RHIC initial conditions with the QCD sphalerons:

a reduced shadowing and enhanced jet quenching

Edward Shuryak, Stony Brook

- "Small gluonic spots" in DIS and diffraction
- The instanton/sphaleron mechanism of high energy collisions (pp, DIS $\gamma^{*} p$, double DIS $\gamma^{*} \gamma^{*}$)
- AA collisions (at RHIC): a CGC with a topological structure?
- => prompt quark production
- = reduced shadowing due to "lumpy glue"
- => enhanced jet quenching due to stronger field

The remaining puzzle of the "initial state" at RHIC ($\tau \sim .5-1 \mathrm{fm}$):
$\frac{d N}{d y}{ }^{\text {"minijets" }}(y=0) \sim 1000$ estimated from the jet quenching, which matches the total entropy at the end $=>$ ideal hydro with the conserved entropy.

All fits together well
But where does such large parton density come from?

HIJING and other perturbative parton cascades (analytic and numeric) show that hard collisions lead to $1 / 10$ th of that, and time of several fm is needed to get to the QGP with such entropy. This seems to contradict to the elliptic flow data!

- Color Glass Condensate (CGC): due to high parton density at small $x=>$ large occupation numbers $=>$ classical YM field $=>$ nonperturbative dynamics
McLerran-Venugopalan model: a saturated random Gaussian field.
Venugopalan,Krasnitz et al: explosive behavior, $\mathbf{1 / 2}$ gluons gets physical
small perturbative quark production
- The CGC can also be made of topological clusters sphalerons, or interrupted instantons. (A jump from under the barrier on the barrier.) Leads to prompt production of quarks: $\bar{u} u \bar{d} d \bar{s} s$ produced per cluster, plus few gluons: Maybe this is the Rapid Entropy Generator we badly need

Semiclassical Theory of High Energy Collisions based on Instantons and Sphalerons

- ''pomeron from instantons', :

ES, Zahed PRD62:085014, 2000 hep-ph/0005152
D. E. Kharzeev, Y. V. Kovchegov and E. Levin Nucl. Phys. A 690,

621 (2001) [hep-ph/0007182].
M. A. Nowak, ES and Zahed, PRD 64, 034008 (2001) [hep-ph/0012232].
G.W.Carter,D.Ostrovsky and ES, Phys. Rev. D 65, 074034 (2002) [hep-ph

- the turning states and their explosion
D.Ostrovsky, G.W.Carter and ES, hep-ph/0204224, PRD
-Landau method for cross section - rescaled YM sphalerons are producec
D. Diakonov and V. Petrov, Phys. Rev. D 50, 266 (1994) R. A. Janik, ES and Zahed, hep-ph/0206005.
-Explicit solution of the Dirac eqn in the exploding field background an end of ''the fermion puzzle''?

ES and Zahed, hep-ph/0206022.
-Gluonic cluster production in double-Pomeron processes (e.g. pp-> $p p \eta^{\prime} ; p p f_{0}(1600), p p+$ cluster $)$ compared to data; ES and Zahed, 2002

- Instanton-induced Double DIS $\left.\gamma^{*} \gamma^{*}\right)$ ES and Zahed,2003

Earlier developments:

- (Baryon-number violating) instanton-induced processes in electroweak theory A.Ringwald, Nucl.Phys. B330 (1990) 1, O.Espinosa, Nucl.Phys. B343 (1990) 310; L.McLerran, A.Vainshtein V.I.Zakharov, A.Muller, M.Maggiore and M.Shifman, : extremely insightful works, but the effect is too small to be seen!
- Instanton is the only nontrivial field for which straight Wilson lines can be easily analytically calculated
$\int \tau^{a} A_{\mu}^{a} d x_{\mu} \sim\left(\tau^{a} \eta_{\mu \nu}^{a} e_{\nu}^{t} e_{\mu}^{l}\right) \int F\left(x^{2}\right) d t$
- The trick with rotating cross section to Minkowski seem to work perturbatively and in general (Meggiolaro): we tried it for instantor
- Soft Pomeron with '(instanton ladder') provides reasonable intercept and slope \bullet No Odderon SU(3) allows for a colorless combination of 3 gluons.
Perturbatively, the odderon/pomeron ratio is $O\left(\alpha_{s}\right)$ and not as suppressed as the data shows. Instantons are SU(2) beasts and do not allow it.

