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1 Introduction:  What is this course about? 

1.1 Some Basic Ideas 
This course traces the historical development of some key scientific ideas:  space, time, 

motion, mass and force.   Philosophers, and more practical people, have struggled with these 
concepts since the earliest recorded times.  Their combined efforts have been fruitful:  real 
progress in understanding has evolved over the centuries.   

In fact, the first real understanding of the mathematics and physics of motion, by Galileo and 
Newton in the seventeenth century, began the series of developments that underlie our modern 
technology.  Just think for a moment how much the way we live now depends on this 
technology:  a hundred years ago there were no computers, few phones and few automobiles.  
Actually, though, a lot had been accomplished in the century prior to that: in 1800, the fastest 
transportation on land was a horse, at sea a well-designed sailing ship, and messages took 
weeks to cross the Atlantic.   By 1900, steamships were crossing  the Atlantic in a week or so, 
railroads spanned  the continents, there were thousands of miles of telegraph cables under the 
oceans.  In 1904, a steam train in England reached one hundred miles an hour.  The pace of 
change has been picking up ever since it began with Galileo and Newton using Greek methods to 
analyze motions of projectiles and planets, and thereby discovering the underlying laws. 

1.2 Babylonians and Greeks  
Many civilizations have made significant contributions to the understanding of these key ideas:  
in a one semester course, we can only look at a few.  After a brief look at the Babylonians who 
were carrying out sophisticated mathematical accounting and keeping precise astronomical 
records four thousand years ago, we’ll spend some time reviewing the astonishing contribution 
of the ancient Greeks, who not only invented science, but also developed the modern approach 
to mathematics.  Greek geometry played a central role in the work of Galileo and Newton 
almost two thousand years later, at the beginning of the modern scientific era. 

1.3 Greek Classics Come to Baghdad 
Despite these achievements, Greek interest in science gradually waned during the first centuries 
of the Christian era.  However, much of the earlier work was preserved, thanks, remarkably, to 
the Arabs.  As Europe fell  into the chaos of the Dark Ages, Greek classics were being translated 
into Arabic in Baghdad, and over the next five hundred years Arab scholars clarified and 
extended Greek science and mathematics. 

About a thousand years ago, parts of Europe began to settle down, and the classical learning 
preserved and strengthened by the Arabs was rediscovered.  The centers of learning in the West 
at that time were the monasteries.  The Arabic texts were translated  into Latin (the common 
language of the European monks), and later some of the surviving original Greek texts were 
uncovered and translated.   
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1.4 Monasteries and Universities 
This influx of classical learning certainly broadened the intellectual horizons in the monasteries, 
and also in the universities, new religious teaching foundations that began to appear over the 
next two or three centuries.  But there was a catch—the monks were, naturally, of a theological 
disposition, and they were so overwhelmed by the excellence of the rediscovered classics, in 
particular the all-encompassing works of Aristotle, that they treated them in effect as holy writ.  
Aristotle was right about most things, but unfortunately not about the motion of falling stones, 
projectiles, forces, or indeed the motion of the earth: central topics in this course.  
Consequently, there was little progress in understanding the science of motion—called 
dynamics—during this period.   

1.5 Galileo 
The first real advance beyond Aristotle in understanding of motion came with Galileo.  Others 
had in fact sensed some of the truth, but Galileo was the first to bring together experimental 
data and mathematical analysis in the modern fashion.  In this sense, Galileo was arguably the 
first scientist (although that word wasn’t invented until the 1830’s).  An essential part of science 
is that it is not faith-based:  it’s O.K. to have a theory, which you might even term a belief, but it 
is only provisionally true until firmly established by unambiguous experiment or observation.   
This was Galileo’s revolutionary contribution: he refused to accept assertions from Aristotle, or 
for that matter what he considered naïve literal interpretations of the bible, if they contradicted 
what could be demonstrated or observed.  But, like every other great scientist, he wasn’t right 
about everything, as we shall see. 

1.6 Newton 
Galileo made many contributions to physics and astronomy, his telescopic observations made 
clear that the Moon was a big rock, not some mysterious ethereal substance.  Together with 
some results of Kepler, this led Isaac Newton in the late 1600’s to his Equations of Motion and 
theory of a Universal Law of Gravitation, establishing the unity of familiar earthly dynamics, like 
throwing a ball, and the motion of the planets through the night sky.  This unification of earth 
and the heavens had a tremendous impact:  suddenly the natural world seemed more rational, 
more capable of systematic human explanation.  It was the Age of Enlightenment.  Newton’s 
methods were applied in many fields, proving brilliantly successful in analyzing natural 
phenomena, but much less convincing in the social sciences.   

1.7 From Newton to Einstein 
After Newton, the mathematical  and physical sciences developed rapidly, especially in France 
and England.  Over the next two hundred years, astronomical observations became orders of 
magnitude more exact, and Newton’s theory of gravitation, based on much cruder observations, 
continued to predict the planetary motions successfully, as more demanding precision was 
needed.  But finally it stumbled:  the planet Mercury goes around the Sun in an elliptical orbit, 
and the axis of this ellipse itself moves slowly around in a circle. The rate of this axis turning, or 
precession, as it’s called, is predicted by Newton’s theory: it’s caused by attraction of other 
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planets, and the sun not being a perfect sphere.  But the Newtonian prediction was a little bit 
wrong:  about 1% from what was observed.  And the precession is very small anyway: the 
discrepancy amounted to a difference of about a one degree turn in ten thousand years.  But 
this tiny effect was a key to Einstein’s  General Theory of Relativity, which turns out to have far 
more dramatic manifestations, such as black holes. 

Perhaps the most important development in the physical sciences in the two centuries following 
Newton was progress in understanding electricity and magnetism, and the realization that light 
was a wave of electric and magnetic fields.  This made possible much of the basic technology 
underpinning our civilization: electric power was distributed in the late 1800’s, radio waves were 
first transmitted around 1900.  Quite unexpectedly, imagining someone in motion measuring 
the electric and magnetic fields in a light wave led  to Einstein’s epiphany, that time was not as 
absolute as everyone had always taken for granted, but flowed at different rates for people 
moving at different speeds.  This in turn led to the Special Theory of Relativity, to E = mc2, and 
nuclear power.  

1.8 What about Other Civilizations? 
Why is this course all about Europe and the Middle East?  What about China, India, or Mayans, 
for example?  Good questions—but we are not attempting here a history of all scientific 
development, or even of all basic physics.  We’re focusing instead on one important aspect: the 
understanding of dynamics, meaning how motion relates to forces.  Analyzing motion 
quantitatively, which is necessary for getting anywhere in this subject, turns out to be very 
tricky.  The ancient Greeks, for all their brilliant discoveries and writings, didn’t manage it, nor 
did the Chinese, Indians or Mayans.   Galileo was the first to give a satisfactory mathematical 
description of acceleration, and link it firmly with observation, although partial success had been 
achieved by others earlier.  His advances are the basis for this course: but he would have gotten 
nowhere without tools provided by Greek geometry, itself dependent on earlier work by 
Babylonians and Egyptians.  So we begin at the beginning, or at least at the recorded beginning. 
A crucial contribution from India was the so-called Arabic number system, which is actually 
Hindu.  The Arabs in Baghdad developed classical learning thanks to cheap paper, a discovery 
imported from China, and the revival of learning in Europe after the Dark Ages owed much to 
newly efficient farming, using horses with Chinese harnesses in place of less efficient oxen—this 
gave some people time to think.  The Chinese also contributed printing, the magnetic compass 
and gunpowder, all of which had a great impact on the West, but, as we’ve said, here we’re just 
focusing on some basic ideas, and there was no Chinese Galileo. 

1.9 Plan of the Course 
The course falls rather naturally into three parts, which will take approximately equal times.  
There will be in-class midterms at the ends of the first two parts. 

Part I covers the needed developments in mathematics and science from the earliest times until 
Galileo: the Babylonians and Egyptians, the Greeks, the Arabs, and early Western Europe.  
Obviously, we cannot give a complete picture of all these developments: we pick and choose 
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those most relevant to our later story.  (We won’t even cover all the material in these notes—
see the syllabus—those sections we skip contain background material you might find 
interesting.) 

Part II will be devoted to the works of Galileo and Newton, culminating in Newton’s Laws of 
Motion and his Law of Universal Gravitation: the revolution revealing that the heavens obeyed 
the same laws as earthly phenomena. 

Part III begins with some puzzles about the nature and speed of light, accurately measured in 
the nineteenth century thanks to new developments in technology.  These puzzles were only 
resolved decades later by Einstein, and led to a new and different understanding of time, space, 
mass and energy. 
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2 Counting in Babylon 

2.1 The Earliest Written Language  
Sumer and Babylonia, located in present-day Iraq, were probably the first peoples to have a 
written language, beginning in Sumer in about 3100 BC.  The language continued to be written 
until the time of Christ, but then it was completely forgotten, even the name Sumer became 
unknown until the nineteenth century.   

 

From the earliest times, the language 
was used for business and 
administrative documents.  Later, it 
was used for writing down epics, 
myths, etc., which had earlier probably 
been handed down by oral tradition, 
such as the Epic of Gilgamesh.  

2.2 Weights and Measures: 
60s everywhere!  
In about 2500 BC, by Royal Edict, 
weights and measures were 
standardized in Babylon.  This was a 
practical business decision, which 

without doubt eliminated much tension in the marketplace.  

The smallest unit of weight was the grain (about 45 milligrams).  What use was that?  At first, 
the currency was in fact barleycorn!  (They later moved to silver and gold ingots.)  The shekel 
was 180 grains (about ¼ ounce), the mina 60 shekels, and the talent 3600 shekels (about 67 
pounds).  More details here. 

1 talent  =  60 minas  =  3600 shekels  =   approx  60 lbs 

   1 mina    =     60 shekels  =   approx  1 lb 

          1 shekel  =  180 grains =  approx ¼ oz 

        1 grain  =  approx  45 mg 

 

The smallest unit of length was—surprise—the barleycorn, called she, about 1/10 inch.  

Next came the finger, or shu-si, equal to 6 she, about 2/3 of an inch.   

The cubit (or kush) was 30 fingers, about 20 inches.   

http://www-groups.dcs.st-and.ac.uk/history/Diagrams/Babylon_Map.jpeg
http://www.livius.org/w/weights/weights.html#Money
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The nindan (or GAR, or rod) was 12 cubits, 20 feet or 6 meters. 

The cord or rope (used in surveying) was 120 cubits, 200 feet, that is, 3600 fingers.   

The league (also called stage and beru) was 180 cords, about seven miles. 

 

The basic unit of area was the sar, one square nindan, 400 sq ft, a garden plot.  

The gin was 1/60 sar.  

By 2000 BC, there was a calendar with a year of 360 days, 12 months of 30 days each, with an 
extra month thrown in every six years or so to keep synchronized with astronomical 
observations.  (According to Dampier, A History of Science, Cambridge, page 3, the day was 
divided into hours, minutes and seconds, and the sundial invented.  He implies this is about 
2000 BC.  He doesn’t say how many hours in a day, and Neugebauer (The Exact Sciences in 
Antiquity, Dover, page 86) claims the Egyptians were the first to come up with twenty-four.)  

The circle was divided into 360 degrees.  

Notice that all these standards of measurement include multiples of 60 frequently—obviously, 
60 was the Babylonians’ favorite number.  

2.3 Number Systems: Ours, the Roman and the Babylonian  
To appreciate what constitutes a good counting system, it is worthwhile reviewing briefly our 
own system and that of the Romans.  The Roman system is in a way more primitive than ours:  X 
always means 10, C means 100 and I means 1.  (You might be thinking:  this isn’t quite true—
they reversed numbers to indicate subtraction, such as IV for 4.  In fact it appears they didn’t, 
they used IIII, and IV is more recent.  There’s an article on all this in Wikipedia, which is 
interesting but currently unreliable.)   

By contrast, in our system 1 can mean 1 or 10 or 100 depending on where it appears in the 
expression—the 1 in 41 means a different quantity from the 1 in 145, for example.  We say the 
value of a symbol has “positional dependence”—its actual value depends on where in the 
expression it appears.  Our convention, as you well know, is that the number to the far right in 
our system is the number of 1’s, the number to its immediate left is the number of 10’s, to the 
left of that comes the number of 10×10’s, then of 10×10×10’s and so on.  We use the same set 
of symbols, 1,2,3,4,5,6,7,8,9,0 in each of these positions, so the value of such a symbol in a 
number depends on its position in that number.  

To express quantities less than 1, we use the decimal notation.  We put a dot (in some countries 
a comma is used) and it is understood that the number to the immediate left of the dot is the 
number of 1’s, that to the immediate right the number of tenths (10-1 ’s in mathematical 
notation), the next number is the number of hundredths (10-2 ’s) and so on.  With this 
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convention, ½ is written .5 or 0.5 and 1/5 is .2.  Unfortunately, 1/3 becomes .33333..., rather 
inconveniently, and 1/6 and 1/7 similarly go on forever.  (Actually, this decimal system with the 
dot is, historically speaking, rather a recent invention—it was created by a Scotsman called 
Napier about 400 years ago. ) 

To get back to comparing the Roman system with our own, notice that the Romans did not have 
a 0, zero.  This is why it is important to have a different symbol for ten and one, X and I are easily 
distinguished.  If we didn't have a zero, one and ten would both be represented by 1, although 
we might be able to distinguish them in a column of figures by placing them in different 
columns.  

After those preliminary remarks, we are ready to look at the Babylonian system.  It’s written on 
clay tablets – that’s why we still have original copies around!  

Their number system has only two basic elements, the first of which is clear on examining the 
first nine numbers:  

 

Evidently, these nine numbers are all constructed of a single element, a mark easily gouged with 
one twist of a stick in the soft clay, and the number of times this element is repeated is the 
number represented.  The sticks used to make the marks were wedge shaped,  

The numbers 10, 20, 30, 40, 50, are represented by the symbols: 

 

It is clear that again we have simple repetition of a basic element, which we will conveniently 
represent by <, and again it’s a mark not difficult to make in the soft clay.  Thus, any number 
between 1 and 59 is represented by a symbol from the second diagram followed in the usual 
case by one from the first diagram, so 32 would be written <<<11, approximately. 

When they get to 60, the Babylonians start again in a similar way to our starting again at 10. 
Thus, 82 is written as 1<<11, where the first 1 represents 60.  

http://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html#read
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So the Babylonian system is based on the number 60 the same way ours is based on 10.  Ours is 
called a “decimal” system, theirs a “sexagesimal” system. 

There are some real problems with the Babylonian number system, the main one being that 
nobody thought of having a zero, so both sixty and one look exactly the same, that is both are 
represented by 1!  Actually, it’s even worse—since there is no decimal point, the way to write 
1/2, which we write 0.5, for five tenths, they would write <<<, for thirty sixtieths—but with no 
zero, of course, and no dot either.  So if we see <<< on a clay tablet, we don't know if it means 
1/2, 30 or for that matter 30×60, that is, 1800.  

This is in fact not as bad as it sounds—sixty is a very big factor, and it will usually be clear from 
the context if <<< should be interpreted as 1/2 or 30.  Also, in columns of figures, a <<< 
representing 30 was often put to the left of <<< representing 1/2.  

2.4 Fractions  
In real life commercial transactions, simple addition and even multiplication are not that difficult 
in most number systems.  The hard part is division, in other words, working with fractions, and 
this comes up all the time when resources must be divided among several individuals.  The 
Babylonian system is really wonderful for fractions!  

The most common fractions, 1/2, 1/3, 1/4, 1/5, 1/6 all are represented by a single number (1/2= 
<<< , 1/3= << , 1/5= <11, etc.).  That is, these fractions are exact numbers of sixtieths—sixty is 
the lowest number which exactly divides by 2, 3, 4, 5, and 6.  This is a vast improvement on the 
decimal system, which has infinite recurrences for 1/3 and 1/6, and even ¼ needs two figures: 
.25.  

(Of course, even in Babylonian, eventually we are forced to go to the second “sexagesimal” 
number, which would be the number of sixtieths of sixtieths, that is, of three-thousand-six-
hundredths.  For example, 1/8 is seven-and-a-half sixtieths, so would be written as seven 
followed by thirty—for seven sixtieths plus thirty sixtieths of a sixtieth.  And, 1/7 is as much of a 
headache as it is in our own system.) 

2.5 Ancient Math Tables  
In order to make their bookkeeping as painless as possible, the Babylonians had math tables: 
clay tablets with whole lists of reciprocals.  The reciprocal of a number is what you have to 
multiply it by to get 1, so the reciprocal of 2 is 1/2 written 0.5 in our system, the reciprocal of 5 
is 1/5 written 0.2 and so on.  

The point of having reciprocal tables is that dividing by something is the same as multiplying by 
the reciprocal, so using the tables you can replace division by multiplication, which is a lot 
easier.  

Surviving clay tablet examples of Babylonian reciprocal tablets look like this: 
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 11      <<< 

 

 111      << 

 

 1111     <11111 

 

 11111     <11 

 

 111111    <  

 

 11111111    1111111 <<<  

 

We have cheated a bit here—the numbers 4, 5, 6, etc. in both columns should really have their 
1’s stacked as in the first figure above.  

2.6 How Practical are Babylonian Weights and Measures?  
Let’s take as an example how much food a family needs.  If they consume 120 shekels of grain 
each day, for example, that’s 12 talents of grain per year.  (One talent = 3600 shekels).  Just 
imagine the parallel calculation now: if the family consumes 30 ounces of grain a day, what is 
that in tons per year?  If you were transported to the Babylon of four thousand years ago, you 
would hardly miss your calculator!  (Admittedly, the Babylonian calculation is a bit more difficult 
every six years when they throw in an extra month.)  

2.7 Pythagoras’ Theorem a Thousand Years before Pythagoras 
Some of the clay tablets discovered contain lists of triplets of numbers, starting with (3, 4, 5) 
and (5, 12, 13) which are the lengths of sides of right angled triangles, obeying Pythagoras’ 

“sums of squares” formula.  In particular, one tablet, now 
in the Yale Babylonian Collection, this photograph by Bill 
Casselman, shows a picture of a square with the 
diagonals marked, and the lengths of the lines are 
marked on the figure: the side is marked <<< meaning 
thirty (fingers?) long, the diagonal is marked: <<<<11 
<<11111 <<<11111. This translates to 42, 25, 35, meaning 
42 + 25/60 + 35/3600.  Using these figures, the ratio of 
the length of the diagonal to the length of the side of the 
square works out to be 1.414213…  

Now, if we use Pythagoras’ theorem, the diagonal of a 
square forms with two of the sides a right angled triangle, and if we take the sides to have 
length one, the length of the diagonal squared equals 1 + 1, so the length of the diagonal is the 

http://en.wikipedia.org/wiki/Yale_Babylonian_Collection
http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html
http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html
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square root of 2.  The figure on the clay tablet is incredibly accurate—the true value is 
1.414214…  Of course, this Babylonian value is far too accurate to have been found by 
measurement from an accurate drawing—it was clearly checked by arithmetic multiplication by 
itself, giving a number very close to two.  

2.8 Babylonian Pythagorean Triplets 

Question: the Babylonians catalogued many Pythagorean triplets of numbers (centuries before 
Pythagoras!) including the enormous 3,367 : 3,456 : 4,825.  Obviously, they didn’t check every 
triplet of integers, even plausible looking ones, up to that value. How could they possibly have 
come up with that set? 

Suppose they did discover a few sets of integers by trial and error, say 3 : 4: 5,  5 : 12 :13, 7: 24 : 
25,  8 : 15 : 17.  We’ll assume they didn’t count 6 : 8 : 10,  and other triplets where all three 
numbers have a common factor, since that’s not really anything new.   

Now they contemplate their collection of triplets. Remember, they’re focused on sums of 
squares here.  So, they probably noticed that all their triplets had a remarkable common 
property: the largest member of each triplet (whose  square is of course the sum of the squares 
of the other two members) is in fact itself a sum of two squares!  Check it out: 5 = 22 + 12, 13 = 32 
+ 22, 25 = 42 + 32, 17 = 42 + 12. 

Staring at the triplets a little longer they might have seen that once you express the largest 
member as a sum of two squares, one of the other two members of the triplet is the difference 

of the same two squares!  That is,  3 = 22 � 12, 5 = 32 � 22, 7 = 42 � 32, 15 = 42 � 12. 

