Constants to remember

1. Electron and proton mass
 \[m_e c^2 = 0.511 \text{ MeV} \quad m_p c^2 = 938.\text{ MeV} \]

2. Speed of sound (\(\sim \) typical molecular velocity) and light
 \[\text{sound} \sim 300 \text{ m/s} \quad c = 3 \times 10^8 \text{ m/s} \]

3. Typical wavelength of visible light.
 \[\lambda_{\text{red}} \sim 600 \text{ nm} \quad \lambda_{\text{blue}} \sim 400 \text{ nm} \]

4. Typical wavelength of X-rays. Energy \(\sim 50 \text{ kilo - Volts} \)

5. \(2\pi \) is annoying, often use
 \[h = \frac{\hbar}{2\pi} \quad \hbar = 197 \text{ eV nm} = 1970 \text{ eV } \AA \]

6. The fine structure constant is a pure number and is the only dimensionless quantity that can be made out \(h, c \) and \(e \)
 \[\alpha_{\text{EM}} = \frac{e^2}{4\pi \varepsilon_o \hbar c} \sim \frac{1}{137} \]
 The coulomb potential between to objects with \(Z_1 e \) charge and \(Z_2 e \) charge is
 \[U = \frac{Z_1 e Z_2 e}{4\pi \varepsilon_o r} \]
 \[= \alpha_{\text{EM}} \frac{Z_1 Z_2 e^2}{r} \]

7. A typical atomic size is
 \[1a_o = \frac{\hbar}{m_e c} = \frac{\hbar^2}{m_e^2 \pi} \sim 0.5 \text{ Å} \quad 1 \AA = 0.1 \text{ nm} \]

8. The picture of the atom is the following (the circle is the electron and the dot is the nucleus)
 \[R_A = 5 \times 10^{-15} \text{ m} \]

Solid Angles

1. For a patch on the sphere of area \(A \), the solid angle is defined as
 \[\Omega = \frac{A}{r^2} \]
 in analogy to \(\theta = s/r \). Like radians, the units of solid angle are dimensionless. However, we sometimes use the unit ster-radians to denote that a given dimensionless numbers corresponds to a definite solid angle.

\[a_o = 0.5 \text{ Å} \quad \lambda = \hbar/m_e c \]

Rutherford Experiments

The Rutherford experiments shot \(\alpha \) particles (\(\frac{2}{3}\text{He} \)) onto gold nuclei \(\frac{197}{79} \text{Au} \). A schematic of the apparatus is shown in Fig. 3

1. When alpha (\(z_\alpha = +2 \)) particles impinge on a nucleus of charge \(+Ze \) the distance of closest approach \(D \) is found by equating the initial kinetic energy with the final potential energy
 \[K = \frac{1}{2} m_\alpha v_\alpha^2 = \frac{1}{4\pi \varepsilon_o} \frac{(Ze)(z_\alpha e)}{D} \]
 \[\frac{1}{2} m_\alpha v_\alpha^2 = \alpha_{\text{EM}} \frac{Z z_\alpha e^2}{D} \]
 i.e.
 \[D = \alpha_{\text{EM}} \left(\frac{Z z_\alpha e^2}{2m_\alpha v_\alpha^2} \right) \]
2. The number of α particles scattered into a given solid angle is

$$dN_{\text{scatt}} = [N_\alpha \rho_{Au} t_{\text{foil}}] \times \frac{D^2}{16 \sin^4(\Theta/2)} \times d\Omega$$ \hspace{1cm} (12)

where

$N_\alpha =$ Number of α's sent in. \textbf{The book calls this I} \hspace{1cm} (13)

$\rho_{Au} =$ The number of gold nuclei per volume in the foil \hspace{1cm} (14)

$t_{\text{foil}} =$ The thickness of the foil \hspace{1cm} (15)

$d\Omega = $ the solid angle of the detector \hspace{1cm} (16)

For a ring like detector as shown in Fig. 3 the number scattered into the detector is

$$dN_{\text{scatt}} = [N_\alpha \rho_{Au} t_{\text{foil}}] \times \frac{D^2}{16 \sin^4(\Theta/2)} \times 2\pi \sin(\Theta) \, d\Theta$$

Bohr Model

1. Electrons move about the nucleus in circular orbits determined by Newton's Laws

$$L = m_e vr = n\hbar = 1, 2, 3, \ldots$$ \hspace{1cm} (18)