Double-DIS $\gamma^{*} \gamma^{*}$ (Next linear collider?)

About the same small gluonic spot without any nucleon

ES,I.Zahed hep-ph/0307103, PRD in press
Two dipoles cross the instanton, the angle is changed to $i y$ at the end of the calculation
$\sigma \quad \sim \quad d_{1}^{2} d_{2}^{2}$ times the dimensionless function of the three 2 -d vector
variables $\mathbf{I}(\overrightarrow{d 1} / \rho, \overrightarrow{d 2} / \rho, \vec{b} / \rho)$
explicitly given and
tabulated: see b-profile

Semiclassical Double-Pomeron Production of Glueballs, η^{\prime} and clusters

ES and I.Zahed,Phys.Rev. D68 (2003) 034001

Pomeron-Pomeron into cluster, cross section from UA8 collaboration: heavy gluonic clusters with isotropic decay.

(a)
 section on the azimuthal angle ϕ (between two kicks to two protons), not expected from standard Pomeron phenomenology.

(b)

(d) What are they?

Note: a cross section that is an order of magnitude larger than the one predicted by Pomeron factorization

WA102 collaboration at CERN, pp Double-Pomeron into identified central hadron: strong dependence of the cross we get $\cos ^{2}(\phi)$ for $\mathrm{P}=+$ and $\sin ^{2}(\phi)$ for $P=-1$.

Quantum Mechanics of the tunneling glue

- The energy of Yang-Mills field versus the
Chern-Simons number $N_{C S}=\int d^{3} x K_{0}$
is a periodic function, with zeros
at integer points.
- The instanton (the lowest dashed line) describes tunneling between vacua. It is a path at $E=0$, it starts and ends at no field strength - If energy is deposited, the paths (the dashed lines) goes up and emerge from ''under the barrier'' into real (Minkowskian) world at the turning points, where momenta (in the $A_{0}=0$ gauge) " $\vec{p}^{\prime \prime}=$ $\frac{d \vec{A}}{d t}=\vec{E}=0=>$ the field is magnetic
- Real time motion outside the barrier (shown by horizontal dotted lines) $=>$ explosions
-The maximal cross section corresponds to the top of the barrier, called the sphaleron =' 'ready to fall'' in Greek, according to Klinkhammer and Manton

The Turning States from Constrained Minimization

- What is the minimal potential energy of static Yang-Mills field, consistent with the constraints:
(i) the given value of
(corrected) Chern-Simons number.
(ii) the given value of
the r.m.s. size $<r^{2}>=$
$\int d^{3} x r^{2} \mathcal{B}^{2} / \int d^{3} x \mathcal{B}^{2}$
- Solution (found by D.Ostrovsky) is a ball made of three magnetic gluon fields (out of 8 in $S U(3)$) rotated around x, y, z axes $B^{2} / 2=24\left(1-\kappa^{2}\right)^{2} \rho^{4} /\left(r^{2}+\rho^{2}\right)^{4}$ $E_{\text {stat }}=3 \pi^{2}\left(1-\kappa^{2}\right)^{2} /\left(g^{2} \rho\right) \tilde{N}_{C S}=\operatorname{sign}(\kappa)(1-|\kappa|)^{2}(2+|\kappa|) / 4$. Eliminating κ one gets the topological potential energy, $\kappa=0$ gives the sphaleron

Explosion of the Turning States

- Solved both numerically (G.Carter) and analytically (by D.Ostrovsky based on work by Luescher and Schehter from 1977 which can also be via conformal transformation -Zahed)
- Sphalerons at $t=0=>$ (at large t) into a spherical transverse wave $4 \pi e(r, t)=\frac{8 \pi}{g^{2} \rho^{2}}\left(1-\kappa^{2}\right)^{2}\left(\frac{\rho^{2}}{\rho^{2}+(r-t)^{2}}\right)^{3}$
(i) happens in short time
$\sim \rho \sim 1 / 3 \mathrm{fm}$
(ii) about half gluons survive
(iii) quasi-thermal
all like in Venugopalan et
al transverse lattice
solution for random glue spectrum

Quark production puzzle

-The puzzle - from electroweak sphaleron decay
J. Zadrozny, Phys. Lett. B284 (1992) 88; M. Hellmund and J. Kripfg

Nucl. Phys. B373 (1992) 749.
Chern-Simons number change is NOT an integer, while quark level motion can only happen in integers.