How does the third member of the triplet relate to the numbers we squared and added to get 

the largest member?  It’s just twice their product!  That is,  4 = 2�2�1,  12 = 2�3�2,  24 = 2�4�3,  8 = 

2�4�1. 

This at least suggests a way to manufacture larger triplets, which can then be checked by 
multiplication. We need to take the squares of two numbers that don’t have a common factor 
(otherwise, all members of the triplet will have that factor).   The simplest possible way to do 
that is to have the first square an even power of 2, the second an even power of 3.  (The order in 
the difference term could of course be reversed, depending on which one’s bigger).   

In fact, notice that 5 : 12 : 13 and  7 : 24 : 25 are already of this form, with 22, 32 and 24, 
32.  What about 26, 32?  That gives 48 : 55 : 73.    Try another:  26, 34 gives 17 : 144 : 145.  But why 
stop there?  Let’s try something bigger:  212, 36.  That gives the triplet 3,367 : 3,456 : 4,825.  Not 
so mysterious after all.  
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3 Early Greek Science: Thales to Plato 

3.1 The Milesians  
The first recorded important contributions to Greek science are from the city of Miletus, near 

the coast of what is now 
Turkey, beginning with Thales 
in about 585 B.C., followed by 
Anaximander about 555 B.C., 
then Anaximenes in 535 B.C.  
We shall argue below that 
these Milesians were the first 
to do real science, 
immediately recognizable as 
such to a modern scientist, as 
opposed to developing new 
technologies.  

The crucial contribution of 
Thales to scientific thought 
was the discovery of nature.  
By this, we mean the idea that 
the natural phenomena we 
see around us are explicable in 

terms of matter interacting by natural laws, and are not the results of arbitrary acts by gods.   

An example is Thales’ theory of earthquakes, which was that the (presumed flat) earth is 
actually floating on a vast ocean, and disturbances in that ocean occasionally cause the earth to 
shake or even crack, just as they would a large boat.  (Recall the Greeks were a seafaring 
nation.)  The common Greek belief at the time was that the earthquakes were caused by the 
anger of Poseidon, god of the sea. Lightning was similarly the anger of Zeus.  Later, Anaximander 
suggested lightning was caused by clouds being split up by the wind, which in fact is not far from 
the truth.  

The main point here is that the gods are just not mentioned in analyzing these phenomena.  The 
Milesians’ view is that nature is a dynamic entity evolving in accordance with some admittedly 
not fully understood laws, but not being micromanaged by a bunch of gods using it to vent their 
anger or whatever on hapless humanity.  

An essential part of the Milesians’ success in developing a picture of nature was that they 
engaged in open, rational, critical debate about each others ideas.  It was tacitly assumed that 
all the theories and explanations were directly competitive with one another, and all should be 
open to public scrutiny, so that they could be debated and judged.  This is still the way scientists 
work. Each contribution, even that of an Einstein, depends heavily on what has gone before.  

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Thales.html
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The theories of the Milesians fall into two groups:  

(1) theories regarding particular phenomena or problems, of the type discussed above,  

(2) speculations about the nature of the universe, and human life.  

Concerning the universe, Anaximander suggested that the earth was a cylinder, and the sun, 
moon and stars were located on concentric rotating cylinders: the first recorded attempt at a 
mechanical model.  He further postulated that the stars themselves were rings of fire.  Again, a 
very bold conjecture—all heavenly bodies had previously been regarded as living gods.  

He also considered the problem of the origin of life, which is of course more difficult to explain if 
you don’t believe in gods!  He suggested that the lower forms of life might be generated by the 
action of sunlight on moist earth.  He also realized that a human baby is not self-sufficient for 
quite a long time, so postulated that the first humans were born from a certain type of fish.  

All three of these Milesians struggled with the puzzle of the origin of the universe, what was 
here at the beginning, and what things are made of.  Thales suggested that in the beginning 
there was only water, so somehow everything was made of it.  Anaximander supposed that 
initially there was a boundless chaos, and the universe grew from this as from a seed.  
Anaximenes had a more sophisticated approach, to modern eyes.  His suggestion was that 
originally there was only air (really meaning a gas) and the liquids and solids we see around us 
were formed by condensation.  Notice that this means a simple initial state develops into our 
world using physical processes which were already familiar.  Of course this leaves a lot to 
explain, but it’s quite similar to the modern view.  

3.2 Early Geometry  
One of the most important contributions of the Greeks was their development of geometry, 
culminating in Euclid’s Elements, a giant textbook containing all the known geometric theorems 
at that time (about 300 BC), presented in an elegant logical fashion.  

Notice first that the word “geometry” is made up of “geo”, meaning the earth, and “metry” 
meaning measurement of, in Greek.  (The same literal translations from the Greek give 
geography as picturing the earth (as in graphic) and geology as knowledge about the earth.  Of 
course, the precise meanings of all these words have changed somewhat since they were first 
introduced.)  

The first account we have of the beginnings of geometry is from the Greek historian Herodotus, 
writing (in 440 B.C. or so) about the Egyptian king Sesotris (1300 B.C.):  

“This king moreover (so they said) divided the country among all the Egyptians by giving each an 
equal square parcel of land, and made this the source of his revenue, appointing the payment of 
a yearly tax.  And any man who was robbed by the river of a part of his land would come to 
Sesotris and declare what had befallen him; then the king would send men to look into it and 
measure the space by which the land was diminished, so that thereafter it should pay the 
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appointed tax in proportion to the loss.  From this, to my thinking, the Greeks learnt the art of 
measuring land...”  

On the other hand Aristotle, writing a century later, had a more academic, and perhaps less 
plausible, theory of the rise of geometry:  

“..the sciences which do not aim at giving pleasure or at the necessities of life were discovered, 
and first in the places where men first began to have leisure.  That is why the mathematical arts 
were founded in Egypt, for there the priestly class was allowed to be at leisure.”  

However, as Thomas Heath points out in A History of Greek Mathematics, page 122, one might 
imagine that if this (that is, Aristotle’s theory) were true, Egyptian geometry “would have 
advanced beyond the purely practical stage to something more like a theory or science of 
geometry.  But the documents which have survived do not give any grounds for this supposition; 
the art of geometry in the hands of the priests never seems to have advanced beyond mere 
routine. The most important available source of information about Egyptian mathematics is the 
Papyrus Rhind written probably about 1700 BC, but copied from an original of the time of King 
Amenemhat III (Twelfth Dynasty), say 2200 BC.”  

Heath goes on to give details 
of what appears in this 
document: areas of 
rectangles, trapezia and 
triangles, areas of circles given 
as (8d/9)2, where d is the 
diameter, corresponding to pi 
equal to 3.16 or so, about 1% 
off. There are approximate 

volume measures for hemispherical containers, and volumes for pyramids.  

Another important Egyptian source is the Moscow Papyrus, which includes the very practical 
problem of calculating the volume of a pyramid! (Actually with a flat top: look at the figure, from 
Wikipedia.) 

3.3 Early Geometry According to Proclus 
Here’s a brief overview of the early history of geometry, up to Euclid, by the Greek author 
Proclus Diadochus, AD 410-485.  He asserts that geometry was first brought to Greece by Thales, 
after he spent some years in Egypt.  

From his book: Commentary on Euclid's Elements I: 

 We must next speak of the origin of geometry in the present world cycle. For, as the remarkable 
Aristotle tells us, the same ideas have repeatedly come to men at various periods of the 
universe. It is not, he goes on to say, in our time or in the time of those known to us that the 

http://books.google.com/books?id=drnY3Vjix3kC&pg=PA122&lpg=PA122&dq=papyrus+rhind+heath+1700&source=web&ots=v0W1xpHjh7&sig=c_DAKSpnHkib6-GB1bd10_OamtU&hl=en&sa=X&oi=book_result&resnum=1&ct=result#PPA121,M1
http://www-groups.dcs.st-and.ac.uk/history/Diagrams/Rhind_papyrus.jpeg
http://www-groups.dcs.st-and.ac.uk/history/Diagrams/Moscow_papyrus.jpeg
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sciences have first arisen, but they have appeared and again disappeared, and will continue to 
appear and disappear, in various cycles, of which the number both past and future is countless. 
But since we must speak of the origin of the arts and sciences with reference to the present 
world cycle, it was, we say, among the Egyptians that geometry is generally held to have been 
discovered. It owed its discovery to the practice of land measurement. For the Egyptians had to 
perform such measurements because the overflow of the Nile would cause the boundary of 
each person's land to disappear. Furthermore, it should occasion no surprise that the discovery 
both of this science and of the other sciences proceeded from utility, since everything that is in 
the process of becoming advances from the imperfect to the perfect. The progress, then, from 
sense perception to reason and from reason to understanding is a natural one. And so, just as 
the accurate knowledge of numbers originated with the Phoenicians through their commerce 
and their business transactions, so geometry was discovered by the Egyptians for the reason we 
have indicated.  

It was Thales, who, after a visit to Egypt, first brought this study to Greece. Not only did he make 
numerous discoveries himself, but laid the foundation for many other discoveries on the part of 
his successors, attacking some problems with greater generality and others more empirically. 
After him Mamercus the brother of the poet Stesichorus, is said to have embraced the study of 
geometry, and in fact Hippias of Elis writes that he achieved fame in that study.  

After these Pythagoras changed the study of geometry, giving it the form of a liberal discipline, 
seeking its first principles in ultimate ideas, and investigating its theorems abstractly and in a 
purely intellectual way.  

[He then mentions several who developed this abstract approach further: Anaxagoras, 
Hippocrates, Theodorus, etc.] 

Plato, who lived after Hippocrates and Theodorus, stimulated to a very high degree the study of 
mathematics and of geometry in particular because of his zealous interest in these subjects. For 
he filled his works with mathematical discussions, as is well known, and everywhere sought to 
awaken admiration for mathematics in students of philosophy.  

[He then lists several mathematicians, including Eudoxus and Theatetus, who discovered many 
new geometric theorems, and began to arrange them in logical sequences-this process 
culminated in the work of Euclid, called his Elements (of geometry) about 300 BC. ] 

Euclid composed Elements, putting in order many of the theorems of Eudoxus, perfecting many 
that had been worked out by Theatetus, and furnishing with rigorous proofs propositions that 
had been demonstrated less rigorously by his predecessors … the Elements contain the 
complete and irrefutable guide to the scientific study of the subject of geometry.  
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3.4 The Pythagoreans: a Cult with a Theorem, and an Irrational 
Discovery  

Pythagoras was born about 570 B.C. on the island of Samos (on the map above), less than a 
hundred miles from Miletus, and was thus a contemporary of Anaximenes.  However, the island 
of Samos was ruled by a tyrant named Polycrates, and to escape an unpleasant regime, 
Pythagoras moved to Croton, a Greek town in southern Italy (at 39 05N, 17 7 30E), about 530 
B.C.  

Pythagoras founded what we would nowadays call a cult, a religious group with strict rules 
about behavior, including diet (no beans), and a belief in the immortality of the soul and 
reincarnation in different creatures.  This of course contrasts with the Milesians’ approach to 
life.  

The Pythagoreans believed strongly that numbers, by which they meant the positive integers 
1,2,3, ..., had a fundamental, mystical significance.  The numbers were a kind of eternal truth, 
perceived by the soul, and not subject to the uncertainties of perception by the ordinary senses.  
In fact, they thought that the numbers had a physical existence, and that the universe was 
somehow constructed from them.  In support of this, they pointed out that different musical 
notes differing by an octave or a fifth, could be produced by pipes (like a flute), whose lengths 
were in the ratios of whole numbers, 1:2 and 2:3 respectively.  Note that this is an experimental 
verification of an hypothesis.  

They felt that the motion of the heavenly bodies must somehow be a perfect harmony, giving 
out a music we could not hear since it had been with us since birth.  Interestingly, they did not 
consider the earth to be at rest at the center of the universe.  They thought it was round, and 
orbited about a central point daily, to account for the motion of the stars.  Much was wrong 
with their picture of the universe, but it was not geocentric, for religious reasons.  They felt the 
earth was not noble enough to be the center of everything, where they supposed there was a 
central fire.  (Actually there is some debate about precisely what their picture was, but there is 
no doubt they saw the earth as round, and accounted for the stars’ motion by the earth’s 
rotation.) 

To return to their preoccupation with numbers, they coined the term “square” number, for 4,9, 
etc., drawing square patterns of evenly spaced dots to illustrate this idea.  The first square 
number, 4, they equated with justice. 5 represented marriage, of man (3) and woman (2).  7 was 
a mystical number.  Later Greeks, like Aristotle, made fun of all this.  

3.5 The Square on the Hypotenuse  
Pythagoras is of course most famous for the theorem about right angled triangles, that the sum 
of the squares of the two sides enclosing the right angle is equal to the square of the long side, 
called the hypotenuse.   

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Pythagoras.html
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Area c2 

c 

Area b2 

Pythagoras’ Theorem:  c2 = a2 +b2.  This means the total 
amount of blue material (the biggest square) is equal to the total 
amount of brown material (the other two squares). 

Area a2 

c 

b 

a 

This is easily proved by 
drawing two diagrams, 
one having four copies 
of the triangle arranged 
so that their 
hypotenuses form a 
square, and their right 
angles are all pointing 
outward, forming a 
larger overall square, in 
the other this larger 
square is divided 
differently - the four 
triangles are formed 
into two rectangles, set 
into corners of the 
square, leaving over 
two other square areas 
which are seen to be 
the squares on the 
other two sides.  

You can prove it yourself by clicking here!  

Actually, it seems very probable that this result was known to the Babylonians a thousand years 
earlier (see the discussion in the lecture on Babylon), and to the Egyptians, who, for example, 
used lengths of rope 3, 4 and 5 units long to set up a large right-angle for building and surveying 
purposes.  

3.6 Rational and Irrational Numbers  
As we discussed above, the Pythagoreans greatly revered the integers, the whole numbers 1, 2, 
3, …, and felt that somehow they were the key to the universe.  One property of the integers 
we’ll need is the distinction between prime numbers and the rest: prime numbers have no 
divisors.  So, no even number is prime, because all even numbers divide exactly by 2.  You can 
map out the primes by writing down all the integers, say up to 100, cross out all those divisible 
by 2 (not counting 2 itself), then cross out those divisible by 3, then 5, etc.  The numbers 
surviving this process have no divisors, they are the primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 
31, 37, …  Now, any integer can be written as a product of primes: just divide it systematically 
first by 2, then if it divides, by 2 again, until you get something that doesn’t divide by 2 (and give 
a whole number).  Then redo the process with 3, then 5, until you’re done.  You can then write, 
for example, 12 = 2×2×3,  70 = 2×5×7 and so on.   

http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/Pythagoras.swf
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Notice now that if you express a number as a product of its prime factors in this way, then the 
square of that number is the product of the same factors, but each factor appears twice as 
often: (70)2 = 2×2×5×5×7×7.  And, in particular, note that the square of an even number has 2 
appearing at least twice in its list of factors, but the square of an odd number must still be odd: 
if 2 wasn’t on the list of factors of the number, then it won’t be on the list for its square, since 
this is the same list with the factors just appearing twice as often.  

Of course, from the earliest times, from Babylon and Egypt, people had been dealing with 
numbers that were not whole numbers---fractions, for example, or numbers which were 
integers plus fractions, such as one-and-a-half.  This didn’t bother the Pythagoreans too much, 
because after all fractions are simply ratios of two whole numbers, so they fit nicely into a 
slightly extended scheme.  

Let’s think about all possible numbers between one and ten, say, including all those with 
fractional parts, such as 3/2 or 4567/891, to choose a number at random.  Suppose we take a 
piece of paper, mark on it points for the whole numbers 1, 2, 3, ...,10.  Then we put marks for 
the halves, then the quarters and three quarters.  Next we put marks at the thirds, 4/3, 5/3, 7/3, 
up to 29/3. Then we do the fifths, then the sevenths, ... Then we buy a supercomputer with a 
great graphics program to put in the higher fractions one after the other at lightning speed!  

The question is: is this list of fractions all the numbers there are between one and ten?  

In other words, can we prove that there’s a number you could never ever reach by this method, 
no matter how fast your computer?  

Two thousand five hundred years ago, the Pythagoreans figured out the answer to this question. 

The answer is yes: there are numbers which are not fractions—that is, they cannot be expressed 
as ratios of integers. 

This discovery greatly upset the Pythagoreans, since they revered the integers as the mystical 
foundation of the universe, and now apparently they were not even sufficient foundation for 
the numbers.  Ironically, this unnerving discovery followed from applying their very own 
theorem—Pythagoras’ theorem—to the simplest possible right-angled triangle: half a square, a 
triangle with its two shorter sides both equal to one.  

This means its long side—the hypotenuse—has a length whose square is two.  

We shall now go through their argument showing that the length of this longest side cannot be 
written as a ratio of two integers, no matter how large you choose the integers to be.  

The basic strategy of the proof is to assume it can be written as a ratio of integers, then prove 
this leads to a contradiction. 
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So, we assume we can write this number—the length of the longest side—as a ratio of two 
whole numbers, in other words a fraction m/n.  This is the length whose square is 2, so m²/n² = 
2, from which m² = 2n².  

Now all we have to do is to find two whole numbers such that the square of one is exactly twice 
the square of the other.  How difficult can this be? To get some idea, let’s write down the 
squares of some numbers and look:  

12 = 1, 22 = 4, 32 = 9, 42 = 16, 52 = 25, 62 = 36, 72 = 49, 82 = 64, 92 = 81, 102 = 100, 112 = 121, 122 = 
144, 132 = 169, 142 = 196, 152 = 225, 162 = 256, 172 = 289, … .  

On perusing this table, you will see we have some near misses:  32 is only one more than twice 
22, 72 is only one less than twice 52, and 172 is only one more than twice 122.  It’s difficult to 
believe that if we keep at it, we’re not going to find a direct hit eventually.  

In fact, though, it turns out this never happens, and that’s what the Pythagoreans proved.  
Here’s how they did it.  

First, assume we canceled any common factors between numerator and denominator.  

This means that m and n can’t both be even.  

Next, notice that the square of an even number is even.  This is easy to check: if a is an even 
number, it can be written a = 2b, where b is another whole number.  Therefore, a2 = 2x2xb2, so 
on fact a2 is not only even, it has 4 as a factor.  

On the other hand, the square of an odd number is always odd. If a number doesn’t have 2 as a 
factor, multiplying it by itself won’t give a number that has 2 as a factor.  

Now, back to the length of the square’s diagonal, m/n, with m² = 2n².  

Evidently, m² must be even, because it equals 2n², which has a factor 2.  

Therefore, from what we have just said above about squares of even and odd numbers, m must 

itself be even.  

This means, though, that m² must be divisible by 4.  

This means that 2n² must be divisible by 4, since m² = 2n² -- but in this case, n² must be divisible 

by 2!  

It follows that n must itself be even—BUT we stated at the beginning that we had canceled any 
common factors between m and n.  This would include any factor of 2, so they can’t both be 
even!  

Thus a watertight logical argument has led to a contradiction.  
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The only possible conclusion is: the original assumption is incorrect.  

This means that the diagonal length of a square of side 1 cannot be written as the ratio of two 
integers, no matter how large we are willing to let them be.  

This was the first example of an irrational number—one that is not a ratio of integers.  

Legend has it that the Pythagoreans who made this discovery public died in a shipwreck.  

3.7 What’s so Important about Irrational Numbers?  
The historical significance of the above proof is that it establishes something new in 
mathematics, which couldn’t have been guessed, and, in fact, something the discoverers didn’t 
want to be true.  Although fractions very close to the square root of 2 had been found by the 
Babylonians and Egyptians, there is no hint that they considered the possibility that no fraction 
would ever be found representing the square root of 2 exactly.  

The kind of abstract argument here is far removed from practical considerations where 
geometry is used for measurement.  In fact, it is irrelevant to measurement - one can easily find 
approximations better than any possible measuring apparatus.  The reason the Pythagoreans 
worked on this problem is because they thought they were investigating the fundamental 
structure of the universe.  

Abstract arguments of this type, and the beautiful geometric arguments the Greeks constructed 
during this period and slightly later, seemed at the time to be merely mental games, valuable for 
developing the mind, as Plato emphasized.  In fact, these arguments have turned out, rather 
surprisingly, to be on the right track to modern science, as we shall see.  

