- The moment of inertia of a cylinder around the center of mass is  $I_{\rm cm}=\frac{1}{2}MR^2$  with  $M=0.5{\rm kg}$  the mass and radius  $R=0.25{\rm m}$ . Determine the moment of inertia of a cylinder around an axis which is displaced by half the radius of the wheel as indicated below by the star.
- A bead of mass  $M=1 \mathrm{kg}$  is attached to a light ruler stick of length 1m which spins from its end at a rate of  $2 \mathrm{rad/s}$  what is the kinetic energy of the system. Neglect the mass of the ruler stick.





$$I = Md^{2} + I_{cm}$$

$$I = MR^{2} + I_{mR^{2}}$$

$$I = MR^{2} + I_{mR^{2}}$$

$$I = 3_{mR^{2}} = 0.023 \text{ kgm}^{2}$$

(2) 
$$KE = J J w_r^2$$

$$KE = J (m R^2) w_r^2$$

$$KE = \frac{1}{2} (lkg \cdot (lm)^2 (2 + 1)^2)$$

$$KE = 2J$$

- A person pulls down and out on the end of diving board with a force of 50N at an angle of 20° as shown below. The lengths of the board are indicated in the figure Calculate the torque vector of the person on the board around the pivot – indicate the magnitude and direction.
- A rod is spinning around its end as shown below. The rod has mass  $M=0.2\,\mathrm{kg}$  and length  $L=0.5\,\mathrm{m}$ . Determine the moment of inertia from the supplied table copied from pg. 304. If the angular speed is  $2\,\mathrm{rev/s}$  determine the angular momentum.





T = 
$$RF_{\perp}$$
 -  $\hat{k}$ 
 $T = (2m)(50N\cos 20^{\circ}) - \hat{k}$ 

$$L = \frac{1}{3} \omega_r$$

$$L = \left(\frac{1}{3} M L^2\right) \omega_r$$

$$L = \frac{1}{3} 0.2 \log (0.5 \text{m})^3 \frac{4 \text{m}}{5}$$

$$L = 0.21 \log \frac{m^2}{5}$$

T = -93.9 k

$$W_r rad = 2 \frac{rev}{5}$$

$$W_r rad = 2 \cdot 2 \frac{r}{5} rad$$

$$W_s = 4 \frac{r}{5}$$

$$W_s = 4 \frac{r}{5}$$

- The moment of inertia of a cylinder around the center of mass is  $I_{\rm cm}=\frac{1}{2}MR^2$  with  $M=0.5{\rm kg}$  the mass and radius  $R=0.25{\rm m}$ . Determine the moment of inertia of a cylinder around an axis which is displaced by half the radius of the wheel as indicated below by the star.
- A bead of mass  $M=1 \mathrm{kg}$  is attached to a light ruler stick of length 1m which spins from its end at a rate of  $2 \mathrm{rad/s}$  what is the kinetic energy of the system. Neglect the mass of the ruler stick.





$$I = Md^{2} + I_{cm}$$

$$I = MR^{2} + I_{mR^{2}}$$

$$I = 3_{mR^{2}} = 0.023 \text{ kgm}^{2}$$

(2) 
$$KE = J J W_{r}^{2}$$

$$KE = J (m R^{2}) W_{r}^{2}$$

$$KE = \frac{1}{2} (lkg \cdot (lm)^{2} (2 \frac{1}{2})^{2}$$

$$KE = 2J$$