Few papers by well known people, not much progress..

- ES+Zahed: new solution to the Dirac equation in exploding backgrour obtained by inversion of the fermionic $O(4)$ zero mode of $0(4)$ symmetric solution.
It explicitly shows how the quark acceleration occurs, starting from zero energy at $t=0$ to the final spectrum
- The sphalerons produce one level crossing $N_{F} \overline{\mathbf{L}} \mathbf{R}$ quarks, and the antisphaleron-like clusters the chirality opposite.

Some unsatisfied theorists should ask how one can generalize index theorems, so that the number of level crossing would be calculable directly from the gauge field itself, without the explicit solution of the Dirac eqn. We dont know how.
''Small gluonic spots') in DIS and diffraction

- myths of 1970's: all glue in the nucleon is radiated off the valence quarks, by DGLAP/BFKL pert.process - Not true at all:
(i) there is a lot of glue even at low normalization $\mu \sim 1 G e V$ (ii), most important, its $R_{\text {r.m.s. }} \sim$.3-. 4 fm is smaller than for quarks. Obviously a glue cannot be radiated from quarks as size never decreases in a random walk

Snapshots of the nucleon: ''large pizza') vs '‘small gluon spot' ${ }^{\prime}$

The empirical sources of this information:

- The pomeron is a small-size object, its formfactor is found to be harder than $F_{e m}$ (Lanshoff et al fits in 1980's)
- the profile $T(b)$ was also determined from HERA diffractive DIS $\gamma^{*} p \rightarrow J / \psi+\ldots$ Kopeliovich 2001,Kowalski and Teaney 2003 (T(b) is derived from the Fourier transform over t)

The size is $R_{g} \sim 1 / 3 f m \approx \rho_{\text {instanton }}$

Consequences for Heavy Ion Collisions:
enhanced shadowing in pp
but reduced nuclear shadowing

Kowalski and Teaney, hep-ph/0304189: diffractive vector-meson t-distributions can be described by $\frac{d \sigma_{V M}^{\gamma^{*} p}}{d t} \propto \exp (-B|t|)$. $=>T_{G}(b)=\frac{1}{2 \pi B_{G}} \exp \left(-b^{2} / 2 B_{G}\right), B_{G}=$ $4.25 \mathrm{GeV}^{-2}$

The transverse density $A T_{A}(b)$ for several light nuclei compared to the proton transverse profile, $T_{p}(b)$.

The differential crosssection for exclusive diffractive J / ψ production as a function of t for representative bins in W [?]. The solid (dashed) lines show the results of the IP saturation model assuming 2 parameterizations

Small gluon spot is also needed to get the nonlinear evolution going, and to get the needed deviations from BFKL: Levin, Lublinsky et al fitted HERA pdfs with the best fitted $R_{N}^{g} \approx .35 \mathrm{fm}$ Levin, Lublinsky hep-ph/0308279: a modified evolution eqn:

$$
\kappa_{A}(b)=\pi R_{N}^{2} S_{A}(b) \quad \frac{d N_{A}}{d Y}=\operatorname{Ker} \otimes\left[N_{A}-\frac{1+\kappa_{A}}{\kappa_{A}} N_{A}^{2}\right]
$$

Large $\kappa_{A}(b)$ is the same, small $\kappa_{A}(b)$ enhances the second term, $N_{A}=\kappa_{A} N_{N}$ with N_{N} being a solution of BK eqn for a nucleon target

Enhanced Jet Quenching by QCD synchrotron-like radiation

ES and Zahed, Phys.Rev.D67:054025,2003, hep-ph/0207163

- synchrotron-like radiation in QCD generalizing Schwinger's treatment

Jet quenching in Color Glass Condensate the energy loss of a quark during the CGC time period $\Delta t_{C G C}$

$$
\frac{\Delta E_{C G C}}{E} \approx .3\left(\frac{H}{1 G e V^{2}}\right)^{2 / 3}\left(\frac{\Delta t_{C G C}}{.5 f m}\right)\left(\frac{1 G e V}{E}\right)^{1 / 3}
$$

The gluon loss is about twice that.