3.8 Change and Constancy in the Physical World  
Over the next century or so, 500 B.C.- 400 B.C., the main preoccupation of philosophers in the 
Greek world was that when we look around us, we see things changing all the time.  How is this 
to be reconciled with the feeling that the universe must have some constant, eternal qualities?  
Heraclitus, from Ephesus, claimed that “everything flows”, and even objects which appeared 
static had some inner tension or dynamism.  Parminedes, an Italian Greek, came to the opposite 
conclusion, that nothing ever changes, and apparent change is just an illusion, a result of our 
poor perception of the world.   

This may not sound like a very promising debate, but in fact it is, because, as we shall see, trying 
to analyze what is changing and what isn’t in the physical world leads to the ideas of elements, 
atoms and conservation laws, like the conservation of matter.  

The first physicist to give a clear formulation of a possible resolution of the problem of change 
was Empedocles around 450 B.C., who stated that everything was made up of four elements: 
earth, water, air and fire.  He asserted that the elements themselves were eternal and 
unchanging.  Different substances were made up of the elements in different proportions, just 
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as all colors can be created by mixing three primary colors in appropriate proportions.  Forces of 
attraction and repulsion (referred to as love and strife) between these elements cause coming 
together and separation, and thus apparent change in substances.  Another physicist, 
Anaxogoras, argued that no natural substance can be more elementary than any other, so there 
were an infinite number of elements, and everything had a little bit of everything else in it.  He 
was particularly interested in nutrition, and argued that food contained small amounts of hair, 
teeth, etc., which our bodies are able to extract and use.  

The most famous and influential of the fifth century B.C. physicists, though, were the atomists, 
Leucippus of Miletus and Democritus of Abdera.  They claimed that the physical world consisted 
of atoms in constant motion in a void, rebounding or cohering as they collide with each other.  
Change of all sorts is thus accounted for on a basic level by the atoms separating and 
recombining to form different materials.  The atoms themselves do not change. This sounds 
amazingly like our modern picture, but of course it was all conjecture, and when they got down 
to relating the atoms to physical properties, Democritus suggested, for example, that things 
made of sharp, pointed atoms tasted acidic, those of large round atoms tasted sweet.  There 
was also some confusion between the idea of physical indivisibility and that of mathematical 
indivisibility, meaning something that only exists at a point.  The atoms of Democritus had 
shapes, but it is not clear if he realized this implied they could, at least conceptually, be divided.  
This caused real problems later on, especially since at that time there was no experimental 
backing for an atomic theory, and it was totally rejected by Aristotle and others.  

3.9 Hippocrates and his Followers  
It is also worth mentioning that at this same time, on the island of Kos (see map) just a few miles 
from Miletus, lived the first great doctor, Hippocrates.  He and his followers adopted the 
Milesian point of view, applied to disease, that it was not caused by the gods, even epilepsy, 
which was called the sacred disease, but there was some rational explanation, such as infection, 
which could perhaps be treated.  

Here’s a quote from one of Hippocrates’ followers, writing about epilepsy in about 400 B.C.:  

“It seems to me that the disease called sacred … has a natural cause, just as other diseases have.  
Men think it divine merely because they do not understand it.  But if they called everything divine 
that they did not understand, there would be no end of divine things! … If you watch these 
fellows treating the disease, you see them use all kinds of incantations and magic—but they are 
also very careful in regulating diet.  Now if food makes the disease better or worse, how can they 
say it is the gods who do this? … It does not really matter whether you call such things divine or 
not.  In Nature, all things are alike in this, in that they can be traced to preceding causes.”  

The Hippocratic doctors criticized the philosophers for being too ready with postulates and 
hypotheses, and not putting enough effort into careful observation.  These doctors insisted on 
careful, systematic observation in diagnosing disease, and a careful sorting out of what was 

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Leucippus.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Democritus.html
http://classics.mit.edu/Hippocrates/sacred.html
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relevant and what was merely coincidental.  Of course, this approach is the right one in all 
sciences.  

3.10 Plato  
In the fourth century B.C., Greek intellectual life centered increasingly in Athens, where first 
Plato and then Aristotle established schools, the Academy and the Lyceum respectively, which 
were really the first universities, and attracted philosophers and scientists from all over Greece.  

Actually, this all began somewhat earlier with Socrates, Plato’s teacher, who, however, was not 
a scientist, and so not central to our discussion here.  One of Socrates’ main concerns was how 
to get the best people to run the state, and what were the ideal qualities to be looked for in 
such leaders.  He believed in free and open discussion of this and other political questions, and 
managed to make very clear to everybody that he thought the current leaders of Athens were a 
poor lot.  In fact, he managed to make an enemy of almost everyone in a position of power, and 
he was eventually brought to trial for corrupting the young with his teachings.  He was found 
guilty, and put to death.  

This had a profound effect on his pupil Plato, a Greek aristocrat, who had originally intended to 
involve himself in politics.  Instead, he became an academic-in fact, he invented the term!  He, 
too, pondered the question of what is the ideal society, and his famous book The Republic is his 
suggested answer.  He was disillusioned with Athenian democracy after what had happened to 
Socrates, and impressed with Sparta, an authoritarian state which won a war, the 
Peloponnesian war, against Athens.  Hence his Republic has rather a right wing, antidemocratic 
flavor.  However, he tries to ensure that the very best people in each generation are running the 
state, and he considers, being a philosopher, that the best possible training for these future 
leaders is a strong grounding in logic, ethics and dealing with abstract ideas.  This is made 
particularly clear on p 67,8 of Lloyd, where a quote from the Republic is given, in which Socrates 
is emphasizing how important it is for future leaders to study astronomy.  Glaucon agrees that 
astronomy is useful in navigation, military matters and accurately determining seasons for 
planting, etc., to which Socrates responds emphatically that these reasons are not nearly as 
important as the training in abstract reasoning it provides.  

Plato, then, had a rather abstract view of science, reminiscent of the Pythagoreans.  In 
particular, he felt that the world we apprehend with our senses is less important than the 
underlying world of pure eternal forms we perceive with our reason or intellect, as opposed to 
our physical senses.  This naturally led him to downgrade the importance of careful observation, 
for instance in astronomy, and to emphasize the analytical, mathematical approach.  

Plato believed the universe was created by a rational god, who took chaotic matter and ordered 
it, but he also believed that because of the inherent properties of the matter itself, his god was 
not omnipotent, in the sense that there were limits as to how good the universe could be: one 
of his examples was that smart people have large brains (he thought), but if you make the brain 

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Plato.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Aristotle.html
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too large by having a very thin skull, they won’t last long!  He felt this need to compromise was 
the explanation of the presence of evil in a universe created by a beneficent god.  

Plato’s concentration on perfect underlying forms did in fact lead to a major contribution to 
astronomy, despite his own lack of interest in observation.  He stated that the main problem in 
astronomy was to account for the observed rather irregular motion of the planets by some 
combination of perfect motions, that is, circular motions.  This turned out to be a very fruitful 
way of formulating the problem.  

Plato’s theory of matter was based on Empedocles’ four elements, fire, air, water and earth.  
However, he did not stop there.  He identified each of these elements with a perfect form, one 
of the regular solids, fire with the tetrahedron, air with the octahedron, water with the 
icosahedron and earth with the cube.  He divided each face of these solids into elementary 
triangles (45 45 90 and 30 60 90) which he regarded as the basic units of matter.  He suggested 
that water could be decomposed into fire and air by the icosahedron breaking down to two 
octahedra and a tetrahedron.  This looks like a kind of atomic or molecular theory, but his strong 
conviction that all properties of matter could eventually be deduced by pure thought, without 
resort to experiment, proved counterproductive to the further development of scientific 
understanding for centuries.  It should perhaps be mentioned, though, that the latest theory in 
elementary particle physics, string theory, known modestly as the theory of everything, also 
claims that all physical phenomena should be deducible from a very basic mathematical model 
having in its formulation no adjustable parameters—a perfect form. 

3.11 References 
  Lloyd, G. E. R. (1970).  Early Greek Science: Thales to Aristotle, Norton.  

 Heath, Sir Thomas (1921, 1981).  A History of Greek Mathematics, Volume I.  Dover. 
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4 Motion in the Heavens: Stars, Sun, Moon, Planets 

4.1 Introduction 
The purpose of this lecture is just to review the various motions observed in the heavens in the 
simplest, most straightforward way. We shall ignore for the moment refinements like tiny 
deviations from simple motion, but return to them later.  

It is illuminating to see how these observed motions were understood in early times, and how 
we see them now. Of course, you know the Earth  rotates and orbits around the Sun. However, I 
want you to be bilingual for this session: to be able to visualize also the ancient view of a fixed 
Earth, and rotating heavens, and be able to think from both points of view.  

This is really largely an exercise in three-dimensional visualization—that’s the hard part! But 
without some effort to see the big picture, you will not be able to appreciate some really nice 
things, like the phases of the moon, eclipses, and even just the seasons. You really need to have 
a clear picture of the Earth  orbiting around the Sun and at the same time rotating about an axis 
tilted relative to the plane the orbit lies in, with the axis of rotation always pointing at the same 
star, and not changing its direction as the Earth  goes around the Sun. Then you must add to 
your picture the Moon orbiting around the Earth  once a month, the plane of its orbit tilted five 
degrees from the plane of the Earth’s orbit around the Sun. Then we add in the planets … .  

Some of these topics are treated nicely in Theories of the World from Antiquity to the 
Copernican Revolution, by Michael J. Crowe, Dover.  

4.2 Looking at the Stars  
There is one star that always stays in the same place in the sky, as seen from Charlottesville (or 
anywhere else in the northern hemisphere). This is Polaris, the North Star. All the other stars 
move in circular paths around Polaris, with a period of 24 hours. This was understood in ancient 
times by taking the stars to be fixed to the inside surface of a large sphere, the “starry vault”, 
which was the outer boundary of the Universe, and contained everything else.  

Of course, we only see the stars move around part of their circular path, because when the Sun 
comes up, the bright blue scattered Sunlight—the blue sky—drowns out the starlight. If there 
were no atmosphere, we would see the stars all the time, and see the complete circles for those 
that stayed above the horizon.  

Try to picture yourself inside this large, spherical rotating starry vault with stars attached, and 
visualize the paths of the stars as they wheel overhead. Think about the paths the stars would 
take as seen from the North Pole, from the Equator, and from Charlottesville.  

4.3 Motion of the Sun  
Every day the Sun rises in the east, moves through the southern part of the sky and sets in the 
west.  If there were no atmosphere so that we could see Polaris all the time, would the Sun also 
be going in a circular path centered on Polaris?  
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The answer is yes.  (Well, almost).  

If you were at the North Pole in the middle of summer, lying on your back, you would see the 
Sun go around in a circle in the sky, anticlockwise.  The circle would be centered on Polaris, 
which is directly overhead, except for the fact that you wouldn’t see Polaris all summer, since it 
wouldn’t be dark.  Here of course we see the Sun circling part of the time, and see Polaris the 
other part of the time, so it isn’t completely obvious that the Sun’s circling Polaris.  Does the Sun 
circle clockwise or anticlockwise for us?  It depends on how you look at it—in winter, when it’s 
low in the sky, we tend to look “from above”, see the Sun rise in the east, move in a low path via 
the south towards the west, and that looks clockwise—unless you’re lying on your back.  

Actually the Sun moves very slightly each day relative to the starry vault.  This would be obvious 
if there were no atmosphere, so we could just watch it, but this can also be figured out, as the 
Greeks and before them the Babylonians did, by looking closely at the stars in the west just after 
sunset and seeing where the Sun fits into the pattern.  

It turns out that the Sun moves almost exactly one degree per day against the starry vault, so 
that after one year it’s back where it started.  This is no coincidence—no doubt this is why the 
Babylonians chose their angular unit as the degree (they also liked 60).  

Anyway, the Sun goes around in the circular path along with the starry vault, and at the same 
time slowly progresses along a path in the starry vault.  This path is called the ecliptic.  

If we visualize Polaris as the “North Pole” of the starry vault, and then imagine the vault’s 
“Equator”, the ecliptic is a great circle tilted at 23 ½ degrees to the “equator”.  The Sun moves 
along the ecliptic from west to east.  (Imagine the Earth  were not rotating at all relative to the 
stars.  How would the Sun appear to move through the year?)  

The motion of the Sun across the starry vault has been known at least since the Babylonians, 
and interpreted in many colorful ways.  Compare our present view of the stars, thermonuclear 
reactions in the sky, with the ancient view (see Hemisphaerium Boreale, Appendix to Heath’s 
Greek Astronomy).  

Many of the ancients believed, to varying degrees, that there were spirits in the heavens, and 
the arrangements of stars suggested animals, and some people.  

The Sun’s path through all this, the ecliptic, endlessly repeated year after year, and the set of 
constellations (the word just means “group of stars”) and the animals they represented became 
known as the Zodiac. ( “zo” being the same Greek word for animal that appears in “Zoo”.)  So 
this is your sign: where in its path through this zoo was the Sun on the day you were born? 
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Notice that the print shows the Sun’s path through the northern hemisphere, that is, for our 
summer.  The furthest north (closest to Polaris) it gets is on June 21, when it is in Cancer, it is 
then overhead on the Tropic of Cancer, 23½ degrees north of the Equator.  

In other words, the spherical Earth’s surface is visualized as having the same center as the larger 
sphere of the starry vault, so when in its journey across this vault the Sun reaches the tropic of 
the vault, it will naturally be overhead at the corresponding point on the Earth’s tropic which lies 
directly below the tropic on the vault.  
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Here’s a more spectacular demonstration of the same thing:  notice, for example, the Plough 
(also known as Ursa Major, the great bear) in the tail and body of the bear, and the familiar 
astrological collection of animals around the zodiac (from http://www.atlascoelestis.com/5.htm) 

 

4.4 Motion of the Moon against the Starry Vault  
The Sun goes around the starry vault once a year, the Moon goes completely around every 
month.  

Does it follow the same path as the Sun?  

The answer is no, but it’s close.  It always stays within 5 degrees of the ecliptic, so it goes 
through the same set of constellations, “the Moon is in the Seventh House” and all that.  In fact, 
the “houses”—the signs of the Zodiac—are defined to occupy a band of the stars that stretches 
eight degrees either way from the ecliptic, because that turns out to be wide enough that the 
Sun, Moon and all the planets lie within it.  

How can we understand the Moon’s motion from our present perspective?  If the Earth, the 
Moon and the Sun were all in the same plane, in other words, if the moon’s orbit was in the 
same plane as the Earth’s orbit around the Sun, the Moon would follow the ecliptic.  In fact, the 
Moon’s orbit is tilted at 5 degrees to the Earth’s orbit around the Sun.  

http://www.atlascoelestis.com/5.htm
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This also explains why eclipses of the Moon (and Sun) don’t happen every month, which they 
would if everything was in the same plane.  In fact, they only occur when the moon’s path 
crosses the ecliptic, hence the name.  

A nice three-dimensional representation, published by Cellario in 1627, can be found at 
http://www.atlascoelestis.com/Cell%2009.htm : here it is:  

 

Notice the band representing the zodiac.   

4.5 Motion of the Planets  
Since ancient times it has been known that five of the “stars” moved across the sky: Mercury, 
Venus, Mars, Jupiter and Saturn.  They were termed “planets” which simply means wanderers.  

Are their paths in the starry vault also related to the ecliptic?  

The answer is yes.  They all stay within 8 degrees of the ecliptic, and in fact this is the definition 
of the Zodiac: the band of sky within eight degrees of the ecliptic, and for this reason.  

Do they go all the way round?  

http://www.atlascoelestis.com/Cell%2009.htm
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Yes they do, but Mercury never gets more than 28 degrees away from the Sun, and Venus never 
more than 46 degrees.  Thus as the Sun travels around the ecliptic, these two swing backwards 
and forwards across the Sun.  

The other planets are not tethered to the Sun in the same way, but they also have some notable 
behavior—in particular, they occasionally loop backwards for a few weeks before resuming their 
steady motion. 

Cultural note: an attempt was made about the same time by Julius Schiller to replace the 
barbaric twelve signs of the zodiac with the twelve apostles: 
http://www.atlascoelestis.com/epi%20schiller%20cellario.htm  

 

It didn’t catch on. 

  

http://www.atlascoelestis.com/epi%20schiller%20cellario.htm
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5 Aristotle  

5.1 Beginnings of Science and Philosophy in Athens 

Let us first recap briefly the emergence of philosophy and science in Athens after around 450 
B.C. It all began with Socrates, who was born in 470 B.C. Socrates was a true philosopher, a lover 
of wisdom, who tried to elicit the truth by what has become known as the Socratic method, in 
which by a series of probing questions he forced successive further clarification of thought. Of 
course, such clarity often reveals that the other person’s ideas don’t in fact make much sense, 
so that although Socrates made a lot of things much clearer, he wasn’t a favorite of many 
establishment politicians. For example, he could argue very convincingly that traditional 
morality had no logical basis. He mostly lectured to the sons of well-to-do aristocrats, one of 
whom was Plato, born in 428 B.C. Plato was a young man when Athens was humiliated by 
Sparta in the Peloponnesian War, and Plato probably attributed the loss to Athens’ being a 
democracy, as opposed to the kind of fascist war-based state Sparta was. Plato founded an 
Academy. The name came (at least in legend) from one Academus, a landowner on whose 
estate Plato and other philosophers met regularly. The important point is that this was the first 
university. All the people involved were probably aristocrats, and they discussed everything: 
politics, economics, morality, philosophy, mathematics and science. One of their main concerns 
was to find what constituted an ideal city-state. Democracy didn’t seem to have worked very 
well in their recent past. Plato’s ideas are set out in the Republic.  

5.2 Plato’s Idea of a Good Education 

What is interesting about the Republic from our point of view is the emphasis on a good 
education for the elite group in charge of Plato’s ideal society. In particular, Plato considered 
education in mathematics and astronomy to be excellent ways of sharpening the mind. He 
believed that intense mental exercise of this kind had the same effect on the mind that a 
rigorous physical regimen did on the body. Students at the Academy covered a vast range of 
subjects, but there was a sign over the door stating that some knowledge of mathematics was 
needed to enter—nothing else was mentioned! Plato in particular loved geometry, and felt that 

the beauty of the five regular solids he was the first to 
categorize meant they must be fundamental to 
nature, they must somehow be the shapes of the 
atoms. Notice that this approach to physics is not 
heavily dependent on observation and experiment.  

5.3 Aristotle and Alexander 

We turn now to the third member of this trio, 
Aristotle, born in 384 B.C. in Stagira, in Thrace, at the 
northern end of the Aegean, near Macedonia. 



 41 

Aristotle’s father was the family physician of King Philip of Macedonia. At the age of eighteen, 
Aristotle came to Athens to study at Plato’s Academy, and stayed there twenty years until 
Plato’s death in 348 B.C. (Statue is a Roman copy of a Greek original, in the Louvre, 
photographer Eric Gaba (User:Sting), July 2005.) 

Five years after Plato’s death, Aristotle took a position as tutor to King Philip of Macedonia’s 
thirteen year old son Alexander. He stayed for three years. It is not clear what impact, if any, 
Aristotle’s lessons had, but Alexander, like his father, was a great admirer of Greek civilization, 
even though the Athenians considered Macedonia the boondocks. In fact, when his father Philip 
died in 336 B.C., Alexander did his best to spread Greek civilization as far as he could. 
Macedonia had an excellent army, and over the next thirteen years Alexander organized Greece 
as a federation of city states, conquered Persia, the Middle East, Egypt, southern Afghanistan, 
some of Central Asia and the Punjab in India.  

The picture below is a fortress built by Alexander’s army in Herat, Afghanistan, and still standing.  
(Picture from http://flickr.com/photos/koldo/67606119/ ,  author koldo / Koldo Hormaza .) 

He founded Greek cities in many places, the greatest being Alexandria in Egypt, which in fact 
became the most important center of Greek science later on, and without which all of Greek 

learning 
might have 
been lost. 
The Greek 
cities became 
restless, 
predictably 
but rather 
ungratefully, 
when he 
demanded to 
be treated as 
a god. He 
died of a 
fever at age 
33.  

 

5.4 Aristotle Founds the Lyceum 

Aristotle came back to Athens in 335 B.C., and spent the next twelve years running his own 
version of an academy, which was called the Lyceum, named after the place in Athens where it 

http://commons.wikimedia.org/wiki/User:Sting
http://flickr.com/photos/koldo/67606119/
http://flickr.com/photos/koldo/
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was located, an old temple of Apollo. (French high schools are named lycee after Aristotle’s 
establishment.) Aristotle’s preferred mode of operation was to spend a lot of time walking 
around talking with his colleagues, then write down his arguments. The Aristotelians are often 
called the Peripatetics:  people who walk around.  

