Chap 20 P30

a) \[\Delta E = Q - \dot{W}_{\text{by gas}} \]

\[W = \text{Area under PV curve} = \frac{1}{2} \times \text{base} \times \text{height} \]

\[W = \frac{1}{2} \times (4 \text{ m}^3) \times (6 \text{ kPa}) = 12 \text{ kPa m}^3 = 12 \times 1000 \text{ N m} \cdot \text{m}^3 = 12000 \text{ J} \]

For a closed cycle like this one

\[\Delta E = 0 \]

\[Q = \dot{W}_{\text{by gas}} = 12000 \text{ J} \]

This means 12,000 more joules flowed into than out of the system.

If the cycle is reversed

\[\dot{W}_{\text{by gas}} = -12000 \text{ J} \quad Q = -12000 \text{ J} \]

Then 12,000 more joules flowed out of than into the system.
This is the same
\[\Delta G = Q - W \]

\[W = \text{Area} = \text{base} \times \text{height} \]

\[\text{Area} = (3V_i - V_f) \times (3P_i - P_f) \]

a) \[W_{\text{gas}} = \text{Area} = 4P_iV_i \]

b) \[Q = 4P_iV_i \]

c) \[P_iV_i = nRT_i \]

\[Q = 4\left(nRT_i \right) \]

\[Q = 4\left(1\text{ mol} \right) \left(8.31 \text{ J/mol} \cdot \text{K} \right) \left(273 \text{ K} \right) \]

\[Q = 9075 \text{ J} \]
P 58

a)

\[W_{\text{by gas}} = -(\text{area}) = -(\text{base}) \times \text{height} \]

\[= -(\frac{V_i}{2})(P_i) = -\frac{P_i V_i}{2} \]

\[W_{\text{orgas}} = \frac{P_i V_i}{2} \]

b)

Isobaric

\[PV = nRT \]

\[V \propto \frac{1}{P} \]

So \[\frac{V_f}{V_i} = \frac{1}{4} \]

\[W_{\text{by gas}} = nRT \ln \frac{V_f}{V_i} \]

\[nRT = P_i V_i \]

\[\ln \frac{1}{4} = -\ln 4 \]

\[W_{\text{by gas}} = P_i V_i \ln \frac{V_i}{V_i} \]

\[= P_i V_i \ln \frac{1}{4} = -P_i V_i \ln 4 \]
\[w_{\text{on}} = + P_{i} V_{i} \ln 4 \]

Diagram:

1. \(P_{i} \)
2. \(V_{i} \)
3. A vertical line
4. A horizontal line

\[W = P \Delta V = 0 \]
Chap 20 P30

a) \[\Delta E = Q - W_{\text{by gas}} \]

\[W = \text{Area under PV curve} \]
\[= \frac{1}{2} \times \text{base} \times \text{height} \]
\[W = \frac{1}{2} \times (4 \text{ m}^3) \times (6 \text{ kPa}) \]
\[= 12 \text{ kPa m}^3 = 12 \times 1000 \frac{N}{m^2} \cdot m^3 = 12000 \text{ J} \]

For a closed cycle like this one
\[\Delta E = 0 \]
\[Q = W_{\text{by gas}} = 12000 \text{ J} \]

This means 12,000 more joules flowed into than out of the system

If the cycle is reversed
\[W_{\text{by gas}} = -12000 \text{ J} \quad Q = -12000 \text{ J} \]

Then 12,000 more joules flowed out of the system