1 Problems

. In chapter 20.

$$4, 6, 7, 20, 63, 69, 77, 71$$
 part a (1)

1. Adiabatic Expansion

(a) Starting from dW = pdV show that the work done during an adiabatic expansion is

$$W = \frac{1}{\gamma - 1} \left[P_1 V_1 - P_2 V_2 \right] \tag{2}$$

where γ is the adiabatic index

(b) For an ideal gas expansion explain why $dU = nC_v dT$. Use this to show that

$$\Delta U = nC_v(T_f - T_i) \tag{3}$$

- (c) Show that for an adiabatic expansion $\Delta U = -W$. Show that the expressions given in Eq. 2 and Eq. 3 are consistent with this
- 2. Internal Combustion Engines: Briefly explain how an internal combustion engine works. Draw a PV cycle. Indicate the different piston strokes work in conjuction with this cycle. Whats the role of the crankshaft and the camshaft? Extra Credit: What are the design constraints of the compression stroke? What are the design constraints of the ignition stroke?
- 3. Sound 1 At a lound "concert" the band plays close to the threshold of pain. The sound level is 100dB one meter away from a loundspeaker which broadcasts in all directions.
 - (a) Determine determine the sound level 1 km away.
 - (b) Is this soft/loud/inaudible?
 - (c) What is the pressure deviation from equilibrium relative to atmospheric pressure $(1 \text{ atm} \approx 1 bar = 10^5 N/m^2 \text{ remember!})$ one meter from the loadspeaker
- 4. Sound 2 The following picture shows the Pressure measured while beating two frequencies f_1 and f_2 .

- (a) Estimate from the figure these two frequencies. You may find it convenient to work the next problem first.
- (b) Show that the sum of two sin waves $\sin(2\pi f_1 t)$ and $\sin(2\pi f_2 t)$ can be written as a product of sin and cos waves.