Aristotle wrote extensively on all subjects: politics, metaphysics, ethics, logic and science. He 
didn’t care for Plato’s rather communal Utopia, in which the women were shared by the men, 
and the children raised by everybody, because for one thing he feared the children would be 
raised by nobody. His ideal society was one run by cultured gentlemen. He saw nothing wrong 
with slavery, provided the slave was naturally inferior to the master, so slaves should not be 
Greeks. This all sounds uncomfortably similar to Jefferson’s Virginia, perhaps not too surprising 
since Greek was a central part of a gentleman’s education in Jefferson’s day.  

5.5 Aristotle’s Science 

Aristotle’s approach to science differed from Plato’s. He agreed that the highest human faculty 
was reason, and its supreme activity was contemplation. However, in addition to studying what 
he called “first philosophy” - metaphysics and mathematics, the things Plato had worked on, 
Aristotle thought it also very important to study “second philosophy”: the world around us, from 
physics and mechanics to biology. Perhaps being raised in the house of a physician had given 
him an interest in living things.  

What he achieved in those years in Athens was to begin a school of organized scientific inquiry 
on a scale far exceeding anything that had gone before. He first clearly defined what was 
scientific knowledge, and why it should be sought. In other words, he single-handedly invented 
science as the collective, organized enterprise it is today. Plato’s Academy had the equivalent of 
a university mathematics department, Aristotle had the first science department, truly excellent 
in biology, but, as we shall see, a little weak in physics. After Aristotle, there was no comparable 
professional science enterprise for over 2,000 years, and his work was of such quality that it was 
accepted by all, and had long been a part of the official orthodoxy of the Christian Church 2,000 
years later. This was unfortunate, because when Galileo questioned some of the assertions 
concerning simple physics, he quickly found himself in serious trouble with the Church.  

5.6 Aristotle’s Method 

Aristotle’s method of investigation varied from one natural science to another, depending on 
the problems encountered, but it usually included:  

1. defining the subject matter  
2. considering the difficulties involved by reviewing the generally accepted views on the 

subject, and suggestions of earlier writers  
3. presenting his own arguments and solutions.  
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Again, this is the pattern modern research papers follow, Aristotle was laying down the standard 
professional approach to scientific research. The arguments he used were of two types: 
dialectical, that is, based on logical deduction; and empirical, based on practical considerations.  

Aristotle often refuted an opposing argument by showing that it led to an absurd conclusion, 
this is called reductio ad absurdum (reducing something to absurdity). As we shall see later, 
Galileo used exactly this kind of argument against Aristotle himself, to the great annoyance of 
Aristotelians 2,000 years after Aristotle.  

Another possibility was that an argument led to a dilemma: an apparent contradiction. 
However, dilemmas could sometimes be resolved by realizing that there was some ambiguity in 
a definition, say, so precision of definitions and usage of terms is essential to productive 
discussion in any discipline.  

5.7 “Causes” 

In contrast to Plato, who felt the only worthwhile science to be the contemplation of abstract 
forms, Aristotle practiced detailed observation and dissection of plants and animals, to try to 
understand how each fitted into the grand scheme of nature, and the importance of the 
different organs of animals. His motivation is made clear by the following quote from him (in 
Lloyd, p105):  

For even in those kinds [of animals] that are not attractive to the senses, yet to the intellect the 
craftsmanship of nature provides extraordinary pleasures for those who can recognize the 
causes in things and who are naturally inclined to philosophy.  

His study of nature was a search for “causes.” What, exactly are these “causes”? He gave some 
examples (we follow Lloyd’s discussion here). He stated that any object (animal, plant, 
inanimate, whatever) had four attributes:  

x matter  

x form  

x moving cause  

x final cause  

For a table, the matter is wood, the form is the shape, the moving cause is the carpenter and the 
final cause is the reason the table was made in the first place, for a family to eat at, for example. 
For man, he thought the matter was provided by the mother, the form was a rational two-
legged animal, the moving cause was the father and the final cause was to become a fully grown 
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human being. He did not believe nature to be conscious, he believed this final cause to be 
somehow innate in a human being, and similarly in other organisms. Of course, fulfilling this 
final cause is not inevitable, some accident may intervene, but apart from such exceptional 
circumstances, nature is regular and orderly.  

To give another example of this central concept, he thought the “final cause” of an acorn was to 
be an oak tree. This has also been translated by Bertrand Russell (History of Western Philosophy) 
as the “nature” of an acorn is to become an oak tree. It is certainly very natural on viewing the 
living world, especially the maturing of complex organisms, to view them as having innately the 
express purpose of developing into their final form.  

It is interesting to note that this whole approach to studying nature fits very well with 
Christianity. The idea that every organism is beautifully crafted for a particular function - its 
“final cause” - in the grand scheme of nature certainly leads naturally to the thought that all this 
has been designed by somebody.  

5.8 Biology 

Aristotle’s really great contribution to natural science was in biology. Living creatures and their 
parts provide far richer evidence of form, and of “final cause” in the sense of design for a 
particular purpose, than do inanimate objects. He wrote in detail about five hundred different 
animals in his works, including a hundred and twenty kinds of fish and sixty kinds of insect. He 
was the first to use dissection extensively. In one famous example, he gave a precise description 
of a kind of dog-fish that was not seen again by scientists until the nineteenth century, and in 
fact his work on this point was disbelieved for centuries.  

Thus both Aristotle and Plato saw in the living creatures around them overwhelming evidence 
for “final causes”, that is to say, evidence for design in nature, a different design for each species 
to fit it for its place in the grand scheme of things. Empedocles, on the other hand, suggested 
that maybe creatures of different types could come together and produce mixed offspring, and 
those well adapted to their surroundings would survive. This would seem like an early hint of 
Darwinism, but it was not accepted, because as Aristotle pointed out, men begat men and oxen 
begat oxen, and there was no evidence of the mixed creatures Empedocles suggested.  

Although this idea of the “nature” of things accords well with growth of animals and plants, it 
leads us astray when applied to the motion of inanimate objects, as we shall see.  

5.9 Elements 

Aristotle’s theory of the basic constituents of matter looks to a modern scientist perhaps 
something of a backward step from the work of the atomists and Plato. Aristotle assumed all 
substances to be compounds of four elements: earth, water, air and fire, and each of these to be 
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a combination of two of four opposites, hot and cold, and wet and dry. (Actually, the words he 
used for wet and dry also have the connotation of softness and hardness).  

Aristotle’s whole approach is more in touch with the way things present themselves to the 
senses, the way things really seem to be, as opposed to abstract geometric considerations. Hot 
and cold, wet and dry are qualities immediately apparent to anyone, this seems a very natural 
way to describe phenomena. He probably thought that the Platonic approach in terms of 
abstract concepts, which do not seem to relate to our physical senses but to our reason, was a 
completely wrongheaded way to go about the problem. It has turned out, centuries later, that 
the atomic and mathematical approach was on the right track after all, but at the time, and in 
fact until relatively recently, Aristotle seemed a lot closer to reality. He discussed the properties 
of real substances in terms of their “elemental” composition at great length, how they reacted 
to fire or water, how, for example, water evaporates on heating because it goes from cold and 
wet to hot and wet, becoming air, in his view. Innumerable analyses along these lines of 
commonly observed phenomena must have made this seem a coherent approach to 
understanding the natural world.  

5.10 Dynamics: Motion, And Why Things Move 

It is first essential to realize that the world Aristotle saw around him in everyday life was very 
different indeed from that we see today. Every modern child has since birth seen cars and 
planes moving around, and soon finds out that these things are not alive, like people and 
animals. In contrast, most of the motion seen in fourth century Greece was people, animals and 
birds, all very much alive. This motion all had a purpose, the animal was moving to someplace it 
would rather be, for some reason, so the motion was directed by the animal’s will. For Aristotle, 
this motion was therefore fulfilling the “nature” of the animal, just as its natural growth fulfilled 
the nature of the animal.  

To account for motion of things obviously not alive, such as a stone dropped from the hand, he 
extended the concept of the “nature” of something to inanimate matter. He suggested that the 
motion of such inanimate objects could be understood by postulating that elements tend to seek 
their natural place in the order of things, so earth moves downwards most strongly, water flows 
downwards too, but not so strongly, since a stone will fall through water. In contrast, air moves 
up (bubbles in water) and fire goes upwards most strongly of all, since it shoots upward through 
air. This general theory of how elements move has to be elaborated, of course, when applied to 
real materials, which are mixtures of elements. He would conclude that wood, say, has both 
earth and air in it, since it does not sink in water.  

5.11 Natural Motion and Violent Motion 

Of course, things also sometimes move because they are pushed. A stone’s natural tendency, if 
left alone and unsupported, is to fall, but we can lift it, or even throw it through the air. Aristotle 
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termed such forced motion “violent” motion as opposed to natural motion. The term “violent” 
here connotes that some external force is applied to the body to cause the motion. (Of course, 
from the modern point of view, gravity is an external force that causes a stone to fall, but even 
Galileo did not realize that. Before Newton, the falling of a stone was considered natural motion 
that did not require any outside help.)  

(Question: I am walking steadily upstairs carrying a large stone when I stumble and both I and 
the stone go clattering down the stairs. Is the motion of the stone before the stumble natural or 
violent? What about the motion of the stone (and myself) after the stumble?)  

5.12 Aristotle’s Laws of Motion 

Aristotle was the first to think quantitatively about the speeds involved in these movements. He 
made two quantitative assertions about how things fall (natural motion):  

1. Heavier things fall faster, the speed being proportional to the weight.  
2. The speed of fall of a given object depends inversely on the density of the medium it is 

falling through, so, for example, the same body will fall twice as fast through a medium 
of half the density.  

Notice that these rules have a certain elegance, an appealing quantitative simplicity. And, if you 
drop a stone and a piece of paper, it’s clear that the heavier thing does fall faster, and a stone 
falling through water is definitely slowed down by the water, so the rules at first appear 
plausible. The surprising thing is, in view of Aristotle’s painstaking observations of so many 
things, he didn’t check out these rules in any serious way. It would not have taken long to find 
out if half a brick fell at half the speed of a whole brick, for example. Obviously, this was not 
something he considered important.  

From the second assertion above, he concluded that a vacuum cannot exist, because if it did, 
since it has zero density, all bodies would fall through it at infinite speed which is clearly 
nonsense.  

For violent motion, Aristotle stated that the speed of the moving object was in direct proportion 
to the applied force.  

This means first that if you stop pushing, the object stops moving. This certainly sounds like a 
reasonable rule for, say, pushing a box of books across a carpet, or a Grecian ox dragging a 
plough through a field. (This intuitively appealing picture, however, fails to take account of the 
large frictional force between the box and the carpet. If you put the box on a sled and pushed it 
across ice, it wouldn’t stop when you stop pushing. Galileo realized the importance of friction in 
these situations.)  
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5.13 Planetary Dynamics 

The idea that motion (of inanimate objects) can be accounted for in terms of them seeking their 
natural place clearly cannot be applied to the planets, whose motion is apparently composed of 
circles. Aristotle therefore postulated that the heavenly bodies were not made up of the four 
elements earth, water, air and fire, but of a fifth, different, element called aither, whose natural 
motion was circular. This was not very satisfying for various reasons. Somewhere between here 
and the moon a change must take place, but where? Recall that Aristotle did not believe that 
there was a void anywhere. If the sun has no heat component, why does sunlight seem so 
warm? He thought it somehow generated heat by friction from the sun’s motion, but this wasn’t 
very convincing, either.  

5.14 Aristotle’s Achievements 

To summarize: Aristotle’s philosophy laid out an approach to the investigation of all natural 
phenomena, to determine form by detailed, systematic work, and thus arrive at final causes. His 
logical method of argument gave a framework for putting knowledge together, and deducing 
new results. He created what amounted to a fully-fledged professional scientific enterprise, on a 
scale comparable to a modern university science department. It must be admitted that some of 
his work - unfortunately, some of the physics - was not up to his usual high standards. He 
evidently found falling stones a lot less interesting than living creatures. Yet the sheer scale of 
his enterprise, unmatched in antiquity and for centuries to come, gave an authority to all his 
writings.  

It is perhaps worth reiterating the difference between Plato and Aristotle, who agreed with each 
other that the world is the product of rational design, that the philosopher investigates the form 
and the universal, and that the only true knowledge is that which is irrefutable. The essential 
difference between them was that Plato felt mathematical reasoning could arrive at the truth 
with little outside help, but Aristotle believed detailed empirical investigations of nature were 
essential if progress was to be made in understanding the natural world.  

 

Books I used to prepare this lecture:  

Early Greek Science: Thales to Aristotle, G. E. R. Lloyd, Norton, N.Y., 1970. An excellent 
inexpensive paperback giving a more detailed presentation of many of the subjects we have 
discussed. My sections on Method and Causes, in particular, follow Lloyd’s treatment.  

History of Western Philosophy, Bertrand Russell. An opinionated but very entertaining book, 
mainly on philosophy but with a fair amount of science and social analysis.  
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6 Measuring the Solar System 
In this lecture, we shall show how the Greeks made the first real measurements of astronomical 
distances: the size of the earth and the distance to the moon, both determined quite accurately, 
and the distance to the sun, where their best estimate fell short by a factor of two.  

6.1 How Big is the Earth?  
The first reasonably good measurement of the earth’s size was done by Eratosthenes, a Greek 
who lived in Alexandria, Egypt, in the third century B.C. He knew that far to the south, in the 
town of Syene (present-day Aswan, where there is now a huge dam on the Nile) there was a 
deep well and at midday on June 21, the sunlight reflected off the water far down in this well, 
something that happened on no other day of the year. The point was that the sun was exactly 
vertically overhead at that time, and at no other time in the year. Eratosthenes also knew that 
the sun was never vertically overhead in Alexandria, the closest it got was on June 21, when it 
was off by an angle he found to be about 7.2 degrees, by measuring the shadow of a vertical 
stick.  

The distance from Alexandria to Syene was measured at 5,000 stades (a stade being 500 feet), 
almost exactly due south. From this, and the difference in the angle of sunlight at midday on 
June 21, Eratosthenes was able to figure out how far it would be to go completely around the 
earth. 

 

Of course, Eratosthenes fully recognized that the Earth is spherical in shape, and that “vertically 
downwards” anywhere on the surface just means the direction towards the center from that 
point. Thus two vertical sticks, one at Alexandria and one at Syene, were not really parallel. On 
the other hand, the rays of sunlight falling at the two places were parallel. Therefore, if the sun’s 
rays were parallel to a vertical stick at Syene (so it had no shadow) the angle they made with the 

Alexandria 

If the Sun is directly overhead at Syene, and the angle between a vertical stick 
and its shadow is Į at Alexandria, then Į is also the angle between lines from 
Alexandria and Syene to the center of the Earth  

Sunlight 
ɲ Syene 

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Eratosthenes.html
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stick at Alexandria was the same as how far around the Earth, in degrees, Alexandria was from 
Syene.  

According to the Greek historian Cleomedes, Eratosthenes measured the angle between the 
sunlight and the stick at midday in midsummer in Alexandria to be 7.2 degrees, or one-fiftieth of 
a complete circle. It is evident on drawing a picture of this that this is the same angle as that 
between Alexandria and Syene as seen from the center of the earth, so the distance between 
them, the 5,000 stades, must be one-fiftieth of the distance around the earth, which is therefore 
equal to 250,000 stades, about 23,300 miles. The correct answer is about 25,000 miles, and in 
fact Eratosthenes may have been closer than we have stated here---we’re not quite sure how 
far a stade was, and some scholars claim it was about 520 feet, which would put him even 
closer.  

6.2 How High is the Moon?  
How do we begin to measure the distance from the earth to the moon? One obvious thought is 
to measure the angle to the moon from two cities far apart at the same time, and construct a 
similar triangle, like Thales measuring the distance of the ship at sea. Unfortunately, the angle 
difference from two points a few hundred miles apart was too small to be measurable by the 
techniques in use at the time, so that method wouldn’t work.  

Nevertheless, Greek astronomers, beginning with Aristarchus of Samos (310-230 B.C., 
approximately) came up with a clever method of finding the moon’s distance, by careful 
observation of a lunar eclipse, which happens when the earth shields the moon from the sun’s 
light.  

For a Flash movie of a lunar eclipse, click here! 

To better visualize a lunar eclipse, just imagine holding up a quarter (diameter one inch 
approximately) at the distance where it just blocks out the sun’s rays from one eye. Of course 
you shouldn’t try this---you’ll damage your eye! You can try it with the full moon, which happens 
to be the same apparent size in the sky as the sun. It turns out that the right distance is about 
nine feet away, or 108 inches. If the quarter is further away than that, it is not big enough to 
block out all the sunlight. If it is closer than 108 inches, it will totally block the sunlight from 
some small circular area, which gradually increases in size moving towards the quarter. Thus the 
part of space where the sunlight is totally blocked is conical, like a long slowly tapering icecream 
cone, with the point 108 inches behind the quarter. Of course, this is surrounded by a fuzzier 
area, called the “penumbra”, where the sunlight is partially blocked. The fully shaded area is 
called the “umbra”. (This is Latin for shadow. Umbrella means little shadow in Italian.) If you 
tape a quarter to the end of a thin stick, and hold it in the sun appropriately, you can see these 
different shadow areas. 

Question: If you used a dime instead of a quarter, how far from your eye would you have to hold 
it to just block the full moonlight from that eye? How do the different distances relate to the 
relative sizes of the dime and the quarter? Draw a diagram showing the two conical shadows.  

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Aristarchus.html
file://localhost/Users/derekteaney/Library/Containers/com.apple.Preview/Data/Downloads/../../../../../Documents%20and%20Settings/mf1i/My%20Documents/109/WordFiles/eclipse3.htm
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Now imagine you’re out in space, some distance from the earth, looking at the earth’s shadow. 
(Of course, you could only really see it if you shot out a cloud of tiny particles and watched 
which of them glistened in the sunlight, and which were in the dark.) Clearly, the earth’s shadow 
must be conical, just like that from the quarter. And it must also be similar to the quarter’s in 
the technical sense---it must be 108 earth diameters long! That is because the point of the cone 
is the furthest point at which the earth can block all the sunlight, and the ratio of that distance 
to the diameter is determined by the angular size of the sun being blocked. This means the cone 
is 108 earth diameters long, the far point 864,000 miles from earth. 

 

Now, during a total lunar eclipse the moon moves into this cone of darkness. Even when the 
moon is completely inside the shadow, it can still be dimly seen, because of light scattered by 
the earth’s atmosphere. By observing the moon carefully during the eclipse, and seeing how the 
earth’s shadow fell on it, the Greeks found that the diameter of the earth’s conical shadow at 
the distance of the moon was about two-and-a-half times the moon’s own diameter.  

Note: It is possible to check this estimate either from a photograph of the moon entering the 
earth’s shadow, or, better, by actual observation of a lunar eclipse.  

Question: At this point the Greeks knew the size of the earth (approximately a sphere 8,000 miles 
in diameter) and therefore the size of the earth’s conical shadow (length 108 times 8,000 miles). 
They knew that when the moon passed through the shadow, the shadow diameter at that 
distance was two and a half times the moon’s diameter. Was that enough information to figure 
out how far away the moon was? 
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Well, it did tell them the moon was no further away than 108x8,000 = 864,000 miles, otherwise 
the moon wouldn’t pass through the earth’s shadow at all! But from what we’ve said so far, it 
could be a tiny moon almost 864,000 miles away, passing through that last bit of shadow near 
the point. However, such a tiny moon could never cause a solar eclipse. In fact, as the Greeks 
well knew, the moon is the same apparent size in the sky as the sun. This is the crucial extra fact 
they used to nail down the moon’s distance from earth.  