- Jet Quenching on the Exploding Sphalerons At $\mathrm{t}=0$ sphalerons form a dilute gas and thus cannot affect most of the jets. This however must happen later: exploding shells
$=>$ foam-like structure at
$t=.6-.8 \mathrm{fm}$

$$
\frac{\Delta E_{\text {clust }}}{E} \approx .21\left(\frac{H}{.2 G e v^{2}}\right)^{2 / 3}\left(\frac{1 G e V}{E}\right)^{1 / 3}
$$

As usual, the gluon energy loss is about twice larger

Conclusions

- The glue in the nucleon, a'‘small gluon spot'’, is due to prompt excitation of a topological glue in the vacuum, instantons which dominate the quark condensate and a lot of hadronic physics
- Semiclassical theory of high energy pp, DIS etc is being developed, complementing pQCD approaches (DGLAP/BFKL) at the scale $Q^{2}<$ several G $=>$ new soft pomeron
- Heavy Ions: CGC with a topological structure?
- = $>$ prompt quark production may generate enough entropy
- =>saturation in pp but reduced nuclear shadowing
- $=>$ strongly enhanced jet quenching?

$$
88
$$

New "explosive" scenario in brief

- Tunneling under the topological barrier is described by instantons. Leads to non-zero $<\bar{q} q>\sim 5$ pairs $/ \mathrm{fm}^{3}$ compare to ~ 0.5 quarks/fm ${ }^{3}$ in nuclear matter
- High energy collisions interrupt tunneling and make virtual fields real, in form of specific gluomagnetic objects or the Turning States (generalizing sphalerons of electroweak theory)
- Those clusters have $M \sim 3 G e V$ and are very explosive: they decay into a thin spherical shell of coherent E and B.
- In hh collisions they hadronize, but in AA they produce ~ 3 gluons
+ $\bar{u} u \bar{d} d \bar{s} s$
- Many such clusters (up to 400) are produced in (central) AuAu - (early entropy). Decay products have quasi-thermal spectrum and nearly exactly match the equilibrium QGP composition
- Jets fly through those spherical shells and get a kick from its coherent field and radiate: early jet quenching

Forced Tunneling
and Instanton-Antiinstanton configurations

- Two different views on Instanton-antiinstanton configurations. One: such fields occur in the YM vacuum and describe a virtual path over the barrier but ends up in the same well ($\delta Q=0$). - Another:the corresponding action would rather control the probabilit of transition

$$
P \sim|<0| M \mid \text { turning }_{\text {s }} \text { tate }>\left.\right|^{2}
$$

into turning states excited from the vacuum by some external force. $D_{\mu} G_{\mu \nu}=j_{\nu}^{e x t}$. - Simple sum of instanton and anti-instanton A_{μ} in singular gauge -- known as the sum ansatz -- has many bad qualities such as infinite fields at the centers • the so called ratio ansatz
(ES-1988) is better: for identical sizes and orientations is

$$
g A_{a \mu}^{r a t i o}(x)=\frac{2 \eta_{a, \mu, \nu} y_{1}^{\nu} \rho^{2} / y_{1}^{2}+2 \bar{\eta}_{a, \mu, \nu} y_{2}^{\nu} \rho^{2} / y_{2}^{2}}{1+\rho^{2} / y_{1}^{2}+\rho^{2} / y_{2}^{2}}
$$

- These trial functions are simple enough to have analytic expressions for the field strength, see fig.

Instanton-antiinstanton configurations. (a) A schematic picture in the Euclidean space-time. The vertical thick line, $t=0$, corresponc
to the location of the turning state. It also display the definition of inter-center distance T. (b) Actual distribution along the time axis of $2 \vec{B}^{2}, 2 \vec{E}^{2}, 2 \vec{B} \vec{E}$ for the ratio ansatz, $\mathrm{T}=\rho$, shown by the solid, dashed and short-dashed lines respectively. The curve for $\vec{B} \vec{E}$ is the only one which is $\mathrm{t}=$ odd. above. - Due to $t \rightarrow-t$ symmetry, quantities which are odd under this transformation (like A_{0} or electric field $G_{0 m}$) should naturally vanish at t=0 3-plane the resulting purely magnetic configuration at this central 3-plane $\mathrm{t}=0$ is the turning points of these paths we want to study. Their energy E(T) and Chern-Simons numbers $N_{C S}(T)$ at $\mathrm{t}=0$ can be calculated plotting $E\left(N_{C S}\right)$ one can get the profile of barrier