2. Only certain orbits are stable, in these orbits the angular momentum of the electron is

$$L = m_e vr = n\hbar$$ \hspace{1cm} (18)

$$L = m_e vr = n\hbar$$ \hspace{1cm} (18)

3. For these orbits (labelled by n) we have

$$E_n = -\frac{1}{4\pi \epsilon_o} \frac{e^2}{2a_o} \left[\frac{1}{n^2} \right] \leftrightarrow \text{Energy}$$ \hspace{1cm} (19)

$$E_n = -\frac{1}{4\pi \epsilon_o} \frac{e^2}{2a_o} \left[\frac{1}{n^2} \right] \leftrightarrow \text{Energy}$$ \hspace{1cm} (19)

where R_∞ is the Rydberg constant $R_\infty = 13.6$ eV. For the n-th orbit we also have

$$\frac{v_n}{c} = \alpha \left[\frac{1}{n} \right] \leftrightarrow \text{velocity}$$ \hspace{1cm} (21)

$$r_n = a_0 \left[n^2 \right] \leftrightarrow \text{radius}$$ \hspace{1cm} (22)

4. An extremely important set of relationships is

$$\frac{1}{4\pi \epsilon_o} \frac{e^2}{2a_o} = \frac{\hbar^2}{2m_e c^2} = \frac{1}{2} m_e c^2 \alpha^2 = 13.6 \text{eV}$$

5. Light of a given frequency is emitted as the atom makes a transition from one n (say $n = 2$) to another (say $n = 1$). If light is emitted, the change in energy $\Delta E = E_f - E_i$ of the atom is negative sense the atom lowers its energy by emitting light energy which makes up the change. The frequency of the light which is emitted is given by energy conservation.

$$hf = (E_i - E_f)$$ \hspace{1cm} (24)

6. The above formulas are for a single electron running around a single proton. When a single electron runs around Z protons the formulas become

$$L = m_e vr = n\hbar$$ \hspace{1cm} (18)

$$\frac{v_n}{c} = Z\alpha \left[\frac{1}{n} \right] \leftrightarrow \text{velocity}$$ \hspace{1cm} (26)

$$E_n = -\frac{1}{4\pi \epsilon_o} \frac{e^2}{2a_o} Z^2 \left[\frac{1}{n^2} \right] \leftrightarrow \text{Energy}$$ \hspace{1cm} (27)

$$E_n = -\frac{1}{4\pi \epsilon_o} \frac{e^2}{2a_o} Z^2 \left[\frac{1}{n^2} \right] \leftrightarrow \text{Energy}$$ \hspace{1cm} (27)

$$r_n = \frac{a_0}{Z} \left[n^2 \right] \leftrightarrow \text{radius}$$ \hspace{1cm} (29)

Basic notions of wave functions
1. DeBroglie says that the momentum is related to the wavelength
\[p = \frac{h}{\lambda} = h \frac{2\pi}{\lambda} = h\kappa \] (30)
2. Similarly the frequency determines energy
\[E = h\omega \quad \omega = 2\pi \nu \] (31)
where \(\nu \) is the frequency.
3. If the typical size of the wave function is \(\Delta x \) then the typical spread is in the momentum \(\Delta p \) is determined by the uncertainty relation
\[\Delta x \Delta p \sim \hbar \] (32)
4. Similarly if the typical duration of a wave pulse (of e.g. sound, E&M, or electron wave) is \(\Delta t \) then its frequency \(\omega \) is only determined to within 1/\(\Delta t \). In quantum mechanics this is written
\[\Delta t \Delta \omega \sim 1 \quad \text{or} \quad \Delta t \Delta E \gtrsim \hbar \]
i.e. if something is observed for a short period of time its energy can not be precisely known
5. In general an attractive potential energy tends to localize (make smaller) the particles wave function. As the particle is localized the kinetic energy increases. The balance determines the typical extent of the wave function (or the size of the object).