They solved the problem using geometry, constructing the figure below. In this figure, the fact 
that the moon and the sun have the same apparent size in the sky means that the angle ECD is 
the same as the angle EAF. Notice now that the length FE is the diameter of the earth’s shadow 
at the distance of the moon, and the length ED is the diameter of the moon. The Greeks found 
by observation of the lunar eclipse that the ratio of FE to ED was 2.5 to 1, so looking at the 
similar isosceles triangles FAE and DCE, we deduce that AE is 2.5 times as long as EC, from which 
AC is 3.5 times as long as EC. But they knew that AC must be 108 earth diameters in length, and 
taking the earth’s diameter to be 8,000 miles, the furthest point of the conical shadow, A, is 
864,000 miles from earth. From the above argument, this is 3.5 times further away than the 
moon is, so the distance to the moon is 864,000/3.5 miles, about 240,000 miles. This is within a 
few percent of the right figure. The biggest source of error is likely the estimate of the ratio of 
the moon’s size to that of the earth’s shadow as it passes through.  

6.3 How Far Away is the Sun?  
This was an even more difficult question the Greek astronomers asked themselves, and they 
didn’t do so well. They did come up with a very ingenious method to measure the sun’s 
distance, but it proved too demanding in that they could not measure the important angle 
accurately enough. Still, they did learn from this approach that the sun was much further away 
than the moon, and consequently, since it has the same apparent size, it must be much bigger 
than either the moon or the earth.  

Their idea for measuring the sun’s distance was very simple in principle. They knew, of course, 
that the moon shone by reflecting the sun’s light. Therefore, they reasoned, when the moon 
appears to be exactly half full, the line from the moon to the sun must be exactly perpendicular 
to the line from the moon to the observer (see the figure to convince yourself of this). So, if an 
observer on earth, on observing a half moon in daylight, measures carefully the angle between 

the direction of the moon and the direction of the sun, the angle D in the figure, he should be 
able to construct a long thin triangle, with its baseline the earth-moon line, having an angle of 

90 degrees at one end and D at the other, and so find the ratio of the sun’s distance to the 
moon’s distance.  
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The problem with this approach is that the angle D turns out to differ from 90 degrees by about 
a sixth of a degree, too small to measure accurately. The first attempt was by Aristarchus, who 
estimated the angle to be 3 degrees. This would put the sun only five million miles away. 
However, it would already suggest the sun to be much larger than the earth. It was probably this 
realization that led Aristarchus to suggest that the sun, rather than the earth, was at the center 
of the universe. The best later Greek attempts found the sun’s distance to be about half the 
correct value (92 million miles).  

 

The presentation here is similar to that in Eric Rogers, Physics for the Inquiring Mind, Princeton, 
1960.  

  



 53 

7 Greek Science after Aristotle  

7.1 Strato  

As we mentioned before, Aristotle’s analysis of motion was criticized by Strato (who died 
around 268 B.C., he is sometimes called Straton), known as “the Physicist” who was the third 
director of the Lyceum after Aristotle (the founder) and Theophrastus, who was mainly a 
botanist.  

Strato’s career was curiously parallel to Aristotle’s. Recall Aristotle spent twenty years at Plato’s 
academy before going to Macedonia to be tutor to Alexander, after which Aristotle came back 
to Athens to found his own “university”, the Lyceum. A few years later, Alexander conquered 
most of the known world, dividing it into regions with his old friends in charge. In particular, he 
had his boyhood friend Ptolemy in charge of Egypt, where Alexander founded the new city of 
Alexandria. Now Strato, after a period of study at the Lyceum, was hired by Ptolemy to tutor his 
son Ptolemy II Philadelphus (as he became known) in Alexandria. Subsequently Strato returned 
to Athens where he was in charge of the Lyceum for almost twenty years, until his death.  

Strato, like Aristotle, believed in close observation of natural phenomena, but in our particular 
field of interest here, the study of motion, he observed much more carefully than Aristotle, and 
realized that falling bodies usually accelerate. He made two important points: rainwater pouring 
off a corner of a roof is clearly moving faster when it hits the ground than it was when it left the 
roof, because a continuous stream can be seen to break into drops which then become spread 
further apart as they fall towards the ground. His second point was that if you drop something 
to the ground, it lands with a bigger thud if you drop it from a greater height: compare, say, a 
three foot drop with a one inch drop. One is forced to conclude that falling objects do not 
usually reach some final speed in a very short time and then fall steadily, which was Aristotle’s 
picture. Had this line of investigation been pursued further at the Lyceum, we might have saved 
a thousand years or more, but after Strato the Lyceum concentrated its efforts on literary 
criticism.  

7.2 Aristarchus  

Strato did, however, have one very famous pupil, Aristarchus of Samos (310 - 230 B.C.). 
Aristarchus claimed that the earth rotated on its axis every twenty-four hours and also went 
round the sun once a year, and that the other planets all move in orbits around the sun. In other 
words, he anticipated Copernicus in all essentials. In fact, Copernicus at first acknowledged 
Aristarchus, but later didn’t mention him (see Penguin Dictionary of Ancient History). 
Aristarchus’ claims were not generally accepted, and in fact some thought he should be indicted 
on a charge of impiety for suggesting that the earth, thought to be the fixed center of the 
universe, was in motion (Bertrand Russell, quoting Plutarch about Cleanthes). The other 
astronomers didn’t believe Aristarchus’ theory for different reasons. It was known that the 
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distance to the sun was in excess of one million miles (Aristarchus himself estimated one and a 
half million miles, which is far too low) and they thought that if the earth is going around in a 
circle that big, the pattern of stars in the sky would vary noticeably throughout the year, 
because the closer ones would appear to move to some extent against the background of the 
ones further away. Aristarchus responded that they are all so far away that a million miles or 
two difference in the point of observation is negligible. This implied, though, the universe was 
really huge—at least billions of miles across—which few were ready to believe.  

7.3 Euclid  

Although the Ptolemies were not exactly nice people, they did a great deal of good for Greek 
civilization, especially the sciences and mathematics. In their anxiety to prove how cultured and 
powerful they were, they had constructed a massive museum and a library at Alexandria, a city 
which grew to half a million people by 200 B.C. It was here that Erastosthenes (275 - 195 B.C.) 
was librarian, but somewhat earlier Euclid taught mathematics there, about 295 B.C. during the 
reign of Ptolemy I. His great work is his Elements, setting out all of Greek geometry as a logical 
development from basic axioms in twelve volumes. This is certainly one of the greatest books 
ever written, but not an easy read.  

In fact, Ptolemy I, realizing that geometry was an important part of Greek thought, suggested to 
Euclid that he would like to get up to speed in the subject, but, being a king, could not put in a 
great deal of effort. Euclid responded: “There is no Royal Road to geometry.”  

Euclid shared Plato’s contempt for the practical. When one of his pupils asked what was in it for 
him to learn geometry, Euclid called a slave and said “Give this young man fifty cents, since he 
must needs make a gain out of what he learns.”  

The Romans, who took over later on didn’t appreciate Euclid. There is no record of a translation 
of the Elements into Latin until 480 A.D. But the Arabs were more perceptive. A copy was given 
to the Caliph by the Byzantine emperor in A.D. 760, and the first Latin translation that still 
survives was actually made from the Arabic in Bath, England, in 1120. From that point on, the 
study of geometry grew again in the West, thanks to the Arabs.  

7.4 Plato, Aristotle and Christianity  

It is interesting to note that it was in Alexandria that the first crucial connection between 
classical Greek philosophy and Christian thought was made. As we have just seen, Alexandria 
was a major center of Greek thought, and also had a very large Jewish community, which had 
self-governing privileges. Many Jews never returned to Palestine after the Babylonian captivity, 
but became traders in the cities around the eastern Mediterranean, and Alexandria was a center 
of this trade. Thus Alexandria was a melting-pot of ideas and philosophies from these different 
sources. In particular, St. Clement (A.D. 150-215) and Origen were Greek Christians living in 



 55 

Alexandria who helped develop Christian theology and incorporated many of the ideas of Plato 
and Aristotle.  

(Actually, this St. Clement was demoted from the Roman martyrology in the ninth century for 
supposed hereticism (but Isaac Newton admired him!). There is a St. Clement of Rome, who 
lived in the first century. See the Columbia Encyclopedia.) Recall that St. Paul himself was a 
Greek speaking Jew, and his epistles were written in Greek to Greek cities, like Ephesus near 
Miletus, Phillipi and Thessalonica on the Aegean, and Corinth between Athens and Sparta. After 
St. Paul, then, many of the early Christian fathers were Greek, and it is hardly surprising that as 
the faith developed in Alexandria and elsewhere it included Greek ideas. This Greek influence 
had of course been long forgotten in the middle ages. Consequently, when monks began to look 
at the works of Plato and Aristotle at the dawn of the Renaissance, they were amazed to find 
how these pre-Christian heathens had anticipated so many of the ideas found in Christian 
theology. (A History of Science, W. C. Dampier, end of Chapter 1.)  

The most famous Alexandrian astronomer, Ptolemy, lived from about 100 AD to 170 AD. He is 
not to be confused with all the Ptolemies who were the rulers! We will discuss Ptolemy later, in 
comparing his scheme for the solar system with that of Copernicus.  

There were two other great mathematicians of this period that we must mention: Archimedes 
and Apollonius.  

7.5 Archimedes  

Archimedes, 287 - 212 B.C., lived at Syracuse in Sicily, but also studied in Alexandria. He 
contributed many new results to mathematics, including successfully computing areas and 
volumes of two and three dimensional figures with techniques that amounted to calculus for the 
cases he studied. He calculated pi by finding the perimeter of a sequence of regular polygons 
inscribed and escribed about a circle.  

Two of his major contributions to physics are his understanding of the principle of buoyancy, 
and his analysis of the lever. He also invented many ingenious technological devices, many for 
war, but also the Archimedean screw, a pumping device for irrigation systems.  

7.6 Archimedes’ Principle  

We turn now to Syracuse, Sicily, 2200 years ago, with Archimedes and his friend king Heiro. The 
following is quoted from Vitruvius, a Roman historian writing just before the time of Christ:  

Heiro, after gaining the royal power in Syracuse, resolved, as a consequence of his successful 
exploits, to place in a certain temple a golden crown which he had vowed to the immortal gods. 
He contracted for its making at a fixed price and weighed out a precise amount of gold to the 
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contractor. At the appointed time the latter delivered to the king’s satisfaction an exquisitely 
finished piece of handiwork, and it appeared that in weight the crown corresponded precisely to 
what the gold had weighed.  

But afterwards a charge was made that gold had been abstracted and an equivalent weight of 
silver had been added in the manufacture of the crown. Heiro, thinking it an outrage that he had 
been tricked, and yet not knowing how to detect the theft, requested Archimedes to consider the 
matter. The latter, while the case was still on his mind, happened to go to the bath, and on 
getting into a tub observed that the more his body sank into it the more water ran out over the 
tub. As this pointed out the way to explain the case in question, without a moments delay and 
transported with joy, he jumped out of the tub and rushed home naked, crying in a loud voice 
that he had found what he was seeking; for as he ran he shouted repeatedly in Greek, “Eureka, 
Eureka.”  

Taking this as the beginning of his discovery, it is said that he made two masses of the same 
weight as the crown, one of gold and the other of silver. After making them, he filled a large 
vessel with water to the very brim and dropped the mass of silver into it. As much water ran out 
as was equal in bulk to that of the silver sunk in the vessel. Then, taking out the mass, he poured 
back the lost quantity of water, using a pint measure, until it was level with the brim as it had 
been before. Thus he found the weight of silver corresponding to a definite quantity of water.  

After this experiment, he likewise dropped the mass of gold into the full vessel and, on taking it 
out and measuring as before, found that not so much water was lost, but a smaller quantity: 
namely, as much less as a mass of gold lacks in bulk compared to a mass of silver of the same 
weight. Finally, filling the vessel again and dropping the crown itself into the same quantity of 
water, he found that more water ran over for the crown than for the mass of gold of the same 
weight. Hence, reasoning from the fact that more water was lost in the case of the crown than 
in that of the mass, he detected the mixing of silver with the gold and made the theft of the 
contractor perfectly clear.  

What is going on here is simply a measurement of the density—the mass per unit volume—of 
silver, gold and the crown. To measure the masses some kind of scale is used, note that at the 
beginning a precise amount of gold is weighed out to the contractor. Of course, if you had a nice 
rectangular brick of gold, and knew its weight, you wouldn’t need to mess with water to 
determine its density, you could just figure out its volume by multiplying together length, 
breadth and height, and divide the mass, or weight, by the volume to find the density in, say, 
pounds per cubic foot or whatever units are convenient. (Actually, the units most often used are 
the metric ones, grams per cubic centimeter. These have the nice feature that water has a 
density of 1, because that’s how the gram was defined. In these units, silver has a density of 
10.5, and gold of 19.3. To go from these units to pounds per cubic foot, we would multiply by 
the weight in pounds of a cubic foot of water, which is 62.)  
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The problem with just trying to find the density by figuring out the volume of the crown is that it 
is a very complicated shape, and although one could no doubt find its volume by measuring 
each tiny piece and calculating a lot of small volumes which are then added together, it would 
take a long time and be hard to be sure of the accuracy, whereas lowering the crown into a filled 
bucket of water and measuring how much water overflows is obviously a pretty simple 
procedure. (You do have to allow for the volume of the string!). Anyway, the bottom line is that 
if the crown displaces more water than a block of gold of the same weight, the crown isn’t pure 
gold.  

Actually, there is one slightly surprising aspect of the story as recounted above by Vitruvius. 
Note that they had a weighing scale available, and a bucket suitable for immersing the crown. 
Given these, there was really no need to measure the amount of water slopping over. All that 
was necessary was first, to weigh the crown when it was fully immersed in the water, then, 
second, to dry it off and weigh it out of the water. The difference in these two weighings is just 
the buoyancy support force from the water. Archimedes’ Principle states that the buoyancy 
support force is exactly equal to the weight of the water displaced by the crown, that is, it is 
equal to the weight of a volume of water equal to the volume of the crown.  

This is definitely a less messy procedure—there is no need to fill the bucket to the brim in the 
first place, all that is necessary is to be sure that the crown is fully immersed, and not resting on 
the bottom or caught on the side of the bucket, during the weighing.  

Of course, maybe Archimedes had not figured out his Principle when the king began to worry 
about the crown, perhaps the above experiment led him to it. There seems to be some 
confusion on this point of history.  

7.7 Archimedes and Leverage  

Although we know that leverage had been used to move heavy objects since prehistoric times, it 
appears that Archimedes was the first person to appreciate just how much weight could be 
shifted by one person using appropriate leverage.  

Archimedes illustrated the principle of the lever very graphically to his friend the king, by 
declaring that if there were another world, and he could go to it, he could move this one. To 
quote from Plutarch,  

Heiro was astonished, and begged him to put his proposition into execution, and show him some 
great weight moved by a slight force. Archimedes therefore fixed upon a three-masted 
merchantman of the royal fleet, which had been dragged ashore by the great labours of many 
men, and after putting on board many passengers and the customary freight, he seated himself 
at some distance from her, and without any great effort, but quietly setting in motion a system 
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of compound pulleys, drew her towards him smoothly and evenly, as though she were gliding 
through the water.  

Just in case you thought kings might have been different 2200 years ago, read on:  

Amazed at this, then, and comprehending the power of his art, the king persuaded Archimedes 
to prepare for him offensive and defensive weapons to be used in every kind of siege warfare.  

This turned out to be a very smart move on the king’s part, since some time later, in 215 B.C., 
the Romans attacked Syracuse. To quote from Plutarch’s Life of Marcellus (the Roman general):  

When, therefore, the Romans assaulted them by sea and land, the Syracusans were stricken 
dumb with terror; they thought that nothing could withstand so furious an onslaught by such 
forces. But Archimedes began to ply his engines, and shot against the land forces of the 
assailants all sorts of missiles and immense masses of stones, which came down with incredible 
din and speed; nothing whatever could ward off their weight, but they knocked down in heaps 
those who stood in their way, and threw their ranks into confusion. At the same time huge 
beams were suddenly projected over the ships from the walls, which sank some of them with 
great weights plunging down from on high; others were seized at the prow by iron claws, or 
beaks like the beaks of cranes, drawn straight up into the air, and then plunged stern foremost 
into the depths, or were turned round and round by means of enginery within the city, and 
dashed upon the steep cliffs that jutted out beneath the wall of the city, with great destruction of 
the fighting men on board, who perished in the wrecks. Frequently, too, a ship would be lifted 
out of the water into mid-air, whirled hither and thither as it hung there, a dreadful spectacle, 
until its crew had been thrown out and hurled in all directions, when it would fall empty upon the 
walls, or slip away from the clutch that had held it... .  

Then, in a council of war, it was decided to come up under the walls while it was still night, if 
they could; for the ropes which Archimedes used in his engines, since they imported great 
impetus to the missiles cast, would, they thought, send them flying over their heads, but would 
be ineffective at close quarters, since there was no space for the cast. Archimedes, however, as it 
seemed, had long before prepared for such an emergency engines with a range adapted to any 
interval and missiles of short flight, and, through many small and contiguous openings in the 
wall, short-range engines called “scorpions” could be brought to bear on objects close at hand 
without being seen by the enemy.  

When, therefore, the Romans came up under the walls, thinking themselves unnoticed, once 
more they encountered a great storm of missiles; huge stones came tumbling down upon them 
almost perpendicularly, and the wall shot out arrows at them from every point; they therefore 
retired.... . At last, the Romans became so fearful that, whenever they saw a bit of rope or a stick 
of timber projecting a little over the wall, “There it is,” they cried, “Archimedes is training some 
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engine upon us,” and turned their backs and fled. Seeing this, Marcellus desisted from all fighting 
and assault, and thenceforth depended on a long siege.  

It is sad to report that the long siege was successful and a Roman soldier killed Archimedes as he 
was drawing geometric figures in the sand, in 212 B.C. Marcellus had given orders that 
Archimedes was not to be killed, but somehow the orders didn’t get through.  

7.8 Apollonius  

Apollonius probably did most of his work at Alexandria, and lived around 220 B.C., but his exact 
dates have been lost. He greatly extended the study of conic sections, the ellipse, parabola and 
hyperbola.  

As we shall find later in the course, the conic sections play a central role in our understanding of 
everything from projectiles to planets, and both Galileo and Newton, among many others, 
acknowledge the importance of Apollonius’ work. This is not, however, a geometry course, so 
we will not survey his results here, but, following Galileo, rederive the few we need when we 
need them.  

7.9 Hypatia  

The last really good astronomer and mathematician in Greek Alexandria was a woman, Hypatia, 
born in 370 AD the daughter of an astronomer and mathematician Theon, who worked at the 
museum. She wrote a popularization of Apollonius’ work on conics. She became enmeshed in 
politics, and, as a pagan who lectured on neoplatonism to pagans, Jews and Christians (who by 
now had separate schools) she was well known. In 412 Cyril became patriarch. He was a 
fanatical Christian, and became hostile to Orestes, the Roman prefect of Egypt, a former student 
and a friend of Hypatia. In March 415, Hypatia was killed by a mob of fanatical Christian monks 
in particularly horrible fashion. The details can be found in the book Hypatia’s Heritage (see 
below).  

Books I used in preparing this lecture:  

Greek Science after Aristotle, G. E. R. Lloyd, Norton, N.Y., 1973  

A Source Book in Greek Science, M. R. Cohen and I. E. Drabkin, Harvard, 1966  

Hypatia’s Heritage: A History of Women in Science, Margaret Alic, The Women’s Press, London 
1986  

A History of Science, W. C. Dampier, Cambridge, 1929  

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Hypatia.html
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8 Basic Ideas in Greek Mathematics 

8.1 Closing in on the Square Root of 2  

In our earlier discussion of the irrationality of the square root of 2, we presented a list of squares 
of the first 17 integers, and remarked that there were several “near misses” to solutions of the 
equation m2 = 2n2. Specifically, 32 = 2×22 + 1, 72 = 2×52 - 1, 172 = 2×122 + 1. These results were 
also noted by the Greeks, and set down in tabular form as follows: 

3  2 

 

7  5 

 

17  12 
 

After staring at this pattern of numbers for a while, the pattern emerges: 3 + 2 = 5 and 7 + 5 = 
12, so the number in the right-hand column, after the first row, is the sum of the two numbers 
in the row above. Furthermore, 2 + 5 = 7 and 5 + 12 = 17, so the number in the left-hand column 
is the sum of the number to its right and the number immediately above that one.  

The question is: does this pattern continue? To find out, we use it to find the next pair. The right 
hand number should be 17 + 12 = 29, the left-hand 29 + 12 = 41. Now 412 = 1681, and 292 = 841, 
so 412 = 2× 292 - 1. Repeating the process gives 41 + 29 = 70 and 70 + 29 = 99. It is easy to check 
that 992 = 2×702 + 1. So 992/702 = 2 + 1/702. In other words, the difference between the square 
root of 2 and the rational number 99/70 is approximately of the magnitude 1/702. (You can 
check this with your calculator).  