- Alas, for the sum ansatz this idea does not produce reasonable results. When T decreases, the energy $E(T)$ of the turning state (as well as the action for the whole configuration) becomes very large, while $N_{C S}(T)$ no longer changes.
- The ratio ansatz turned somewhat better results, with finite (and even simple) field structure at all T including the coinciding IA centers ($T=0$), but (see fig) it can only accomplish about $1 / 3$ of the journey

The Normalized energy E*R versus the Chern-Simons number, for ratio ansatz.

- Going uphill: the Yung ansatz (approximately a solution of the so called '‘streamline equation'' - Verbaarschot) The Yung ansatz for the field configuration is rather complicated, has no apparent t to -t symmetry but accomplish everything
- As classic Yang-Mills theory has scale invariance one should evaluate the energy times the r.m.s. radius $E * R$ defined as

$$
R^{2}=\frac{\int d^{3} r r^{2} B^{2}}{\int d^{3} r B^{2}}
$$

Fig.shows indeed a parabolic-looking maximum near $N_{C S}=1 / 2$.

Time dependent paths: E^{*} R vs Ncs

Explosion of the Turning States

- Solved both numerically (G.Carter) and analytically (as it was found by D.Ostrovsky based on work by Luescher and Schehter) (Witten -77) action for spherical YM

$$
\mathcal{A}_{j}^{a}=A(r, t) \Theta_{j}^{a}+B(r, t) \Pi_{j}^{a}+C(r, t) \Sigma_{j}^{a} \mathcal{A}_{0}^{a}=D(r, t) \frac{x^{a}}{r}
$$

with

$$
\Theta_{j}^{a}=\frac{\epsilon_{j a m} x^{m}}{r}, \quad \Pi_{j}^{a}=\delta_{a j}-\frac{x_{a} x_{j}}{r^{2}}, \quad \Sigma_{j}^{a}=\frac{x_{a} x_{j}}{r^{2}}
$$

It is convenient to express functions A, B, C, and D through the new set of r, t dependent parameters, which are related to the Abelian gauge $\left(A_{\mu=0,1}\right)$ Higgs (ϕ, α) model on hyperboloid [?]

$$
A=\frac{1+\phi \sin \alpha}{r}, \quad B=\frac{\phi \cos \alpha}{r}, \quad C=A_{1}, \quad D=A_{0}
$$

$$
\mathcal{A}_{j}^{a}=A(r, t) \Theta_{j}^{a}+B(r, t) \Pi_{j}^{a}+C(r, t) \Sigma_{j}^{a} \mathcal{A}_{0}^{a}=D(r, t) \frac{x^{a}}{r}
$$

with

$$
\Theta_{j}^{a}=\frac{\epsilon_{j a m} x^{m}}{r}, \quad \Pi_{j}^{a}=\delta_{a j}-\frac{x_{a} x_{j}}{r^{2}}, \quad \sum_{j}^{a}=\frac{x_{a} x_{j}}{r^{2}}
$$

It is convenient to express functions A, B, C, and D through the new set of r, t dependent parameters, which are related to the Abelian gauge ($A_{\mu=0,1}$) Higgs (ϕ, α) model on hyperboloid [?]

$$
\begin{gathered}
A=\frac{1+\phi \sin \alpha}{r}, \quad B=\frac{\phi \cos \alpha}{r}, \quad C=A_{1}, \quad D=A_{0} \\
\mathcal{A}_{j}^{a}=A(r, t) \Theta_{j}^{a}+B(r, t) \Pi_{j}^{a}+C(r, t) \Sigma_{j}^{a} \mathcal{A}_{0}^{a}=D(r, t) \frac{x^{a}}{r}
\end{gathered}
$$

with

$$
\Theta_{j}^{a}=\frac{\epsilon_{j a m} x^{m}}{r}, \quad \Pi_{j}^{a}=\delta_{a j}-\frac{x_{a} x_{j}}{r^{2}}, \quad \Sigma_{j}^{a}=\frac{x_{a} x_{j}}{r^{2}}
$$