Wave packets
1. A general wave can be written as a sum of sin’s and cos’s. For a general wave then there is not one momentum and energy associated with the particle but a range of momenta and energies characterized by \(\Delta \omega \) and \(\Delta k \)
2. Consider the addition of two waves
\[\Psi_1(x,t) = \sin(k_1 x - \omega_1 t) \quad \Psi_2(x,t) = \sin(k_2 x - \omega_2 t) \]
The waves have a certain average frequency (energy) \(\bar{\omega} = (\omega_1 + \omega_2)/2 \) and a frequency spread \(\Delta \omega = \omega_2 - \omega_1 = (\omega_2 - \omega_1)/2 \). Similarly the two waves have an average wave number (momentum) \(\bar{k} = k_1 + k_2 \) and \(\Delta k = (k_2 - k_1)/2 \). The sum of the two waves is
\[\Psi_1 + \Psi_2 = 2 \sin(\bar{k} x - \bar{\omega} t) \cos(\Delta k x - \Delta \omega t) \]
Carrier wave Envelope Wave
You should know how to derive this result and the analagous results for cos. When we talk about the energy and momentum of a wave we are really talking about the average momentum (wave number \(k \)) and average energy (angular frequency \(\omega \)).
3. The speed of the envelope is group velocity
\[v_g = \frac{\Delta \omega}{\Delta k} = \frac{d \omega}{dk} = \frac{dE}{dp} \] (33)
4. The spatial extent of the wave packet is of order the wavelength of the envelope
\[\Delta x \sim \frac{1}{\Delta k} \quad \Delta x \Delta k \sim 1 \] (34)
In quantum mechanics this becomes \(\Delta x \Delta p \sim \hbar \)
5. The temporal extent of the wave packet is of order the period of the envelop
\[\Delta t \sim \frac{1}{\Delta \omega} \quad \Delta t \Delta \omega \sim 1 \] (35)
In quantum mechanics this becomes \(\Delta t \Delta E \sim \hbar \)
6. The same analysis can be done using complex exponentials. Consider the addition of two waves
\[\Psi(x,t) = e^{-i \omega t + ikx} + e^{-i \omega t + ikx} \] (36)
You should be able to show that
\[\Psi(x,t) = e^{-i \omega t + ikx} \]
\[= 2 \cos(\Delta \omega t - \Delta k x) \]
(37)

Wavefunctions
1. The electron wave function squared \(|\Psi(x,t)|^2 = P(x,t) \) is a probability per unit length to find the particle at time t. The the probability \(d\mathcal{P} \) to find a particle between \(x \) and \(x + dx \) at time t
\[d\mathcal{P} = P(x,t)dx = |\Psi(x,t)|^2dx \]
(38)
2. The most likely location at time t may be found by maximizing the probability density \(P(x,t) \)
3. The electron must be somewhere so
\[\int_{-\infty}^{\infty} dx \ |\Psi(x,t)|^2 = 1 \] (39)
4. The average position at time t
\[\bar{x} = \int_{-\infty}^{\infty} dx \ x |\Psi(x,t)|^2 \] (40)
5. The average position squared at time t is
\[\bar{x}^2 = \int dx \ x^2 |\Psi(x,t)|^2 \] (41)
6. The uncertainty squared in position \((\Delta x)^2 \) is defined to be
\[(\Delta x)^2 = \bar{x}^2 - \bar{x}^2 \equiv (x - \bar{x})^2 \] (42)
This is also known as the standard deviation squared, or the spread. If the average position is zero \(\bar{x} = 0 \) then \((\Delta x)^2 = \sqrt{\bar{x}^2} \).
Momentum Averages

1. We use a notation for “Operators”

\[
\bar{x} = \int_{-\infty}^{+\infty} dx \Psi^*(x) \mathcal{X} \Psi(x)
\]

(43)

\[
\bar{p} = \int_{-\infty}^{+\infty} dx \Psi^*(x) \mathcal{P} \Psi(x)
\]

(45)

Here \(\mathcal{X} \) is an simply an “operator” which takes the function \(\Psi(x) \) and spits out the new function \(x \Psi(x) \). It just gives a notation to things that we already understand, for example \(\mathcal{X}^2 \Psi(x) = \mathcal{X} x \Psi(x) = x^2 \Psi(x) \)

2. The average momentum is

\[
\bar{p} = \int_{-\infty}^{+\infty} dx \Psi^*(x) x \Psi(x)
\]

(46)

\[
\bar{p} = \int_{-\infty}^{+\infty} dx \Psi^*(x) \left(-i \hbar \frac{d}{dx} \right) \Psi(x)
\]

(47)

Here the momentum operator is

\[
\mathcal{P} = -i \hbar \frac{d}{dx}
\]

takes the function \(\Psi(x) \) and spits out the derivative \(-i \hbar \frac{d}{dx} \).