The complete pattern is now evident. The recipe for the numbers is given above, and the +1’s 
and -1’s alternate on the right hand side. In fact, the Greeks managed to prove (it can be done 
with elementary algebra) that pairs of numbers can be added indefinitely, and their ratio gives a 
better and better approximation to the square root of 2.  

The essential discovery here is that, although it is established that the square root of 2 is not a 
rational number, we can by the recipe find a rational number as close as you like to the square 
root of two. This is sometimes expressed as “there are rational numbers infinitely close to the 
square root of 2” but that’s not really a helpful way of putting it. It’s better to think of a sort of 
game - you name a small number, say, one millionth, and I can find a rational number (using the 
table above and finding the next few sets of numbers) which is within one millionth of the 
square root of 2. However small a number you name, I can use the recipe above to find a 
rational that close to the square root of 2. Of course, it may take a lifetime, but the method is 
clear! 
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8.2 Zeno’s Paradoxes  

Zeno of Elea (495-435 BC) is said to have been a self-taught country boy. He was a friend of a 
well-known philosopher, Parmenides, and visited Athens with him, where he perplexed 
Socrates, among others, with a set of paradoxes. (Plato gives an account of this in Parmenides.) 
We shall look at two of them here.  

8.3 Achilles and the Tortoise.  

A two hundred yard race is set up between Achilles, who can run at 10 yards per second, and 
the tortoise, who can run at one yard per second (perhaps rather fast for a tortoise, but I’m 
trying to keep the numbers simple).  

To give the tortoise a chance, he is given a one-hundred yard start.  

Now, when Achilles has covered that first 100 yards, to get to where the tortoise was, the 
tortoise is 10 yards ahead. 

When Achilles has covered that 10 yards, the tortoise is 1 yard ahead.  

When Achilles has covered that 1 yard, the tortoise is 1/10 yard ahead.  

Now, Zeno says, there is no end to this sequence! We can go on forever dividing by 10! So, Zeno 
concludes, Achilles has to cover an infinite number of smaller and smaller intervals before he 
catches the tortoise. But to do an infinite number of things takes an infinitely long time - so he’ll 
never catch up.  

What is wrong with this argument? Try to think it through before you read on! 

The essential point becomes clearer if you figure out how long it takes Achilles to cover the 
sequence of smaller and smaller intervals. He takes 10 seconds to cover the first 100 yards, 1 
second to cover the next 10 yards, 1/10 second for the next yard, 1/100 second for the next 
1/10 of a yard, and so on. If we write down running totals of time elapsed to each of these 
points we get 10 seconds, 11 seconds, 11.1 seconds, 11.11 seconds and so on. It is apparent that 
the total time elapsed for all the infinite number of smaller and smaller intervals is going to be 
11.1111111…, with the 1’s going on forever. But this recurring decimal, 0.111111… is just 1/9, as 
you can easily check. 

The essential point is that it is possible to add together an infinite number of time intervals and 
still get a finite result. That means there is a definite time-11 1/9 seconds-at which Achilles 
catches up with the tortoise, and after that instant, he’s passed the tortoise.  
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8.4 The Arrow  

Consider the flight of an arrow through the air. Let us divide time up into instants, where an 
instant is an indivisibly small time. Now, during an instant, the arrow can’t move at all, because 
if it did, we could divide up the instant using the changing position of the arrow to indicate 
which bit of the instant we are in.  

However, a finite length of time-like a second-is made up of instants. Therefore, if the arrow 
doesn’t move at all during an instant, it doesn’t move in a sum of instants. Hence, it can’t move 
in one second! 

What’s wrong with this argument? 

Now there certainly is such a thing as an instant of time: for example, if the arrow is in the air 
from time zero to time two seconds, say, then there is one instant at which it has been in the air 
for exactly one second.  

The catch is, there is no way to divide time up into such instants. Imagine the time from zero to 
two seconds represented by a geometric line two inches long on a piece of paper. By geometric, 
I mean an ideal line, not one that’s really a collection of microscopic bits of pencil lead, but a 
true continuous line of the kind the Greeks imagined. Time has that kind of continuity-there 
aren’t little gaps in time (at least, none we’ve found so far). Now try to imagine the line made up 
of instants. You could start by putting dots every millionth of a second, say. But then you could 
imagine putting a million dots between each of those pairs of dots, to have a dot every trillionth 
of a second. And why stop there? You could keep on indefinitely with this division. But if you 
spend the rest of your life on this mental exercise, you will never put a dot at the instant 
corresponding to the time being the square root of two! And it has been proved by the 
mathematicians that there are infinitely more irrational numbers than there are rational 
numbers.  

So there really is no way to divide time up into instants. If you’re still not sure, think about the 
following problem: what’s the next instant after the instant at time equals one second?  

8.5 Instants and Intervals  

On the other hand, it is obviously useful in analyzing the motion of the arrow to look at the 
motion one bit at a time-in other words, to divide the time up somehow, to get a grip on how 
the arrow’s speed may be varying throughout the flight. So how should we proceed? Zeno’s 
dividing of time into instants was not very easy to understand, as we’ve seen. It’s much easier to 
visualize dividing time into intervals. For example, the two seconds the arrow is in the air could 
be divided into two hundred intervals, each of length one-hundredth of a second. Then we could 
find its average speed in each of those intervals by measuring how far it went in the one-
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hundredth of a second, and multiplying by one hundred. That is, if it went two feet in the one-
hundredth of a second interval, it was traveling at two hundred feet per second during that 
interval. (Of course, it might not be going at that speed for the whole flight-that’s why we’ve 
divided it into intervals, so that we can monitor the speed the whole time). Of course, if the 
arrow hits something, it will slow down very rapidly-there will be a big change in speed in one 
hundredth of a second. If we want to describe the motion of the arrow in this situation, we must 
divide time up into smaller intervals, say thousandths of a second, or even ten-thousandths of a 
second, depending on how precisely we want to follow the change in speed.  

8.6 Speed at an Instant  

There is still a problem here we haven’t quite faced. All this dividing time up into small intervals 
and finding the average speed in each interval gives a pretty good idea of the arrow’s progress, 
but it’s still a reasonable question to ask: just what is the arrow’s speed at the instant one 
second after the flight began? 

How do we answer that question? Think about it before you read on. 

The essential point about speed is that it is a rate of change of position-this is obvious when you 
think about measuring speed, it’s in units like miles per hour, feet per second, etc. This implies 
that to make any statement about speed we have to say how far the arrow moved between two 
specified times. Therefore, to find the speed at the time one second after takeoff, we would 
need to find where the arrow is at, say, 0.995 seconds after takeoff, then at 1.005 seconds after 
takeoff. I’ve chosen here two times that are one-hundredth of a second apart. If the arrow 
moves one and a half feet during that period, it’s going at 150 feet per second.  

You might object, though, that this is still not very precise. Probably 150 feet per second is 
pretty close to the arrow’s speed at one second after takeoff, but it’s really an average over a 
time interval of one-hundredth of a second, so may not be exactly the speed in the middle of 
the time. This is true-it may not be. What we must do, at least in principle, is to take a smaller 
time interval, say one-millionth of a second, again centered at time one second, as before. We 
now measure how far the arrow moves in the one-millionth of a second, and multiply that 
distance by one million to get the arrow’s average speed over that very short time.  

Of course, you could say you’re still not satisfied. You want to know the precise speed at the one 
second mark, not some approximation based on the average over a time interval. But, as we’ve 
just said, all speed measurements necessarily involve some time interval, which, however, can 
be as short as we like. This suggests how we should define what we mean by the speed at one 
instant of time-we take a sequence of shorter and shorter time intervals, each one centered at 
the time in question, and find the average speed in each. This series of speed measurements will 
close in on the exact speed at the time one second.  
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This should remind you of the discussion of the square root of two. There we had a sequence of 
rational numbers such that if you come up with some small number such as a millionth of a 
trillionth, we could always find a rational within that distance of root two. Here we are saying 
that if you want the speed to some preassigned accuracy, we can find it by taking a sufficiently 
small time interval around the time in question, and computing the average speed in that 
interval.  

Actually, this may not be as difficult as it sounds. For example, imagine an arrow moving far out 
in space at a steady speed, with no air resistance or gravity to contend with. Then it will go at a 
steady speed, and the average speed over all time intervals will be the same. This means we can 
find (in principle) the exact speed at any given time without having to worry about indefinitely 
small time intervals. Another fairly simple case is an arrow gaining speed at a steady rate. Its 
speed in the middle of a time interval turns out to be exactly equal to its average speed in the 
interval. We shall be discussing this case further when we get to Galileo.  

8.7 The Beginning of Calculus  

We should emphasize that the above discussion of intervals, instants and so on was not the 
response of the Athenians to Zeno. Only with later work by Eudoxus, Euclid and Archimedes did 
the way to deal with these small quantities gradually become apparent. Zeno’s contribution was 
that he initiated the discussion that ultimately led to the calculus. In fact, according to Bertrand 
Russell (History of Western Philosophy) Zeno taught Socrates the Socratic method-the method 
of seeking knowledge by systematic question and answer. Unhappily, Zeno’s approach did not 
win him powerful friends, and “he finally lost his head for treason or something of the sort” 
(Bell, Men of Mathematics).  

8.8 Archimedes Begins Calculating Pi  

Both the Babylonians and the Egyptians used approximations to pi, the ratio of the 
circumference of a circle to its diameter. The Egyptians used a value 3.16, within one per cent of 
the true value. (Further details can be found in Neugebauer, The Exact Sciences in Antiquity, 
Dover, page 78.) Actually, this value follows from their rule for the area of a circle, (8/9.d)2, but 
it is reasonable to suppose they could have constructed a circle and measured the 
circumference to this accuracy. There are no indications that they tried to calculate pi, using 

geometric arguments as Archimedes did. 
 

Following Archimedes, we first draw a circle of 
radius equal to one (so the diameter is 2), and 
inscribe in it a regular (that is, all sides of equal 
length) hexagon. It is evident that the hexagon is 
made up of six equilateral triangles, since the 360 
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degree angle at the center of the circle is equally divided into six, and the angles of a triangle 
add to 180 degrees. Therefore, each side of each triangle is equal to the radius of the circle, that 
is, equal to one. Thus the perimeter of the hexagon is exactly 6. It is clear from the figure that 
the circumference of the circle, the total distance around, is greater than the perimeter of the 
hexagon, because the hexagon can be seen as a series of shortcuts on going around the circle. 
We conclude that pi, the ratio of the circumference of the circle to its diameter, is greater than 
3, but not much-the hexagon looks quite close. (For example, much closer than, going around a 
square boxed around the circle, which would be a distance of 8 radii. If we approximated the 
circumference of the circle by this square, we would guess pi = 4.)  

So the first step-comparing the circle with the hexagon-tells us that pi is greater than three. 
Archimedes’ next move was to find a polygon inscribed in the circle that was closer to the circle 
than the hexagon, so that its perimeter would be closer to the circumference of the circle. His 
strategy was to double the number of sides of the polygon, that is, to replace the hexagon by a 
twelve-sided regular polygon, a dodecagon. Obviously, from the figure, the perimeter of the 
dodecagon is much closer to that of the circle than the hexagon was (but it’s still obviously less, 
since, like the hexagon, it is a series of shortcuts on going around the circle).  

 

Calculating the perimeter of the dodecagon 
is not as simple as it was for the hexagon, 
but all it require is Pythagoras’ theorem. 
Look at the figure. We need to find the 
length of one side, like AB, and multiply it 
by 12 to get the total perimeter. AB is the 
hypotenuse of the right-angled triangle 
ABD. We know the length AD is just ½ 
(recall the radius of the circle = 1). We don’t 
know the other length, BD, but we do know 
that BC must equal 1, because it’s just the 
radius of the circle again. Switching our 
attention to the right-angled triangle ACD, 
we see its hypotenuse equals 1, and one 

side (AD) equals ½. So from Pythagoras, the square of CD must be ¾. We will write CD = ½×sqrt3.  

Having found CD, we can find DB since CD + DB = CB = 1, that is, DB = 1 - ½×sqrt3. So we know 
the two shorter sides of the right-angled triangle ADB, and we can find the hypotenuse using 
Pythagoras again.  

The dodecagon turns out to have a perimeter 6.21, giving pi greater than 3.1. This is not quite as 
close as the Egyptians, but Archimedes didn’t stop here. He next went to a 24-sided regular 
polygon inscribed in the circle. Again, he just needed to apply Pythagoras’ theorem twice, 
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exactly as in the preceding step. The perimeter of the 24-sided regular polygon turns out to be 
6.26, giving pi greater than 3.13. (We are giving a slightly sloppy version of his work: he always 
worked with rationals, and where the square root of 3 came in, he used 265/153 < sqrt3 < 
1351/780. These limits came from an algorithm originating with the Babylonians.) 

In fact, Archimedes went on as far as the 96-sided regular polygon inscribed in the circle. He 
then started all over again with regular polygons circumscribed about the circle, so that the 
circle is touching the middle of each side of the polygon, and is completely contained by it. Such 
a polygon clearly has a perimeter greater than that of the circle, but getting closer to it as we 
consider polygons with more and more sides. Archimedes considered such a polygon with 96 
sides.  

So, with a series of polygons inside the circle, and another series outside it, he managed to 
bracket the length of the circumference between two sets of numbers which gradually 
approached each other. This is again reminiscent of the Greek strategy in approximating the 
square root of 2. The result of all his efforts was the inequality: 3 10/71 < pi < 3 1/7. If we take 
the average of these two numbers, we find 3.14185. The correct value is 3.14159… .  

8.9 Squaring the Circle  

This phrase refers to the famous problem of finding an area with straight-line boundaries equal 
in area to a circle of given diameter. Archimedes proved that the area of a circle is equal to that 
of a right-angled triangle having the two shorter sides equal to the radius of the circle and its 

circumference respectively.  
 

The idea of his proof is as follows. Consider first a 
square inscribed in the circle. The square is made up 
of four triangles, each of height h, say, and base 
length b. (Actually, b = 2h, but we’ll keep them 
separate.) The total area of the square is equal to the 
total area of the 4 triangles, which is 4 times ½×h×b, 
or ½×h×4b. Notice that this is the area of a long thin 
triangle, with height equal to the distance h from the 
middle of the side of the square to the center of the 
circle, and base equal to the perimeter length 4b of 

the square.  
 

The area of the 
square isn’t a 
very good 
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approximation to that of the circle, but we can improve it by replacing the square by a regular 
octagon, with all its points on the circle. Now, this octagon can by divided into eight triangles, 
following the same procedure as for the square. The height of each of these triangles equals the 
distance from the center of the circle to the middle of one side of the octagon. Just as for the 
square case, the total area of these eight triangles is equal to that of a long thin triangle of the 
same height, and with base length equal to the perimeter of the octagon.  

It is evident that the height of the octagon’s triangles is closer to the radius of the circle than the 
height of the square’s triangles, and the perimeter of the octagon is closer to the circumference 
of the circle than the perimeter of the square was.  

The process is repeated: the octagon is replaced by a regular 16-sided polygon, with all its points 
on the circle. This polygon is equal in area to the sum of the 16 triangles formed by drawing lines 
from the center of the circle to its points. These triangles all have the same height, so they have 
total area the same as a long thin triangle having the same height, and base length equal to the 
perimeter of the 16-sided polygon.  

At this point, the pattern should be clear-as we go to polygons of 32, 64, … sides, the total area 
of the polygon is the same as that of a right angled triangle with a long side equal to the 
perimeter of the polygon, which approaches the circumference of the circle as the polygons 
have more and more sides, and the height of the triangle approaches the radius of the circle. 
Therefore, the area of the polygons approaches ½×base×height = ½×2×pi×r×r = pi×r2.  

8.10  Eudoxus’ Method of Exhaustion  
This section and the next are optional—they won’t appear on any tests, etc. I just put them in for 
completeness.  

In fact, the account given above doesn’t do justice to the tightness of the Greeks’ geometric 
arguments. The approach to the limit of more and more sided polygons approximating the circle 
better and better is a bit vague. It’s not very clear how quickly this is happening.  
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Eudoxus clarified the situation by giving a 
procedure putting a lower limit on how 
much more of the circle’s total area was 
covered by the new polygon created at 
each step. Let’s begin with the square. In 
the figure, we show the inscribed square 
EFGH, and also a circumscribed square 
ABCD. Clearly, the area of square EFGH is 
exactly half of that of square ABCD. Since 
the circle lies entirely inside ABCD, it 
follows that EFGH covers more than half 
of the area of the circle.  
 

Now consider how much more of the 
circle’s total area is covered when we go 
from the square to the octagon. We add 

triangular areas like EPF to each side of the square. Now, notice that the triangle EPF has area 
exactly half of the rectangular area ELKF. If we had added rectangular areas like that to the four 
sides of the square, the circle’s area would have been completely contained. This implies that by 
adding just the triangles, that is, going from the square to the octagon, we are covering more 
than half of the area of the circle that lay outside the square.  

This same argument works at each step: so, the inscribed square covers more than half the 
circle’s area, going to the octagon covers more than half the rest, so the octagon covers more 
than three-quarters of the circle’s area, the 16-sided inscribed polygon covers more than seven-
eighths of the circle’s area, and so on.  

Archimedes used Eudoxus’ approach to prove that the area of a circle was equal to that of the 
right-angled triangle with shorter sides equal to the radius and the circumference of the circle. 
Suppose, he said, that the triangle’s area is less than the circle’s. Then in the sequence of 
polygons with 4, 8, 16, 32, … sides, we will get to one with area greater than the triangle’s. But 
that polygon will have an area equal to that of a number of triangles equal to its number of 
sides, and, as we’ve argued above, the sum of their areas is equal to that of a triangle having 
their height and base length equal to the perimeter of the polygon. But their height is less than 
the radius of the circle, and the perimeter is less than the circumference of the circle. Hence 
their total area must be less that that of the triangle having height the radius of the circle and 
base the circumference. This gives a contradiction, so that triangle cannot have area less than 
the circle’s.  
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Supposing that the triangle’s area is greater than the circles leads to another contradiction on 
considering a sequence of polygons circumscribed about the circle-so the two must be exactly 
equal.  

8.11 Archimedes does an Integral  

Archimedes realized that in finding the area of a circle, another problem was solved, that of 
finding the area of the curved surface of a cone (like an old-fashioned ice-cream cone). If such a 
cone is opened out by cutting a straight line up from its point, it will have the shape of a fan-that 
is, a segment of a circle. Its area will then be that fraction of the full circle’s area that its curved 
edge is of the full circle’s circumference. He also showed how to find the curved area of a “slice” 
of a cone, such as you’d get by cutting off the top of an ice-cream cone, by which we mean the 
other end from the point, cutting parallel to the top circle, to get a sort of ring-shaped bit of 
cone. He then managed to calculate the surface area of a sphere. His approach was as follows: 
imagine where Charlottesville appears on a globe, on the 38th parallel. This parallel is a ring 
going all the way around the globe at a constant distance down from the North Pole. Now 
consider the part of the globe surface between this 38th parallel and the 39th parallel. This is a 
ribbon of surface going around, and is very close to a slice of a cone, if we choose a cone of the 
right size and angle. Archimedes’ strategy was to divide the whole surface into ribbons like this, 
and find the area of each ribbon by taking it to be part of a cone. He then summed up the ribbon 
areas. Lastly, he took thinner and thinner ribbons to get an accurate result, using the method of 
exhaustion to prove that the area of the sphere was 4×pi×r2. This is precisely equivalent to a 
modern integral calculus solution of the same problem, and just as rigorous (but more difficult!)  

8.12 Conclusion  

It is clear from the above discussion that the Greeks laid the essential groundwork and even 
began to build the structure of much of modern mathematics. It should also be emphasized that 
although some great mathematicians devoted their lives to this work, it nevertheless took three 
centuries of cumulative effort, each building on the previous work. Evidently, this required a 
stable, literate culture over many generations. Geometric results are difficult to transmit in an 
oral tradition! Recall that Archimedes was killed drawing diagrams in the sand for his pupils. This 
level of mathematical analysis attained by Archimedes, Euclid and others is far in advance of 
anything recorded by the Babylonians or Egyptians.  