It is convenient to express functions A, B, C, and D through the new set of r, t dependent parameters, which are related to the Abelian gauge $\left(A_{\mu=0,1}\right)$ Higgs (ϕ, α) model on hyperboloid [?]

$$
\begin{gathered}
A=\frac{1+\phi \sin \alpha}{r}, \quad B=\frac{\phi \cos \alpha}{r}, \quad C=A_{1}, \quad D=A_{0} \\
\mathcal{A}_{j}^{a}=A(r, t) \Theta_{j}^{a}+B(r, t) \Pi_{j}^{a}+C(r, t) \Sigma_{j}^{a} \mathcal{A}_{0}^{a}=D(r, t) \frac{x^{a}}{r}
\end{gathered}
$$

with

$$
\Theta_{j}^{a}=\frac{\epsilon_{j a m} x^{m}}{r}, \quad \Pi_{j}^{a}=\delta_{a j}-\frac{x_{a} x_{j}}{r^{2}}, \quad \Sigma_{j}^{a}=\frac{x_{a} x_{j}}{r^{2}}
$$

It is convenient to express functions A, B, C, and D through the new set of r, t dependent parameters, which are related to the Abelian gauge $\left(A_{\mu=0,1}\right)$ Higgs (ϕ, α) model on hyperboloid

$$
A=\frac{1+\phi \sin \alpha}{r}, \quad B=\frac{\phi \cos \alpha}{r}, \quad C=A_{1}, \quad D=A_{0}
$$

$$
S=\frac{1}{4 g^{2}} \int d^{3} x d t\left[\left(\mathcal{B}_{j}^{a}\right)^{2}-\left(\mathcal{E}_{j}^{a}\right)^{2}\right]=4 \pi \int d r d t\left(\left(\partial_{\mu} \phi\right)^{2}+\phi^{2}\left(\partial_{\mu}-a_{\mu}\right)^{2}+\frac{(1-\phi}{2 r^{2}}\right.
$$

- The Luscher-Schekhter solution can be found in a complicated coordinates obtained from $O(4)$ symmetric (non-zero E) one by a conformal transformation -Zahed item-- solution for large times becomes simple transverse wave with a simple profile

$$
4 \pi e(r, t)=\frac{8 \pi}{g^{2} \rho^{2}}\left(1-\kappa^{2}\right)^{2}\left(\frac{\rho^{2}}{\rho^{2}+(r-t)^{2}}\right)^{3}
$$

-the energy gluon distribution function defines the multiplicity In pure YM a sphaleron of 3 GeV mass would decay into 3.5 gluons in average.

Paths maximizing cross section lead to rescaled sphalerons

in collisions the $Y M$ action is only one of the contributing factors. Another is the overlap between the initial system of colliding gluons and the tunneling path
One way to include both factors together is to use an adaptation of the Landau formula for overlapping matrix elements in terms of singular field configurations. (Khlebnikov,Diakonov-Petrov)

The space distance - time, r-t, plane. Small circles show positions of the singularities, the vertical dashed lines indicate lines at which two solutions with different energies
are joined together. The branch of the field that interpolates between the vacuum at $t=-\infty$ and the singularity at $t=-T / 2$ with zero energy is singular instanton
The other brunch is the non-zero energy solution: we study it at high energy limit (of DP) and looked at $t=0$ or escape states: those are found to be just the YM sphalerons. with a simple rescaling of the size ρ and the energy density,

$$
\rho \rightarrow \rho /\left(Q / M_{S}\right)^{1 / 5}
$$

The same holds for explosion (Minkowski part of the path) a simple rescaling of the size ρ and the energy density. Gluon multiplicity gets $\left(Q / M_{S}\right)^{4 / 5}$ out of it