3. The average momentum squared is

\[
\bar{p}^2 = \int_{-\infty}^{+\infty} \Psi^*(x) \mathcal{P}^2 \Psi(x)
\]

(48)

\[
\bar{p}^2 = \int_{-\infty}^{+\infty} \Psi^*(x) \left(-\hbar^2 \frac{d^2}{dx^2} \right) \Psi(x)
\]

(49)

4. The uncertainty squared in momentum (or standard deviation squared) is defined like for \((\Delta x)^2\)

\[
(\Delta p)^2 \equiv \bar{p}^2 - \bar{p}^2
\]

(50)

Again if \(p \) is zero then \(\Delta p \equiv \sqrt{\bar{p}^2} \) is the “root mean square” momentum.

5. The average kinetic energy is

\[
\mathcal{KE} = \int_{-\infty}^{+\infty} \Psi^*(x) \left[\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \right] \Psi(x)
\]

(51)

6. The formal statement of the uncertainty principle is

\[
(\Delta x)(\Delta p) \geq \frac{\hbar}{2}
\]

(52)

where the standard deviation in position \(\Delta x \) and momentum \(\Delta p \) are defined as above. (You can see why its a good thing that we know how to use it before we can state it precisely)

Quantum Mechanics

1. As with momentum, the average energy of a particle

\[
\bar{E} = \int_{-\infty}^{+\infty} dx \Psi^*(x,t) E \Psi(x,t)
\]

(53)

\[
\bar{E} = \int_{-\infty}^{+\infty} dx \Psi^*(x,t) \left[+ i \hbar \frac{\partial}{\partial t} \right] \Psi(x,t)
\]

(54)

and the energy operator

\[
E = + i \hbar \frac{\partial}{\partial t}
\]

(55)

Note the difference in sign between this and the momentum operator \(\mathcal{P} \) which ultimately is a reflection of the fact that waves are written \(e^{+i(kx-\omega t)} \) with opposite signs for \(k \) and \(\omega \)

2. The Schrödinger equation can be written

\[
\left[\frac{\mathcal{P}^2}{2M} + V(x) \right] \Psi(x,t) = E \Psi(x,t)
\]

(56)

\[
\left[-\frac{\hbar^2}{2M} \frac{d^2}{dx^2} + V(x) \right] \Psi(x,t) = + i \hbar \frac{\partial}{\partial t} \Psi(x,t)
\]

(57)

where \(V(x) \) is the potential energy (think \(V = 1/2 kx^2 \))

3. The stationary wave functions (or eigenfunctions) have the following form

\[
\Psi(x,t) = e^{-i \frac{E_n t}{\hbar}} \Psi_n(x)
\]

(58)

And are called stationary because the square does not depend on time

\[
|\Psi(x,t)|^2 = \left| e^{-i \frac{E_n t}{\hbar}} \right|^2 |\Psi_n(x)|^2
\]

(59)

\[
|\Psi_n(x)|^2
\]

(60)

Since the wave function does not depend on time we can take a long time to determine the energy. So stationary have functions exactly the energy \(E = E_n \). There is no uncertainty in the energy.

4. Stationary wave functions (also known as eigenfunctions) obey the time independent Schrödinger equation.

\[
\left[-\frac{\hbar^2}{2M} \frac{d^2}{dx^2} + V(x) \right] \Psi_n(x) = E_n \Psi_n(x)
\]

(61)

Here the \(E_n \) are the energy levels (as in the \(E_n = -13.6eV/n^2 \) in the Bohr Model) are the \(E_n \) in the stationary wave functions

Particle in the Box
1. For an electron bouncing around in a box of size a the stationary wave functions (eigen-functions) are:

$$\Psi_n(x) = \begin{cases} \sqrt{\frac{\pi}{a}} \cos \left(\frac{n \pi x}{a} \right) & n = 1, 3, 5, \ldots \\ \sqrt{\frac{\pi}{a}} \sin \left(\frac{n \pi x}{a} \right) & n = 2, 4, 6, \ldots \end{cases}$$ (62)

while the stationary energies are

$$E_n = \frac{\hbar^2 k_n^2}{2M} = \frac{\hbar^2 \pi^2}{2Ma^2} n^2 \quad n = 1, 2, 3, 4, 5, \ldots$$ (63)

Harmonic Oscillator

1. For the harmonic oscillator potential $V = 1/2kx^2$. The classical oscillation frequency is

$$\omega = \sqrt{\frac{k}{M}}$$

2. The energies are

$$E_n = \hbar \omega_n (n + \frac{1}{2}) \quad n = 0, 1, 2, 3, \ldots$$

Note that n starts at zero in this case.