 

In preparing this lecture I used :  

A Source Book in Greek Science, M. R. Cohen and I. E. Drabkin, Harvard, 1966  
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9  How the Greeks Used Geometry to Understand the Stars 

9.1 Crystal Spheres: Plato, Eudoxus, Aristotle 

Plato, with his belief that the world was constructed with geometric simplicity and elegance, felt 
certain that the sun, moon and planets, being made of aither, would have a natural circular 
motion, since that is the simplest uniform motion that repeats itself endlessly, as their motion 
did.  However, although the “fixed stars” did in fact move in simple circles about the North star, 
the sun, moon and planets traced out much more complicated paths across the sky.  These 
paths had been followed closely and recorded since early Babylonian civilization, so were very 
well known.  Plato suggested that perhaps these complicated paths were actually combinations 
of simple circular motions, and challenged his Athenian colleagues to prove it.   

The first real progress on the problem was made by Eudoxus, at Plato’s academy.  Eudoxus 
placed all the fixed stars on a huge sphere, the earth itself a much smaller sphere fixed at the 
center.  The huge sphere rotated about the earth once every twenty-four hours.  So far, this is 
the standard “starry vault” picture.  Then Eudoxus assumed the sun to be attached to another 
sphere, concentric with the fixed stars’ sphere, that is, it was also centered on the earth.  This 
new sphere, lying entirely inside the sphere carrying the fixed stars, had to be transparent, since 
the fixed stars are very visible.  The new sphere was attached to the fixed stars’ sphere so that 
it, too, went around every twenty-four hours, but in addition it rotated slowly about the two 
axis points where it was attached to the big sphere, and this extra rotation was once a year.  
This meant that the sun, viewed against the backdrop of the fixed stars, traced out a big circular 
path which it covered in a year.  This path is the ecliptic.  To get it all right, the ecliptic has to be 
tilted at 23½ degrees to the “equator” line of the fixed stars, taking the North star as the “north 
pole”.   

This gives a pretty accurate representation of the sun’s motion, but it didn’t quite account for all 
the known observations at that time.  For one thing, if the sun goes around the ecliptic at an 
exactly uniform rate, the time intervals between the solstices and the equinoxes will all be 
equal.  In fact, they’re not-so the sun moves a little faster around some parts of its yearly 
journey through the ecliptic than other parts.  This, and other considerations, led to the 
introduction of three more spheres to describe the sun’s motion.  Of course, to actually show 
that the combination of these motions gave an accurate representation of the sun’s observed 
motion required considerable geometric skill! Aristotle wrote a summary of the “state of the 
art” in accounting for all the observed planetary motions, and also those of the sun and the 
moon.  This required the introduction of fifty-five concentric transparent spheres.  Still, it did 
account for everything observed in terms of simple circular motion, the only kind of motion 
thought to be allowed for aether.  Aristotle himself believed the crystal spheres existed as 
physical entities, although Eudoxus may have viewed them as simply a computational device.   
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It is interesting to note that, despite our earlier claim that the Greeks “discovered nature”, Plato 
believed the planets to be animate beings.  He argued that it was not possible that they should 
accurately describe their orbits year after year if they didn’t know what they were doing—that 
is, if they had no soul attached. 

9.2 Measuring the Earth, the Moon and the Sun: Eratosthenes and 
Aristarchus 

A little later, Eratosthenes and Aristarchus between them got some idea of the size of the earth-
sun-moon system, as we discussed in an earlier lecture. 

And, to quote from Archimedes (see Heath, Greek Astronomy),  

“Aristarchus of Samos brought out a book consisting of certain hypotheses, in which the 
premises lead to the conclusion that the universe is many times greater than it is presently 
thought to be.  His hypotheses are that the fixed stars and the sun remain motionless, that the 
earth revolves about the sun in the circumference of a circle, the sun lying in the middle of the 
orbit, and that the sphere of the fixed stars, situated about the same center as the sun, is so 
great that the circular orbit of the earth is as small as a point compared with that sphere.” 

The tiny size of the earth’s orbit is necessary to understand why the fixed stars do not move 
relative to each other as the earth goes around its orbit. 

Aristarchus’ model was not accepted, nor even was the suggestion that the earth rotates about 
its axis every twenty-four hours.   

However, the model of the fifty-five crystal spheres was substantially improved on.  It did have 
some obvious defects.  For example, the sun, moon and planets necessarily each kept a constant 
distance from the earth, since each was attached to a sphere centered on the earth.  Yet it was 
well-known that the apparent size of the moon varied about ten per cent or so, and the obvious 
explanation was that its distance from the earth must be varying.  So how could it be attached 
to a sphere centered on the earth? The planets, too, especially Mars, varied considerably in 
brightness compared with the fixed stars, and again this suggested that the distance from the 
earth to Mars must vary in time.   

9.3 Cycles and Epicycles: Hipparchus and Ptolemy 

A new way of combining circular motions to account for the movements of the sun, moon and 
planets was introduced by Hipparchus (second century BC) and realized fully by Ptolemy (around 
AD 150).  Hipparchus was aware the seasons weren’t quite the same length, so he suggested 
that the sun went around a circular path at uniform speed, but that the earth wasn’t in the 
center of the circle.  Now the solstices and equinoxes are determined by how the tilt of the 
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earth’s axis lines up with the sun, so the directions of these places from the earth are at right 
angles.  If the circle is off center, though, some of these seasons will be shorter than others.  We 
know the shortest season is fall (in our hemisphere).   

Another way of using circular motions was provided by Hipparchus’ theory of the moon.  This 
introduced the idea of the “epicycle”, a small circular motion riding around a big circular motion.  
(See below for pictures of epicycles in the discussion of Ptolemy.) The moon’s position in the sky 
could be well represented by such a model.  In fact, so could all the planets.  One problem was 
that to figure out the planet’s position in the sky, that is, the line of sight from the earth, given 
its position on the cycle and on the epicycle, needs trigonometry.  Hipparchus developed 
trigonometry to make these calculations possible.   

Ptolemy wrote the “bible” of Greek (and other ancient) astronomical observations in his 
immense book, the “Almagest”.  This did for astronomy at the time what Euclid’s Elements did 
for geometry.  It gave huge numbers of tables by which the positions of planets, sun and moon 
could be accurately calculated for centuries to come.  We cannot here do justice to this 
magnificent work, but I just want to mention one or two significant points which give the 
general picture.   

To illustrate the mechanism, we present here a slightly simplified version of his account of how 
the planets moved.  The main idea was that each planet (and also, of course, the sun and moon) 
went around the earth in a cycle, a large circle centered at the center of the earth, but at the 
same time the planets were describing smaller circles, or epicycles, about the point that was 
describing the cycle.  Mercury and Venus, as shown in the figure, had epicycles centered on the 
line from the earth to the sun.  This picture does indeed represent fairly accurately their 
apparent motion in the sky—note that they always appear fairly close to the sun, and are not 
visible in the middle of the night.   
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The planets Mars, Jupiter and Saturn, on the other hand, can be seen through the night in some 
years.  Their motion is analyzed in terms of cycles greater than the sun’s, but with epicycles 
exactly equal to the sun’s cycle, and with the planets at positions in their epicycles which 
correspond to the sun’s position in its cycle—see the figure below.   

Earth Mercury 

Venus Sun 

Cycles and Epicycles for the Inner Planets: Basic Version 
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This system of cycles and epicycles was built up to give an accurate account of the observed 
motion of the planets.  Actually, we have significantly simplified Ptolemy’s picture.  He caused 
some of the epicycles to be not quite centered on the cycles, they were termed eccentric.  This 
departure from apparent perfection was necessary for full agreement with observations, and we 
shall return to it later.  Ptolemy’s book was called the Almagest in the Middle Ages, the Arabic 
prefix al with the Greek for “the greatest” the same as our prefix mega.   

9.4 Ptolemy’s View of the Earth 
It should perhaps be added that Ptolemy, centuries after Aristarchus, certainly did not think the 
earth rotated.  (Heath, Greek Astronomy, page 48).  His point was that the aither was lighter 
than any of the earthly elements, even fire, so it would be easy for it to move rapidly, motion 
that would be difficult and unnatural for earth, the heaviest material.  And if the earth did 
rotate, Athens would be moving at several hundred miles per hour.  How could the air keep up? 
And even if somehow it did, since it was light, what about heavy objects falling through the air? 
If somehow the air was carrying them along, they must be very firmly attached to the air, 

Earth 

Mars 

Jupiter 

Sun 

Cycles and Epicycles for the Outer Planets: Basic Version 
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making it difficult to see how they could ever move relative to the air at all! Yet they can be, 
since they can fall, so the whole idea must be wrong.   

Ptolemy did, however, know that the earth was spherical.  He pointed out that people living to 
the east saw the sun rise earlier, and how much earlier was proportional to how far east they 
were located.  He also noted that, though all must see a lunar eclipse simultaneously, those to 
the east will see it as later, e.g.  at 1 a.m., say, instead of midnight, local time.  He also observed 
that on traveling to the north, Polaris rises in the sky, so this suggests the earth is curved in that 
direction too.  Finally, on approaching a hilly island from far away on a calm sea, he noted that 
the island seemed to rise out of the sea.  He attributed this phenomenon (correctly) to the 
curvature of the earth.   
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10  How Classical Knowledge Reached Baghdad 

10.1 The Classical Achievement in Mathematics and Science 
With Ptolemy’s Almagest giving detailed accounts and predictions of the movement of the 
planets, we reach the end of the great classical period in science.  Let’s review what was 
achieved. 

First, the Babylonians developed a very efficient system of numbers and measures of all kind, 
primarily for business purposes. Unfortunately, it did not pass through to the Greeks and 
Romans, except for measures of time and angle, presumably those are the units relevant for 
recording astronomical observations.  The Babylonians kept meticulous astronomical records 
over many centuries, mainly for astrological purposes, but also to maintain and adjust the 
calendar.  They had tables of squares they used to aid multiplication, and even recorded 
solutions to word problems which were a kind of pre-algebra, a technique broadened and 
developed millennia later in Baghdad, as we shall see.  

The Egyptians developed geometry for land measurement (that’s what it means!), the land 
being measured for tax assessment. 

The Greeks, beginning with Thales then Pythagoras, later Euclid, Archimedes and Apollonius, 
greatly extended geometry, building a logical system of theorems and proofs, based on a few 
axioms.  An early result of this very abstract approach was the Pythagoreans’ deduction that the 
square root of 2 could not be expressed as a ratio of whole numbers.  This was a result they 
didn’t want to be true, and that no-one would have guessed.  Remember, they believed that 
God constructed the Universe out of pure numbers!  Their accepting of this new “irrational” 
truth was a testimony to their honesty and clear mindedness.   

The development of geometry took many generations: it could only happen because people 
with some leisure were able to record and preserve for the next generation complicated 
arguments and results.  They went far beyond what was of immediate practical value and 
pursued it as an intellectual discipline.  Plato strongly believed such efforts led to clarity of 
thought, a valuable quality in leaders.  In fact, above the door of his academy he apparently 
wrote: “let no one who cannot think geometrically enter here.”   

Over this same period, the Greeks began to think scientifically, meaning that they began to talk 
of natural origins for phenomena, such as lightning, thunder and earthquakes, rather than 
assuming they were messages from angry gods.  Similarly, Hippocrates saw epilepsy as a 
physical disease, possibly treatable by diet or life style, rather than demonic possession, as was 
widely believed at the time (and much later!).  

The geometric and scientific came together in analyzing the motion of the planets in terms of 
combinations of circular motions, an approach suggested by Plato, and culminating in Ptolemy’s 
Almagest.  This Greek approach to astronomy strongly contrasted with that of the Babylonians, 
who had made precise solar, lunar and planetary observations for many hundreds of years,  
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enough data to predict future events, such as eclipses, fairly accurately, yet they never 
attempted to construct geometric models to analyze those complex motions.  

10.2 Why did Mathematics and Science Grind to a Halt? 
Why did the development of science on the ancient world pretty much end after 800 years, 
around 200 AD or so?  For one thing, the Romans were now dominant, and although they were 
excellent engineers, building thousands of miles of roads, hundreds of military garrisons, and so 
on, they did very little science.  And, the Greeks themselves lost interest: Plato’s Academy began 
to concentrate on rhetoric, the art of speechmaking.  Perhaps this had been found to be more 
valuable for an aspiring leader than the ability to think geometrically or scientifically—or 
perhaps better for winning elections and  persuading people.  Furthermore, with the conversion 
of the Roman empire to Christianity around 300 AD, saving souls became a top priority in the 
Catholic church.  As St. Augustine put it,  

"Nor need we be afraid lest the Christian should be rather ignorant of the force and number of 
the elements, the motion, order and eclipses of the heavenly bodies, the form of the heavens, the 
kinds and natures of animals, shrubs and stones ... It is enough for the Christian to believe that 
the cause of all created things, whether heavenly or earthly, whether visible or invisible, is none 
other than the goodness of the Creator, who is the one true God."  

It’s a little puzzling to put this together with Botticelli’s picture, showing Augustine looking 
prayerful but with scientific instruments in plain sight!   (Augustine was very interested in 
science and many other unholy things earlier in life.) 

 

St. Augustine by Botticelli (Wikipedia Commons). 



 78 

10.3 But Some Christians Preserved the Classical Knowledge… 
Actually, the story of the treatment of the Greek mathematical and scientific knowledge by the 
early Christian church is complicated, like the church itself.  Recall that mathematics and science 
effectively ended in Alexandria with the murder of Hypatia in 415 AD, ordered by the Patriarch 
Cyril.  This same Cyril engaged in a violent theological quarrel with the Patriarch of 
Constantinople, Nestorius.  The question was the relative importance of the Virgin Mary.  Cyril 
demanded that she be referred to as the Mother of God, Nestor would only accept Mother of 
Christ.  This was all part of a debate about the nature of Christ: did he have two natures, human 
and divine, or one nature?  Nestor thought two, of which only one, the human, died on the 
cross.  Getting this right was very important: it was believed that salvation depended on it.  
However, the dispute was also (and perhaps principally) a struggle for power.  At the Council of 
Ephesus in 431, Cyril arrived early with a large group of strong men, handed out bribes, and got 
the assembled bishops to condemn Nestor as a heretic.  (Further complications ensued at later 
Councils, see for example The Closing of the Western Mind, Charles Freeman, Knopf, 2002, page 
259 on, but it was all bad news for Nestor and his followers, who became known as Nestorians.)   

10.4 How the Nestorians Helped Science Survive 
What has this got to do with science?  It is a crucial link in the chain.  In contrast to most of the 
rest of the church, the Nestorians preserved and read the works of Aristotle, Plato, etc., and 
translated many of them into Syriac.  They felt that clear thinking was useful in theology.  Being 
declared heretics meant that it was no longer a good idea to stay in the Roman Empire, and, in 
fact, they were expelled.   

Let’s briefly review the extent of the Roman Empire to understand what expulsion implied. 

The maps below are from: 

http://www.roman-empire.net/maps/empire/extent/augustus.html  

 

http://www.roman-empire.net/maps/empire/extent/augustus.html
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At its greatest extent, in 116 AD, pictured above, notice that the Empire included almost all of 
present-day Iraq, including the port of Basra (bottom right, on the Persian Gulf). However, this 
didn’t last long—the Romans’ most powerful enemy, the Persians (now known as Iranians), 
recaptured the territory after a short Roman occupation.   

At the time of the death of Constantine, 337 AD, the Empire was officially Christian. The eastern 
part of the Empire, ruled from Constantinople and Greek speaking, became known as 

Byzantium. The Empire’s total extent is shown below:

 

 

The Nestorians found temporary refuge with Syriac speaking sympathizers in Edessa (see Google 
map below, 37 10 N, 38 47 E.  Istanbul (top left) is of course Constantinople):
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(Nestor was a pupil of Theodore of Mopsuestia in Antioch, Syria.  When Nestor was condemned, 
these Arab Christians broke with the Byzantine church, forming the Assyrian Church of the East, 
see Wikipedia.) 

10.5 On into Persia 
This was all during the time of the second Persian Empire (226-651), the Sassanid Empire.   

The Sassanid Persian kings saw an opportunity to handle their own considerable number of 
Christian subjects better. They granted protection to Nestorians in 462, then in 484, they 
executed the Bishop of Nisibis (37 04 N, 41 13 E) (who was anti Nestorian, pro Byzantine) and 
replaced him with a Nestorian.  (This is from Wikipedia.) The Nestorians settled in the Persian 
Empire, moving eventually to Gundishapur (near modern Dezful, at 32 25 N, 48 26 E).  These 
Nestorians sent out many missionaries, for example reaching China in 635, and even Korea, and 
founding many churches, races still remain today.  (However, foreign religions were suppressed 
in China in the 800’s.) 

The academy at Gundishapir had Syraic as the working language.  Under a Sassanid monarch, 
Khosrau I, 531 – 579 AD, it became famous  for learning.   Although Khosrau I was a Zoroastrian, 
the dominant Persian religion, he was tolerant of all religions, in fact one of his sons became a 
Christian.  He greatly improved the infrastructure, building palaces, strong defenses, and 
irrigation canals.  He encourages science and art, collecting books from all over the known 
world, and introducing chess from India.  (Trivial Fact: “Checkmate” is a corruption of the 
Persian shah mat, meaning the king is dead.) He had Syriac and Greek works translated into 
Persian.  He also sent a famous physician Borzuyeh to India to invite Indian and Chinese scholars 
to Gundishapur.   

10.6 The Advent of Islamic Rule 
In 622, the prophet Muhammad left hostile Mecca to found his own theocratic state in Medina 
(just over two hundred miles to the north, both in western Saudi Arabia).  He readily attracted 
converts, and built an army that captured Mecca eight years later.  He died in 632, but his 
armies continued to conquer.  Both Romans and Persians were by this point rather weak 
militarily, having spent decades fighting each other.  The Sassanid dynasty fell to Muslim Arab 
armies in 638 AD.  Alexandria was conquered in 642.  These Muslims, although at war with 
Byzantium, were tolerant of their ethnic brethren, the Arab Christians.  The first dynasty, the 
Umayyad (660 – 750), centered in Damascus, included Hisham ibn Abd as-Malik, who 
encouraged the arts, education, and “translation of numerous literary and scientific 
masterpieces into Arabic” (Wikipedia). ( The Muslim Empire was now vast: a Hindu rebellion in 
Sindh was subdued; at the same time Umayyad armies went north from Spain, but were 
defeated at Tours, France, in 732.  It has been argued that if the Arab armies had won at Tours, 
all Europe would have become Islamic, and still would be.) 

http://en.wikipedia.org/wiki/Nestorianism
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In 749, a second dynasty, the Abbasid caliphate, began.  In 762 the Abbasid Caliph al-Mansur 
built a magnificent new capital: Baghdad.  Al-Mansur emulated the Persian rulers, building a 
palace library like the Sassanid Imperial Library, except that now everything was to be translated 
into Arabic.  Harun ar-Rashid, Caliph from 786 to 808, sent agents to buy Greek manuscripts 
from Constantinople, to be translated into Arabic.  At the same time, the Siddhantas wrrived 
from India: a set of Indian astronomical works, including trigonometric tables that likely 
originated with Hipparchus, and had then found their way to the Greek cities in India and 
Afghanistan founded by Alexander.  (It’s worth noting that the first paper mill outside China was 
built in Baghdad in 794, the secret having been given by prisoners of war from a battle against 
the Chinese in Central Asia.  In fact, the cheap availability of paper made the complex Abbasid 
bureaucracy reasonably efficient.) 

Meanwhile, Gundishapur wasn’t far away: generously funded court appointments drew 
physicians (including al-Mansur’s personal physician) and teachers to Baghdad.   

Later, under the Abbasid Caliph al-Ma’mun (813 – 833), the House of Wisdom was founded (in 
828): a large library and translation center into Arabic: first from Persian, then Syriac, then 
Greek.  Many works were translated from Syriac into Arabic, including some Archimedes and all 
Euclid.  Hunayn, a Christian, from Jundishapur, redid many translations to make them more 
readable. 

10.7      The House of Wisdom: al-Khwarismi  

Perhaps the most famous scholar from the House of Wisdom is Al-Khwarismi (780 – 850). The 
word algorithm, meaning some kind of computational procedure, is just a mangling of his name.  
This is because he wrote the book that introduced the Hindu numbering system (now known as 
Arabic) to the Western world, and medieval scholars used his name to refer to routines for 
multiplication using Arabic numbers, far more efficient than anything possible with the 
previously used Roman numerals! 

