[†] and M. Schröck[‡]

Institut für Physik, FB Theoretische Physik, Universität Graz, A-8010 Graz, Austria

By eliminating ZMZ strip with width sigma (about 50 modes or 10^-4 of all) one changes masses O(1): near-perfect chiral pairs are left

FIG. 13. Summary plots: Baryon (l.h.s.) and meson (r.h.s.) masses as a function of the truncation level.

recently the opposite exercise was done by the Graz

group Symmetries of hadrons after unbreaking the chiral symmetry

L. Ya. Glozman,^{*} C. B. Lang,[†] and M. Schröck[‡]

Institut für Physik, FB Theoretische Physik, Universität Graz, A-8010 Graz, Austria

By eliminating ZMZ strip with width sigma (about 50 modes or 10^-4 of all) one changes masses O(1): near-perfect chiral pairs are left

FIG. 13. Summary plots: Baryon (l.h.s.) and meson (r.h.s.) masses as a function of the truncation level.

Isoscalar mesons upon unbreaking of chiral symmetry

M. Denissenya,^{*} L.Ya. Glozman,[†] and C.B. Lang[‡] Institute of Physics, University of Graz, A-8010 Graz, Austria

In a dynamical lattice simulation with the overlap Dirac operator and $N_f = 2$ mass degenerate quarks we study all possible J=0 and J=1 correlators upon exclusion of the low lying "quasi-zero" modes from the valence quark propagators. After subtraction of a small amount of such Dirac eigenmodes all disconnected contributions vanish and all possible point-to-point J=0 correlators with different quantum numbers become identical, signaling a restoration of the $SU(2)_L \times SU(2)_R \times U(1)_A$. The original ground state of the π meson does not survive this truncation, however. In contrast, in the I=0 and I=1 channels for the J=1 correlators the ground states have a very clean exponential decay. All possible chiral multiplets for the J=1 mesons become degenerate, indicating a restoration of an SU(4) symmetry of the dynamical QCD-like string.

FIG. 4: Ratios of disconnected and connected J = 0 correlators, k = 0, 2, 30.

all Ua(1) breaking disappear after ZMZ is eliminated

FIG. 5: π , σ , a_0 , η correlators upon exclusion of the near-zero modes, k = 0, 30.

density

PHYSICAL REVIEW D 87, 074009 (2013)

QCD topology at finite temperature: Statistical mechanics of self-dual dyons

Pietro Faccioli^{1,2} and Edward Shuryak³

¹Physics Department, Trento University, Via Sommarive 14, Povo, Trento I-38100, Italy ²Gruppo Collegato di Trento, Istituto Nazionale di Fisica Nucleare, Via Sommarive 14, Povo, Trento I-38100, Italy ³Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA (Received 27 January 2013; published 9 April 2013)

Topological phenomena in gauge theories have long been recognized as the driving force for chiral symmetry breaking and confinement. These phenomena can be conveniently investigated in the semiclassical picture, in which the topological charge is entirely carried by (anti-)self-dual gauge configurations. In such an approach, it has been shown that near the critical temperature, the nonzero expectation value of the Polyakov loop (holonomy) triggers the "Higgsing" of the color group, generating the splitting of instantons into N_c self-dual dyons. A number of lattice simulations have provided some evidence for such dyons, and traced their relation with specific observables, such as the Dirac eigenvalue spectrum. In this work, we formulate a model, based on one-loop partition function and including Coulomb interaction, screening and fermion zero modes. We then perform the first numerical Monte Carlo simulations of a statistical ensemble of self-dual dyons, as a function of their density, quark mass and the number of flavors. We study different dyonic two-point correlation functions and we compute the Dirac spectrum, as a function of the ensemble diluteness and the number of quark flavors.