The inclusive gluon multiplicity $x^{4 / 5} \sigma(x)$ versus energy in units
of the sphaleron mass $x=Q / M_{s}$. (b) The ratio (??) of prompt gluons emitted as a function of $-t / M_{S}^{2}$.
-The Lienard expression for dipole radiation intensity

$$
P=-\frac{2 e^{2}}{3 m^{2}}\left(\frac{d p_{\mu}}{d s}\right)^{2}
$$

was derived in 1898, but is correct even for ultrarelativistic case. The acceleration appearing in it is proportional to field strength F and particle energy E, so classical energy losses depend quadratically on both of them, $P \sim e^{4} F^{2} E^{2} / m^{4}$. the applicability condition on it (see textbooks e.g.[?]) is

$$
e^{3}\left(F / m^{2}\right)(E / m) \ll 1
$$

where we have identified 3 dimensionless factors: the coupling constant, the field in m^{2} units and the relativistic gamma factor. In cases when one uses classical QED such as synchrotron radiation in accelerators, this condition of course holds, in spite of the fact that γ can be as large as 10^{5} (LEP): the reason is small couplin
and especially very small fields H / m_{e}^{2}.

$$
\frac{d N_{B}}{d \omega} \sim \frac{\alpha}{\pi} \frac{1}{\omega}
$$

Synchrotron radiation has a different spectrum: total number of quanta per one circle is

$$
\frac{d N_{S}}{d \omega} \sim \frac{\alpha}{\pi} \frac{\left(\omega / \omega_{0}\right)^{1 / 3}}{\omega}
$$

The upper limit of this expression for synchrotron emission can be bounded by classical 'characteristic frequency') $\omega_{c}=3 \gamma^{3} \omega_{0}$: substituting it in ?? we find that one circle of radiation emits $N_{S} \sim \alpha \gamma$ photons, while the total energy loss recovers what one can get directly from the Lienard expression mentioned above: it again grows quadratically with energy, or $\Delta E / E \sim E$.For synchrotron radiation a cut at $\omega_{\max } \sim E$ leads to

$$
N_{S} \sim \alpha\left(E^{2} / e H\right)^{1 / 3}
$$

and the energy loss per fixed* width of the field region Δz (rather than circle)

$$
\Delta E_{S} / E \sim e^{2}(e H)^{2 / 3} \Delta z / E^{1 / 3}
$$

which is decreasing with energy, although with a small power.
-The problem of quantum synchrotron radiation in QED was addressed in a fundamental way by Schwinger

$$
-\frac{1}{E} \operatorname{Im} \mathbf{M}_{a a}=\int \frac{d \omega}{\omega} \mathbf{P}_{a a}(w)
$$

the chromomagnetic synchrotron emission by a scalar quark in the classical limit in the following form

$$
\mathbf{P}_{a a}(\omega)=-\frac{\alpha}{\pi}\left(T^{A}\right)_{a b}\left(T^{A}\right)_{b a} \times \omega \operatorname{Im} \int_{0-i 0}^{\infty-i 0} \frac{d \tau}{\tau} \frac{e^{-i\left(E \omega_{A}\right)^{2} \tau^{3} /(24 \omega)}}{\cos \left(E \omega_{A} \tau /(2 \omega)\right.} \times\left(\frac{m^{2}}{E^{2}}+\frac{1}{2} \omega_{b}^{2}\right.
$$

*It cannot be small compared to radiation length: Deltaz $>m / e H$.
where in () the $H=0$ subtraction is not explicitly shown but implied. The quark synchrotron and gluon rescaled frequencies are $\omega_{a}=e_{a} H / E$ and $\omega_{A}=g_{A} H / E$ respectively.

In carrying out () the emitted gluon recoil effect on the jet was ignored, and so it is entirely classical. We have checked that the gluon recoil effect amounts in the first order to the shift

$$
\frac{1}{\omega} \rightarrow\left(\frac{1}{\omega}-\frac{1}{E}\right)
$$

in the combination $\mathbf{P}_{a a} / \omega$ (the gluon multiplicity), thereby generalizi Schwinger's first quantum correction in QED to the QCD case. This substitution is not of course the complete quantum answer, but will be discussed below as an approximation.

The integral versus radiated energy fraction
$z=\omega / E$ for classical (upper figure) and quantum corrected (lower figure) cases. Four examples shown corresponds to all possible charge combinations, namely $e_{a}=1, e_{b}=1, e_{A}=3$ (solid), $e_{a}=$ $1, e_{b}=-2, e_{A}=3$ (dotted), $e_{a}=1, e_{b}=1, e_{A}=0$ (dashed) and $e_{a}=1, e_{b}=-2, e_{A}=0$ dash-dotted lines, respectively.