3. The wave functions are given in the tables.

Qualitative Features of Schrödinger Equation

1. In the classically allowed region the eigen-functions oscillate. In the classically forbidden region the wave function decays exponentially. For a given potential you should be able to roughly sketch the wave functions.

2. In the classically allowed region $E > V$, you be able to show (by assuming that the potential V is constant) that the wave function oscillates with wave number $k = 2\pi/\lambda$ as

$$\Psi(k) \propto A \cos(kx) + B \sin(kx) \quad \text{where} \quad k \sim \sqrt{\frac{2m(E - V)}{\hbar^2}}$$ (65)

3. In the classically forbidden region $E < V$, we say that the particle is “under the barrier” because $E < V$. Assuming that the potential is constant you should be able to show wave function decreases as

$$\Psi \sim Ce^{-\kappa x} \quad \text{where} \quad \kappa \sim \sqrt{\frac{2m(V - E)}{\hbar^2}},$$ (66)

as one goes deeper into the classically forbidden region. The length $D \equiv 1/(2\kappa)$ is known as the “penetration” depth. It is the length over which the probability decreases by a factor $1/e$.

4. Looking at the Schrödinger equation

$$\frac{d^2\psi}{dx^2} = -\frac{2m}{\hbar^2} (E - V)\psi$$ (67)

we conclude:

(a) In the classically allowed region $(E - V > 0)$ the wave function is concave down if $\psi > 0$ and concave up if $\psi < 0$. The strength of the curvature (how rapidly it oscillates) is controlled by $2m(E - V)/\hbar^2$.

(b) In the classically forbidden region $(E - V < 0)$ the wave function is concave up if $\psi > 0$ and concave down if $\psi < 0$. The strength of the curvature is controlled by $2m(V - E)/\hbar^2$.

5. The energy is determined in the Schrödinger Equation by demanding that the wave function Ψ decreases as $x \to \infty$. This is why we neglect exponentially increasing solutions $e^{+\kappa x}$ in the preceding item.

6. Generally there is one more “half” wavelength in the “box” (or more properly the classically allowed region) each time the particle in the potential is excited from one energy state (i.e. Ψ_n) to the next higher one (i.e. Ψ_{n+1}). Look at Box wave functions or simple harmonic oscillator wave functions for examples.

7. The wave function is always continuous and has continuous first derivatives.

8. An example of these trends is given by the set of simple harmonic oscillator wave functions handed out in class. You should be able to see these features in the figures handed out in class.

Perturbations

1. In the presence of a small additional potential potential $\delta V(x)$ the energy of the n-th state is changed by the average of the additional potential. More specifically, $\delta E_n = \delta V(x)$, i.e.

$$E_n \to E_n + \delta E_n \quad \delta V(x) = \int_{-\infty}^{\infty} \psi_n^*(x) \delta V(x) \psi_n(x)$$ (68)

where $\psi_n(x)$ is the unperturbed wave functions.

Particle in a Spherical Potential (Classical)

1. Energy is constant

$$\frac{1}{2}mv^2 + V(r) = E$$ (69)

We note that if v is broken up into radial and perpendicular components as shown below (so that $KE = 1/2mv_r^2 + 1/2mv_\perp^2$),
we use that $1/2mv_r^2 = L^2/(2mr^2)$ yielding
\[
\frac{1}{2}mv_r^2 + \frac{L^2}{2mr^2} + V(r) = E \quad (70)
\]
where we have defined the effective potential
\[
V_{\text{eff}}(r) = V(r) + \frac{L^2}{2mr^2} \quad (71)
\]
(a) $E - V$ determines the kinetic energy
(b) $E - V_{\text{eff}}(r)$ determines the radial KE or $1/2mv_r^2$
(c) V_{eff} depends on the angular momentum of the orbit

2. The angular momentum is a constant. This is because the force points along \mathbf{r} and hence the torque $\tau = \mathbf{r} \times \mathbf{F} = 0$. Thus for a classical orbit
\[
L = mrv_\perp = mr^2\omega \quad (72)
\]
is constant. You should also remember that v_\perp can be related to the angular velocity
\[
v_\perp = r\omega \quad \text{where} \quad \omega = \frac{d\theta}{dt}
\]
For small radii ω is large, while for large radii ω is small

3. You should understand this picture based on lecture which summarizes these points

4. The classical turning points happen when $E = V_{\text{eff}}$

Particle in a Spherical Potential (Quantum)

1. For a particle moving in a Spherically symmetric potential all the forces are in the radial direction
\[
F(r) = -\frac{\partial V(r)}{\partial r} \hat{r} \quad (73)
\]
We are generally considering an electron moving in the Coulomb field of a proton. In this case the potential and forces are the familiar
\[
V(r) = -\frac{e^2}{4\pi\epsilon_o r} \quad F(r) = -\frac{e^2}{4\pi\epsilon_o r^2} \hat{r} \quad (74)
\]
but we will leave $V(r)$ general for discussion.