Coulomb +-

Nf

fermions

density

PHYSICAL REVIEW D 87, 074009 (2013)

QCD topology at finite temperature: Statistical mechanics of self-dual dyons

Pietro Faccioli^{1,2} and Edward Shuryak³

¹Physics Department, Trento University, Via Sommarive 14, Povo, Trento I-38100, Italy ²Gruppo Collegato di Trento, Istituto Nazionale di Fisica Nucleare, Via Sommarive 14, Povo, Trento I-38100, Italy ³Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA (Received 27 January 2013; published 9 April 2013)

Topological phenomena in gauge theories have long been recognized as the driving force for chiral symmetry breaking and confinement. These phenomena can be conveniently investigated in the semiclassical picture, in which the topological charge is entirely carried by (anti-)self-dual gauge configurations. In such an approach, it has been shown that near the critical temperature, the nonzero expectation value of the Polyakov loop (holonomy) triggers the "Higgsing" of the color group, generating the splitting of instantons into N_c self-dual dyons. A number of lattice simulations have provided some evidence for such dyons, and traced their relation with specific observables, such as the Dirac eigenvalue spectrum. In this work, we formulate a model, based on one-loop partition function and including Coulomb interaction, screening and fermion zero modes. We then perform the first numerical Monte Carlo simulations of a statistical ensemble of self-dual dyons, as a function of their density, quark mass and the number of flavors. We study different dyonic two-point correlation functions and we compute the Dirac spectrum, as a function of the ensemble diluteness and the number of quark flavors.

Coulomb +-

Nf

fermions

← density

PHYSICAL REVIEW D 87, 074009 (2013)

QCD topology at finite temperature: Statistical mechanics of self-dual dyons

Pietro Faccioli^{1,2} and Edward Shuryak³

¹Physics Department, Trento University, Via Sommarive 14, Povo, Trento I-38100, Italy ²Gruppo Collegato di Trento, Istituto Nazionale di Fisica Nucleare, Via Sommarive 14, Povo, Trento I-38100, Haly ³Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA ⁴⁰⁰⁰ (Received 27 January 2013; published 9 April 2013)

Topological phenomena in gauge theories have long been recognized as the driving force for chiral symmetry breaking and confinement. These phenomena can be conveniently investigated in the semiclassical picture, in which the topological charge is entirely carried by (anti-)self-dual gauge configurations. In such an approach, it has been shown that near the critical temperature, the nonzero expectation value of the Polyakov loop (holonomy) triggers the "Higgsing" of the color group, generating the splitting of instantons into N_c self-dual dyons. A number of lattice simulations have provided some evidence for such dyons, and traced their relation with specific observables, such as the Dirac eigenvalue spectrum. In this work, we formulate a model, based on one-loop partition function and including Coulomb interaction, screening and fermion zero modes. We then perform the first numerical Monte Carlo simulations of a statistical ensemble of self-dual dyons, as a function of their density, quark mass and the number of flavors. We study different dyonic two-point correlation functions and we compute the Dirac spectrum, as a function of the ensemble diluteness and the number of quark flavors.

FIG. 2: The correlation function for LM, LL and $L\bar{L}$ dyons versus distance, normalized to the volume available. From top to bottom we show $N_f = 1, 2, 4$, respectively. Left/right columns are for the volumes per dyon $VT^3 = 0.31, 1.04$.

per 64 dyons

 Nonzero <Polyakov loop> => instantons split into Nc instantondyons (van Baal) which have electric and magnetic charges=> Coulomb plasma

- Nonzero <Polyakov loop> => instantons split into Nc instantondyons (van Baal) which have electric and magnetic charges=> Coulomb plasma
- dion-antidyon repulsion => back reaction on holonomy
 =>L-M symmetry=> confinement

- Nonzero <Polyakov loop> => instantons split into Nc instantondyons (van Baal) which have electric and magnetic charges=> Coulomb plasma
- dion-antidyon repulsion => back reaction on holonomy
 =>L-M symmetry=> confinement
- first simulation done, total free energy dyons+PGPY

- Nonzero <Polyakov loop> => instantons split into Nc instantondyons (van Baal) which have electric and magnetic charges=> Coulomb plasma
- dion-antidyon repulsion => back reaction on holonomy
 =>L-M symmetry=> confinement
- first simulation done, total free energy dyons+PGPY
- dyonic ZMZ and chiral restoration also calculated for Nf=0..4

