
Quantity Symbol Value
Coulombs Constant kC = 1/4πεo 8.98× 109 Nm2/C2

Electron Mass me 9.1× 10−31 kg
Electron Charge e −1.6× 10−19 C
Electron Volt eV 1.6× 10−19 J

Permitivity εo 8.85× 10−12 C2

Nm2

Magnetic Permeability µo 4π × 10−7 N · A2

Speed of Light c 3.0× 108 m/s
Planck’s Constant h 6.6× 10−34m2kg/s
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You have an electron which moves around a proton. Start from newtons law, the coulomb
law, and the Bohr quantization condition for the angular momentum.

1. (Symbol) Determine the velocity and radius of the n− th orbit.

2. (Symbol) Determine the orbital period (i.e. the time per revolution) of the n-th orbit.

3. (Symbol) Classically the electron in circular orbit would radiate electro magnetic waves
due to acceleration. Recall that in the classical limit, the energy lost to electromagnetic
waves per unit time is
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where a is the acceleration. Using this formula, determine the energy lost per unit
time by the electron in the n-th orbit

4. (Symbol) Determine the energy lost during the time of one revolution.

5. (Number) Evaluate the energy lost per revolution (part (4)) numerically in electron
volts for the n = 3 orbit. Qualitatively how does the energy lost per revolution compare
to the total energy of the orbit.



Consider making a model of a proton inside a nucleus as a single proton bouncing around
in a box potential, i.e. imagine that each proton is moves independently, but feels a box
potential created by all the other protons and neutrons. The box has length a and is given
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as shown below.

1. (Number) What is a typical nuclear radius. What is the proton mass in MeV/c2.

2. (Symbol+Number) Take the box size to be the circumference associated with the radius
estimated in (a). Determine the energy of the photon that is emitted when the proton
decays from the first excited state down to the ground state.

3. (Sentence) Explain qualitatively why the average momentum p̄ = 0 is zero for the
particle in the box.

4. (Symbol + Sentence) For the first excited state compute p2 and the variance of the
momentum ∆p. Qualitatively interpret your result for ∆p with the uncertainty prin-
ciple.

5. (Graph) Suppose the potential Vo was not infinite, i.e. Vo 6= ∞ but still large. Qual-
itatively sketch the ground state and the first and second excited states and there
associated probability densities. (Six graphs in all)

6. (Symbol) Now return to the Vo = ∞ and suppose that small constant perturbing
potential ∆V is added to the square well. The region of excess potential fills up half
the box as shown below.

(a) Under what conditions may ∆V be considered small, i.e. it is small compared to
something? What is that something?

(b) Determine the energy shift to the first excited state due to this perturbing poten-
tial.



Parts: 1,2,3,4

−a/2 a/2

V (x)

Vo = ∞

x = 0

Vo = ∞

Part (5)

−a/2 a/2

V (x)

x = 0

Vo=finiteVo=finite

Part (6)

−a/2 a/2

V (x)

Vo = ∞

x = 0

Height ∆V

Vo = ∞



A reasonably powerful helium-neon laser (with total power, P, and wavelength λ) is
pointed at a glass cell containing an unknown gas. A fraction f, of the total power entering
the cell is scattered uniformly in all directions. The wavelength is unchanged in the scattering
process.

Phototube

Laser with λ and power P

D

Θo

R

A phototube counts the scattered photons, and the front face of the phototube has a small
circular opening of diameter D. The phototube is situated a distance of R from the interaction
region at an angle Θo as shown below.

Except for part (1), give all answers in terms of the parameters of this problem: P, f, λ,
D, R, Θo .

1. Assuming that D ' 2 cm and R ' 40 cm evaluate the solid angle subtended by the
detector.

2. Determine the number of photons per second collected by the phototube.

3. Determine the total number of photons scattered per second into an angle less than
Θo.

4. For small Θo determine a Taylor series expansion for part (3), i.e. determine the
number scattered with angle less than Θo for small Θo.