2. The kinetic energy operator is
\[
\frac{-\hbar^2}{2m} \nabla^2 = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \quad (75)
\]
\[
= -\frac{\hbar^2}{2m} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{L^2}{2mr^2} \quad (76)
\]
Here we have defined the angular momentum squared operator
\[
L^2 = -\hbar^2 \left[\frac{1}{\sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2(\theta)} \frac{\partial^2}{\partial \phi^2} \right] \quad (77)
\]

3. The Schrödinger equation reads
\[
\left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \psi_{nlm}(r,\theta,\phi) = E_{nl} \psi_{nlm}(r,\theta,\phi) \quad (78)
\]
The wave functions depend on the quantum numbers nlm but it turns out that the energies do not depend on m.

4. For any radially symmetric potential the wave function is in general written as a product of radial wave function $R_{nl}(r)$ and angular wave functions Θ and Φ
\[
\psi_{nlm}(r,\theta,\phi) = R_{nl}(r) \Theta_{lm}(\theta) \Phi_m(\phi) \quad (79)
\]
Here th labels n, l and m are the quantum numbers. One for each dimension r, θ, ϕ. Note the labels: for instance $R_{nl}(r)$ depends only on n and l but not m The product of Θ and Φ is known as a spherical harmonic $Y_{lm}(\theta,\phi) \equiv \Theta_{lm}(\theta)\Phi_m(\phi)$. For $l = 0$ there is no angular dependence and $Y_{00} = 1$ and $\Theta_{l0} = 1$.

5. Substituting the wave function of $\psi = R(r)Y(\theta,\phi)$ into the schroedinger equation we find an equation for R and an equation for Y.

Diagram Notes

- $V_{\text{eff}}(r) = V(r) + \frac{L^2}{2mr^2}$
- $E - V$ determines the kinetic energy
- $E - V_{\text{eff}}(r)$ determines the radial KE or $1/2mv_r^2$
- V_{eff} depends on the angular momentum of the orbit
- Classical turning points happen when $E = V_{\text{eff}}$
- Angular momentum is a constant
- Kinetic energy operator is $\frac{-\hbar^2}{2m} \nabla^2$
- Schrödinger equation reads $\left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \psi_{nlm}(r,\theta,\phi) = E_{nl} \psi_{nlm}(r,\theta,\phi)$
- Wave functions depend on the quantum numbers nlm but energies do not depend on m.
- Wave function is written as $R_{nl}(r) \Theta_{lm}(\theta) \Phi_m(\phi)$
(a) The equation for R is the radial Schrödinger equation is discussed in the next section

$$\left[-\frac{\hbar^2}{2m} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r}\right) + \frac{\ell(\ell + 1)\hbar^2}{2mr^2} + V(r)\right] R_{nl} = E_{nl} R_{nl}(r)$$

(80)

The solutions R_{nl} depend on the potential $V(r)$

(b) The equation for $Y_{lm}(\theta, \phi)$ is discussed below

$$L^2 Y_{lm}(\theta, \phi) = \ell(\ell + 1)\hbar^2 Y_{lm}(\theta, \phi)$$

(81)

Only for certain values of the constants E and $\ell(\ell + 1)$ will the solutions be bounded. In particular it turns out that ℓ must be an integer. The functions $Y_{lm}(\theta, \phi) = \Theta_{lm}(\theta) \Phi_m(\phi)$ are shown in table (??). The angular piece is valid for all spherically symmetric potentials, while the radial piece is specific to hydrogen.

6. In general the wave functions are characterized by the three quantum numbers

(a) The principle quantum number

$$n = 1, 2, 3, 4 \ldots$$

(82)

labels the total number of excitations of the wave function. More precisely $n - 1$ is the total number of excitations in either the radial or angular directions.