- Nonzero <Polyakov loop> => instantons split into Nc instantondyons (van Baal) which have electric and magnetic charges=> Coulomb plasma
- dion-antidyon repulsion => back reaction on holonomy
 =>L-M symmetry=> confinement
- first simulation done, total free energy dyons+PGPY
- dyonic ZMZ and chiral restoration also calculated for Nf=0..4
- so we understand now why both needs large density of instanton-dyons, and why it grows with Nf (so confinement shifts to stronger coupling, lower T etc)

"near-confinement" of the instanton-quarks (Diakonov et al)

In SU(2): thermal quanta in QGP scatter on the instanton and generate linear potential

We further note that the form (14) can be obtained directly by the instanton screening term calculated by Pisarski and Yaffe [30] by recalling that the instanton size ρ and the L - Mseparation are related by the expression

$$\pi \rho^2 T = r_{ML}. \tag{17}$$

which relates the "4-d dipole" of the instanton field to the "3-d dipole" of the dyon LM pair made of opposite charges.

 $V_{12} \sim \langle (A_4)^2 \rangle = \int d^3x \left| \frac{1}{r_L} - \frac{1}{r_M} \right|^2 = 4\pi r_{LM}$ In SU(Nc): instanton=baryon linear potential => perimeter of a polygon

$$V \sim M_D^2 \sum_{i=1,N_c} |r_{i,i+1}|$$

"near-confinement" of the instanton-quarks (Diakonov et al)

In SU(2): thermal quanta in QGP scatter on the instanton and generate linear potential

thermal

 $V_{12} \sim \langle (A_4)^2 \rangle = \int d^3x \left| \frac{1}{r_L} - \frac{1}{r_M} \right|^2 = 4\pi \ r_{LM}$ We further note that the form (14) can be obtained directly by the instanton screening term calculated by Pisarski and Yaffe [30] by recalling that the instanton size ρ and the L - Mseparation are related by the expression

$$\pi \rho^2 T = r_{ML}. \tag{17}$$

which relates the "4-d dipole" of the instanton field to the "3-d dipole" of the dyon LM pair made of opposite charges.

$V \sim M_D^2 \sum |r_{i,i+1}|$ $i=1.N_c$

In SU(Nc): instanton=baryon

linear potential => perimeter of a

polygon

not really a confinement as A0 is massive,

"near-confinement" of the instanton-quarks (Diakonov et al)

In SU(2): thermal quanta in QGP scatter on the instanton and generate linear potential

therma

 $V_{12} \sim \langle (A_4)^2 \rangle = \int d^3x \left| \frac{1}{r_L} - \frac{1}{r_M} \right|^2 = 4\pi \ r_{LM}$ We further note that the form (14) can be obtained directly by the instanton screening term calculated by Pisarski and Yaffe [30] by recalling that the instanton size ρ and the L - Mseparation are related by the expression

$$\pi \rho^2 T = r_{ML}. \tag{17}$$

which relates the "4-d dipole" of the instanton field to the "3-d dipole" of the dyon LM pair made of opposite charges.

$$V \sim M_D^2 \sum_{i=1,N_c} |r_{i,i+1}| e^{-M_D r}$$

In SU(Nc): instanton=baryon

linear potential => perimeter of a

polygon

not really a confinement as A0 is massive,

lattice puzzle (which worried me from around 2000)

lattice puzzle

(which worried me from around 2000)

- (Gattringer et al): while quenched (pure YM) gauge ensembles show chiral restoration at T>T_c for antiperiodic quarks,
- and yet, it is not so for periodic quarks!
 (not physical but need to be understood anyway. One can do arbitrary periodicity angle as well, and see a gradual transition as well)
- an instanton has one zero mode, whatever fermions one uses!
- let me repeat, the ensemble is quenched, so no back reaction. It is the same gauge fields, and this makes the puzzle harder to solve