Note: For a general radial potential the energy of the wave depends on whether the excitation is in the angular or radial direction. Thus the energy is a function of n and ℓ, E_{nl}. For the specific case of hydrogen where $V(r) \propto 1/r$ the energy only depends on n due to a peculiarity of the Coulomb Law, where $E_{nl} = -13.6/n^2$

(b) The angular momentum quantum number ℓ

$$\ell = 0, 1, \ldots n - 1$$

(83)

counts the total number of angular excitations of the wave, which must be less than the total, $n - 1$. These wave functions have definite angular momentum

$$L^2 = \ell(\ell + 1)\hbar^2.$$

(84)

$\ell = 0, 1, 2, 3, 4 \ldots$ also called by the names “sharp, principle, diffuse”

$$\ell = s, p, d, f, g$$

(85)

i.e. an “s-wave” is another name for the $\ell = 0$ wave function.

Note: The number of radial excitations is $(n - 1) - \ell$

(c) And a finally “magnetic” quantum number. $|m|$ is the number of azimuthal angular excitations around the z axis. with

$$m = 0, \pm 1, \pm 2, \pm 3 \ldots \pm \ell$$

(86)

Clearly the number of azimuthal excitations should be less than ℓ. The sign indicates wether the angular excitation is counterclockwise $m > 0$ (i.e. if you use the right hand rule your thumb points up) or clockwise $m < 0$

These wave functions have definite z component of angular momentum

$$\sum_z = mhY_{\ell m}$$

(87)

which can be positive or negative.

7. Examples:

(a) Thus for $n = 2$ (the first excited state) we the following four states

$$\begin{align*}
(n = 2, \ell = 0, m = 0) & \quad \text{s-wave, 2s} \\
(n = 2, \ell = 1, m = -1) & \quad \text{(n = 2, \ell = 1, m = 0)} \\
(n = 2, \ell = 1, m = 0) & \quad \text{(n = 2, \ell = 1, m = +1)}
\end{align*}$$

(88)

For the hydrogen atom these states are listed in Eq. (??)

(b) When we refer to the 3d state, we mean $n = 3$ and $\ell = 2$ and $m = -2, -1, 0, 1, 2$
Radial Part of Schrödinger Equation

1. For $\ell = 0$ and $m = 0$ the wave function is independent of angle $\Theta_{00} = \Phi_{0} = 1$.

$$\Psi_{n00} = R_{n0}(r)$$ (90)

2. The probability $d\mathcal{P}$ is

$$d\mathcal{P} = |\Psi|^2 dV = |R_{nl}(r)|^2 4\pi r^2 dr = P(r) dr$$ (91)

where the $4\pi r^2 dr$ is the volume of a spherical shell. Thus:

(a) The probability to find a particle per volume is $|\Psi|^2$

(b) The probability to find a particle per unit radius is:

$$P(r) = |R_{nl}(r)|^2 4\pi r^2 = |u_{nl}(r)|^2$$ (92)

where we have defined the $u_{nl}(r) = \sqrt{4\pi} R_{nl}(r)$

(c) The functions are normalized so that

$$\int d\mathcal{P} = \int_0^\infty |R_{nl}(r)|^2 4\pi r^2 dr = \int_0^\infty |u_{nl}(r)|^2 dr = 1$$ (93)

3. As in the previous item, it is useful to define the “radial wave function” u_{nl}

$$u_{nl}(r) \equiv \sqrt{4\pi} r R_{nl}(r)$$

This is useful because then $P(r) = |u_{nl}(r)|^2$ as described above. If the wave function of the form given in Eq. (79), then the radial Schrödinger equation for R (Eq. (80)) reduces to the the radial Schrödinger equation for u_{nl}

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} + \frac{\ell(\ell + 1)\hbar^2}{2mr^2} + V(r) \right] u_{nl} = E_{nl} u_{nl}$$ (94)

(a) For $\ell = 0$ (no angular momentum) this reduces to a 1D Schrödinger equation in the potential $V(r)$.

(b) For $\ell \neq 0$ there is an extra “potential” which represents the kinetic energy in the angular direction, i.e.

$$V_{\text{eff}}(r) = V(r) + \frac{\ell(\ell + 1)\hbar^2}{2mr^2}$$ (95)

By considering the motion of a particle in a circle you should be able to show classically that

$$KE = \frac{1}{2}mv_r^2 + \frac{L^2}{2mr^2}$$ (96)

where $L = mL_\perp r$ is the angular momentum. For a wave function with angular quantum number ℓ the angular momentum $L_\perp^2 = \ell(\ell + 1)\hbar^2$ as discussed in Eq. (84). Thus the form of this extra potential is understandable.

(c) You should be able to graph the effective potential and qualitatively sketch the wave function as in one dimension.

(d) To understand the effect of this extra potential, we note first that the “centripetal force” for a classical particle moving in a circle is

$$F_C = m\frac{v^2}{r} = \frac{L^2}{mr^3} \hat{r}$$ (97)

where $L = mv_r$ is the angular momentum. For a state with angular quantum number the angular momentum $L_\perp^2 = \ell(\ell + 1)\hbar^2$ as discussed near Eq. (84). Then we note that the “force” due to this extra potential

$$F_C = -\frac{\partial}{\partial r} \frac{\ell(\ell + 1)\hbar^2}{2mr^2} \hat{r} = \frac{L_\perp^2}{mr^3} \hat{r}$$ (98)

Thus the effect of this extra term is to provide the “centripetal force”. Classically there is no real “centripetal force”. It just summarizes the effect of the circular motion on the radial direction. Similarly there is no extra potential really, it is just the effect of the angular kinetic energy on the radial dynamics.

4. We can average different quantities

$$\overline{PE} = \int_0^\infty \frac{-\epsilon^2}{4\pi\epsilon_o r} P(r)dr$$ (99)

and

$$\tau = \int_0^\infty r P(r)dr$$ (100)

The variance in the radius is

$$(\Delta r)^2 \equiv \tau^2 - \langle r \rangle^2$$ (101)

5. The average kinetic energy is

$$\langle KE \rangle = \int_0^\infty u_{nl}^* \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} + \frac{\ell(\ell + 1)\hbar^2}{2mr^2} \right] u_{nl}$$ (102)

6. You should be able to verify that this or that functions satisfies the radial Schrödinger equation. You should be able to describe the qualitative features
Angular Part of the Schrödinger Equation (not really part of exam):

1. The wave functions have definite squared angular momentum labeled by the orbital quantum number ℓ and m

$$\psi_{nlm} = R_{nl}(r)Y_{lm}(\theta, \phi)$$ (103)

so that

$$\mathbf{L}^2 Y_{lm} = \ell (\ell + 1) \hbar^2 Y_{lm}$$ (104)

The magnetic quantum number m records the angular momentum about the z-axis.

$$L_z Y_{lm} = m \hbar Y_{lm}$$ (105)

where the angular momentum squared operator and are

$$\mathbf{L}^2 = -\hbar^2 \left(\frac{1}{\sin(\theta)} \frac{\partial}{\partial \theta} \sin(\theta) \frac{\partial}{\partial \theta} + \frac{1}{\sin^2(\theta)} \frac{\partial^2}{\partial \phi^2} \right)$$ (106)

$$L_z = -i\hbar \frac{\partial}{\partial \phi}$$ (107)

2. These functions

$$Y_{lm} = \Theta_{lm}(\theta)\Phi_m(\phi)$$

will be given on the exam.

Hydrogen Atom

- For the special case of the hydrogen atom the potential $V(r)$ is just the Coulomb potential

$$V(r) = -\frac{e^2}{4\pi \varepsilon_o r}$$ (108)

- The energies are

$$E_{nl} = -\frac{\hbar^2}{2ma_0^2} \frac{Z^2}{n^2} = -\frac{1}{2} \frac{e^2}{4\pi \varepsilon_o a_0} \frac{Z^2}{n^2}$$ (109)

We note that the fact that the energies are independent of ℓ for the hydrogen atom is special to the $1/r$ potential.

- The lowest order wave functions will be given in tables on exam.

- An integral which comes up a lot is

$$\int_0^\infty dx x^n e^{-x} = n!$$ (110)
Atoms

- Electrons fill up orbitals one by one. There are some things to know when filling up the shells
 - After filling the $3p$ orbital, one starts filling the $4s$ orbital before filling the $3d$ orbital. This is because the $4s$ state is actually lower than the $3d$ state as shown below. They are very close however.

- **Hunds Rule.** Take filling up the $3p$ orbital for example. When filling up the $2p$ orbital one first fills up the m levels with the same spin, and then one starts the process again for the next spin. See Fig. 9.15 of the book for a good explanation. Thus the structure of Oxygen (with $Z = 8$) is the following

\[
\begin{array}{c}
\text{Energy} \\
\hline
\ell = 0 & \ell = 1 & \ell = 2 \\
\hline
1s & 2s & 2p & 3s & 3p & 4s & 4p & 3d \\
\end{array}
\]

where each arrow represents an electron.