He also wrote the book on algebra: that word is actually “al-jabr” meaning completion. (We’ll 
see below why this is an appropriate term.)  Actually, he didn’t use symbols to denote unknown 
quantities, now the essence of algebra.  Ironically, such symbols had been used by the Greek 
Diophantus, in Alexandria, in the 200’s AD, but that work was apparently unknown to the Arabs.  
Instead, al-Khwarismi stated algebraic problems as word problems, as the Babylonians had over 
two millennia earlier, but he also gave geometric representations of his solutions.   

Let’s look at one of his examples: 2 10 39.x x�    (OK, I’ve cheated by using x: he wrote it all 
out in words, but his thought process was as outlined below.)   

This he thought of in terms of equating areas: a very natural approach to something beginning 
with a square!  On the left we have a square of side x and a rectangle of sides x and 10.   

http://upload.wikimedia.org/wikipedia/commons/2/25/World_820.png
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His strategy is to add area to this to make it one big square—he takes the rectangle and divides 
it into four equal rectangles each having sides x and 10/4 = 5/2.  He then glues these to the x 
square: 

 

 

The next step is to extend this to give just one square, by adding the green bits.  But to keep the 
equation valid, the same amount must of course be added to the other side.  That is, 5/2×5/2×4 
is to be added to each side. We can see that on the left we now have a square of side x + 5.  on 
the right hand side, we have 39 + 25 = 64 = 8×8.  Therefore, x + 5 = 8, and x = 3.  

So by adding to both sides we have “completed the square”, and al-jabr is this adding to get 

completion.  Negative numbers were not in use at that time, so quadratics like 2 10 39x x � , 
for example, were treated separately, and several distinct cases had to be explained.  

It’s not clear that al-Khwarismi’s own contribution, by which I mean really new mathematics, 
was great, but his influence was tremendous: his presentation of algebra, and of the Arab 

+ 

al-jabr: completing the square 
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numerals, sparked much further mathematical development, both in Baghdad and, later, in the 
West, as we shall see. 

11  Later Islamic Science 

11.1 The Islamic World 
Our interest here is in the scientific developments that took place in the Islamic world.  We will 
look at a few of the most famous of the Islamic scientists, and only mention very briefly the 
political context in each case: the spread of Islam over much of the known world, and the 
subsequent political changes, were very complex.  For example, after Baghdad, Cordoba in Spain 
became the preeminent center for science, but Spain was under the Umayyads, not the Abbasid 
caliph.  Furthermore, some of the greatest Islamic scientists were Persian, and political 
developments there included a Shia revival in the tenth century, the Sunni Abbasids thereby 
losing their eastern empire, followed by a Turkish (Sunni) takeover—the Turks having been 
brought in as a palace guard.   

11.2 Omar Khayyam 
Omar Khayyam was born in Nishapur, in present-day northeastern Iran (see map) in 1048, a 
time when most of  Persia (Iran) was under (Seljuk) Turkish rule.  Initially, he did not find it a 
good environment for scholarly work, and in 1070 moved to Samarkand (see map). He did 
manage to write a famous book on Algebra.  

 

 

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Khayyam.html
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His main contribution to that subject is a serious attack on cubic equations, such as finding x 
given that 2x3 – 2x2 + 2x – 1 = 0.  This particular problem has a geometric origin:  

 

Given that for the right-angled triangle shown, the sum of the height and the shortest side is 
equal to the hypotenuse, find the ratio of the length of the shortest side to that of the other 
side. 

Later Malik Shah, the third Seljuk sultan, and his Persian vizier al-Mulk, invited Khayyam to head 
up his observatory in Esfahan (his capital city, directly south of Teheran, see map).  Khayyam 
measured the length of the year, getting 365.242198…days. This is correct to within one second: 
the error is in that last digit only! 

Unfortunately for Khayyam, his friend the vizier was murdered by a terrorist group, the 
Assassins, who specifically targeted important political figures, on the road to Baghdad in 1092, 
and Malik-Shah died soon after that.  His widow discontinued the observatory funding, but later 
his son Sanjar founded a center in Turkmenistan where Khayyam continued to do mathematics.  

Omak Khayyam is also famous for his writings, such as the Rubaiyat.  However, these have a 
distinctly irreligious flavor, and he had to tread carefully to minimize trouble with the Muslim 
religious authorities. 

Note: many of the above facts are from the St Andrew’s website.   

11.3 Al-Tusi 
Nasir al-Din al-Tusi was born in Tus, in northwest Iran (near Nishapur) in 1201.  

 

http://en.wikipedia.org/wiki/Rubaiyat_of_Omar_Khayyam
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Khayyam.html
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He studies as a child at a mainly Shia religious school in Tus, followed by secondary education in 
Nishapur.  However, around 1220, the Mongols invaded the area, causing much destruction.  Al-
Tusi found refuge with the Assassins in their mountain fortress at Alamut : 

 

It isn’t clear whether or not al-Tusi was actually a prisoner, but it is clear that he did some 
important scholarly work in this relatively quiet environment, writing on astronomy, 
mathematics, philosophy and ethics.  

Nevertheless, when the Mongols, led by Ghengis Khan’s grandson Hulagu (pictured below), took 
Alamut in 1256, al-Tusi switched sides, and the Mongols appointed him their scientific advisor.   
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Al-Tusi was with the Mongols when they attacked Baghdad in 1258.  Apparently if the Caliph 
(the last of  the Abbasids) had surrendered, little damage would have been done, but instead he 
refused, told Hulagu that God would avenge, but the Caliph did little to prepare defenses.  The 
Mongols attacked (after a brief siege organized by a Chinese general), wrecking the Grand 
Library and throwing all the books in the river, burning down mosques and other buildings that 
were the work of generations,  slaughtering the citizenry with abandon, breaking up the canal 
system that had kept the area fertile, and leaving too few survivors to repair the canals.  This 
was the end of Baghdad as a cultural center for many centuries.  The Mongols went on to fight 
with Egypt, but this time they were turned back in what is now the West Bank by superior 
Egyptian cavalry, in 1260: the same year that the Hulagu’s brother Kublai Khan became Emperor 
of China, with his capital at Beijing.  The Mongols in the Far East reached their limit when they 
attempted to invade Japan in the 1270’s and 80’s: their fleet was destroyed by a massive 
typhoon, one the Japanese termed kamikaze, meaning divine wind. 

After Hulagu destroyed Baghdad, he constructed, at al-Tusi’s suggestion, a magnificent 
observatory at Marageh in northwest Iran (see map above) with al-Tusi in charge. The 
observatory opened in 1262, and al-Tusi brought together many scholars and scientists.  The 
observatory became, essentially, a university: al-Tusi had several pupils who made important 
contributions, and in fact his role was central in reviving Islamic science. 

Al-Tusi himself developed plane and spherical trigonometry and wrote the first complete book 
on the subject.  He also made the first really significant advance on Ptolemy’s Almagest.  
Although Ptolemy’s work described the planetary motions well, it contained some aesthetically 
unappealing features—it had strayed far from Plato’s long ago suggestion that all should be 
described in terms of combinations of circular motions.  In particular, accounting for the lack of 
coplanarity of planetary orbits required what amounted to an up-and-down linear component in 
planetary motion.  Perhaps al-Tusi’s most famous achievement was  to demonstrate how such 
motion could be generated by a combination of two circular motions, see the animation at Tusi 
couple!  Here’s his original explanation, from a Vatican exhibit: 

 

http://www-history.mcs.st-and.ac.uk/Mathematicians/Al-Tusi_Nasir.html
http://galileoandeinstein.physics.virginia.edu/lectures/TusiCouple/TusiCouple.html
http://galileoandeinstein.physics.virginia.edu/lectures/TusiCouple/TusiCouple.html
http://www.ibiblio.org/expo/vatican.exhibit/exhibit/d-mathematics/images/math19.jpg
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12 Galileo and the Telescope 

12.1 Copernicus Challenges Ptolemy’s Scheme 

Ptolemy’s picture of the solar system was almost fully accepted for the next fourteen hundred 
years, to be challenged by Copernicus (real name: Nicolaus Koppernigk) a mathematician and 
astronomer with a Polish father and a German mother, in 1530.   

Copernicus’ picture of the solar system had the sun at the center, and the earth went around it, 
as did the other planets.  

 

We show here the picture from his original publication.  Notice that the only exception to the 
rule that everything goes around the sun is the moon, which continues to go around the earth.  
One objection to the picture was that if the earth was indeed just another planet, how come it 
was the only one with a moon?  
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Other objections were based on the Aristotelian point of view—it was difficult to believe that all 
the other planets were composed of aither, and the earth of the other four elements, if they 
were all behaving in so similar a fashion.  A further objection, which had long ago been raised by 
Aristotle to the idea of a rotating earth, was that the stresses would cause it to fly apart, and 
furthermore, anything thrown in the air would land far to the west.   

Despite these problems, Pope Clement VII approved of a summary of Copernicus’ work in 1530, 
and asked for a copy of the full work when it was available.  This was not until 1543, the year 
Copernicus died.   

As Copernicus’ new picture of the universe became more widely known, misgivings arose.  The 
universe had after all been created for mankind, so why wasn’t mankind at the center?  An 
intellectual revolutionary called Giordano Bruno accepted Copernicus’ view, and went further, 
claiming that the stars were spread through an infinite space, not just on an outer sphere, and 
there were infinitely many inhabited worlds.  Bruno was burned at the stake in 1600.   

The real breakthrough that ultimately led to the acceptance of Copernicus’ theory was due to 
Galileo, but was actually a technological rather than a conceptual breakthrough.  It was Galileo’s 
refinement and clever use of the telescope that persuaded people that the moon was a lot like 
the earth, and in some ways, so were the planets.   

12.2 The Evolution of the Telescope 

(This section is mostly just a summary of Van Helden’s excellent Introduction to  Sidereus 
Nuncius, University of Chicago Press, 1989)  

The first known use of a magnifying glass to aid in reading was in the 1200s, by Roger Bacon at 
Oxford.  It proved a boon to aging scholars, many of whom had been forced to retire while still 
relatively young.  The idea spread throughout Europe, and Italian craftsmen, were making 
glasses for old men before 1300, (lens means lentil in Italian, so called because of the shape of 
the pieces of glass used) and for the myopic young not until a hundred and fifty years later.  The 
reading glasses for the old men, who were longsighted, were convex lenses, (bulging in the 
middle like () ), whereas the glasses required by the shortsighted young were concave lenses, 
thinner in the middle than at the edges like )( , and hence more difficult to make and not so 
robust.  The first time, as far as we know, that anyone put two lenses together to make a 
telescope-like optical instrument was in 1608, in Holland.  The inventor of an opera-glass like 
telescope was called Lipperhey.  He was unable to get a patent, however, because his invention 
was deemed too easy to reproduce.  Perhaps the reason it had not been done before was that 
to get magnification, one needs a concave lens stronger than the convex lens being used with it, 
and commonly the lenses in wide use were the other way around.   
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Galileo found out about this invention in the spring of 1609, and immediately set about 
improving it.  He saw it as a possible way out of his financial difficulties.  He was an oldest son, 
and so was responsible for his younger sisters’ dowries.  He also had three children of his own, 
by his mistress.  At the time, he was a Professor of Mathematics in the University of Padua, in 
the Venetian Republic.  He soon put together a spyglass with a magnification of three, which 
many other people had already done.  Galileo was an excellent experimentalist, and working 
with different lenses, he realized that the magnification was proportional to the ratio of the 
power of the concave (eyepiece) lens to the convex (more distant) lens.  In other words, to get 
high magnification he needed a weak convex lens and a strong concave lens.  the problem was 
that the opticians only made glasses in a narrow range of strengths, and three or so was the 
best magnification available with off the shelf lenses.  Galileo therefore learned to grind his own 
lenses, and by August, he had achieved about ninefold linear magnification.  This was an 
enormous improvement over everything else on the market.  Galileo therefore approached the 
Senate of Venice to demonstrate his instrument.  Many senators climbed the highest belltowers 
in Venice to look through the glass at ships far out at sea, and were impressed by the obvious 
military potential of the invention.   

Galileo then wrote a letter to the Doge:  

Galileo Galilei, a most humble servant of Your Serene Highness, being diligently attentive, with 
all his spirit, not only to discharging the duties pertaining to the lecturing of mathematics at the 
University of Padua, but also to bringing extraordinary benefit to Your Serene Highness with 
some useful and remarkable invention, now appear before You with a new contrivance of 
glasses, drawn from the most recondite speculations of perspective, which render visible objects 
so close to the eye and represent them so distinctly that those that are distant, for example, nine 
miles appear as though they were only one mile distant.  This is a thing of inestimable benefit for 
all transactions and undertakings, maritime or terrestrial, allowing us at sea to discover at a 
much greater distance than usual the hulls and sails of the enemy, so that for two hours or more 
we can detect him before he detects us...   

Galileo concludes the letter by asking for tenure:  

....(the telescope is) one of the fruits of the science which he has professed for the past 17 years 
at the University of Padua, with the hope of carrying on his work in order to present You greater 
ones, if it shall please the Good Lord and Your Serene Highness that he, according to his desire, 
will pass the rest of his life in Your service.   

It is nice to report that Galileo was granted tenure, and a reasonable salary, but—the bad 
news—with a proviso that further raises would not be forthcoming.   
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12.3 Mountains on the Moon 

Galileo’s first major astronomical discovery with the telescope was that the Moon’s surface is 
mountainous, and not a perfect sphere as had always been assumed (see his drawings in 
Sidereus Nuncius).  He built a convincing case for the reality of the mountains by sketching the 
appearance of parts of the Moon’s surface at different times of the month, that is, under 
different angles of lighting, and showing how the light and shadow seen could be simply and 
naturally accounted for topographically, rendering the prevailing theory at the time, that the 
variations in light arose from something inside a perfect sphere, a cumbersome and unappealing 
alternative.  This caused an uproar. 

1.  

From the National Central Library of Florence (BNCF). 

http://www.pacifier.com/~tpope/Accessing_Manuscripts.htm#BNCF_Website
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He was able to estimate the height of the mountains on the moon by seeing how far into the 
dark part bright spots could be discerned.   

 

At half moon, a little geometry is enough to calculate the heights! Galileo himself worked an 
example: suppose a bright spot, presumably an illuminated mountaintop, is visible one-
twentieth of a moon diameter into the dark side, at half-moon.  Then the picture is as shown 
here (and is taken from Sidereus Nuncius).  The light from the sun fully illuminates the right-
hand half of the moon, plus, for example, the mountaintop at D.  (GCD is a ray from the sun.) If 
the base of the mountain, vertically below D, is at A, and E is the moon’s center, this is exactly 
the same problem as how far away is the horizon, for a person of given height on a flat beach.  It 
can be solved using Pythagoras’ theorem as we did for that problem, with the center of the 
moon E one of the points in the triangle, that is, the triangle is EDC.   

A problem with asserting the existence of mountains is the apparent smooth roundness of the 
edge of the Moon, for which Galileo had two arguments.  First, ranges behind those on the edge 
would tend to fill in the gaps.  This is correct.  Second, maybe things were fuzzed out by the 
Moon’s atmosphere.  This is wrong.   

Galileo’s next major discovery began with his observation on January 7, 1610, of what he took to 
be a rather odd set of three small fixed stars near Jupiter, and, in fact, collinear with the planet.  
These stars were invisible to the naked eye.  He looked again at Jupiter on successive nights, and 
by the 15th had realized that he was looking at moons of Jupiter, which were going around the 
planet with periods of the order of days.  This caused even more consternation than the 
demystification of the Moon.  Seven was a sacred number, and there were seven planets, 
wanderers, or moving stars.  Jupiter’s moons spoiled this.  Furthermore, they suggested that it 
was o.k.  to go in a circle about something other than the center of the universe, i.e.  the Earth.  
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This made Copernicus’ argument, that the Moon goes around the Earth and the Earth around 
the Sun, more plausible.   

Again, Galileo’s grantsmanship is admirable.  In a masterstroke of public relations, he named the 
satellites after the Medici family, Dukes of Tuscany, where he applied for the position of 
mathematician to the court.  He sent his most recent 20X telescope to the Duke, so that he 
could peruse the stars named after him and his brothers, and emphasized its military 
applicability.  

13 Life of Galileo 

13.1 Books 

NOTE: Many books have been written about Galileo, and, in particular, about his interaction 
with the Church. An excellent short biography is Galileo, Stillman Drake, Oxford.   Drake has also 
written Galileo at Work: His Scientific Biography, Dover.   An enlightening book on the social 
context, and Galileo’s adaptation to it, is Galileo Courtier by Mario Biagioli.   

One classic is The Crime of Galileo, Giorgio de Santillana, 1955, University of Chicago Press.  A 
fairly recent biography by a journalist is Galileo, a Life, James Reston, Jr., HarperCollins.  

(I am certainly no expert in this complex field of study, and just present a collection of facts 
below to try to give the flavor of Galileo’s life and times.) 

13.2 Like Father, like Son 

Galileo was born in Pisa, Tuscany in 1564, the son of Florentine musician Vincenzio Galilei.  
Actually, Vincenzio was a revolutionary musician—he felt the formal church music that then 
dominated the scene had become sterile, and that classic Greek poetry and myths had a power 
the church music lacked, that perhaps could be translated into modern music.  He attempted 
some of this, and his work began the development that culminated in Italian opera.  

To understand something of Galileo’s early upbringing, here is a quote from his father, Vincenzio 
Galileo: 

“It appears to me that those who rely simply on the weight of authority to prove any assertion, 
without searching out the arguments to support it, act absurdly. I wish to question freely and to 
answer freely without any sort of adulation. That well becomes any who are sincere in the search 
for truth.”  

Vincenzio wrote this in the introduction to   Dialogue on Ancient and Modern Music (Google 
books).  

http://books.google.com/books?id=S2ocT0ttGcgC&pg=PR46&lpg=PR46&dq=vincenzio+galilei&source=web&ots=5Lf8JbgkE5&sig=RgKwVIZ6lcAfYxwEvA_Bad2bNu0&hl=en&sa=X&oi=book_result&resnum=6&ct=result#PPR29,M1
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Dialogo della Musica Antica et della Moderna, Florence, 1581.  I took the quote from Reston 
quoting  J.J. Fahie, Galileo,  page 3. (Google books.) 

Now Vincenzio had studied music with the leading musical theorist of the day,  Gioseffo Zarlino 
in Venice.  Zarlino had a Pythagorean approach: he believed any two notes that sounded right 
together were related by simple numerical ratios: if a plucked string gives middle C, a string 
exactly half the length will give the next C up, then a quarter the next, etc:  you divide the string 
by the same factor each time.  Similarly, this is how appropriate intervals are determined for 
adjacent notes.   For example, a semitone is a 9/8 ratio (meaning that for a string held under 
constant tension, decreasing the length by this ratio will increase the note by a semitone.  Notes 
two semitones apart would have a frequency difference 9/8 X 9/8.  But what about notes half a 
semitone apart?  Zarlino claimed that was impossible to divide a semitone evenly.  His reason 
was that it would need a ratio of the square root of 9/8.  The square root of 9 is 3, that of 8 = 4 x 
2 = 2 x яϮ͕�ƐŽ�ŝƚ�ĐŽƵůĚŶ͛ƚ�ďĞ�ĞǆƉƌĞƐƐĞƐ�ĂƐ�Ă�ƌĂƚŝŽ͘���;ZĞŵĞŵďĞƌ�яϮ�ŝƐ�irrational!) 

But Vincenzio Galileo ridiculed this theory—he could play a note just half way between!   In 
other words, he took a practical rather than a theoretical approach to music: what sounds right 
trumps any abstract mathematical discussion of music.   In fact, this was a very old argument:  
Vincenzio Galileo was following Aristoxenus  (4th century BC Greek) instead of Pythagoras—see 
his book,  Dialogue on Ancient and Modern Music . 

It was also widely believed that if the tension in a string was doubled, that would be the same as 
halving the length at constant tension—another example of the linear/ratio/proportion 
mentality, probably from Aristotle.  And, it wasn’t difficult to believe: the tension was varied by 
tightening the string until it sounded right, there was actual measurement of tension.   Vincenzio 
proved, by hanging weights on strings, that in fact the tension had to be quadrupled to have the 
same effect as halving the length.  

So Galileo was brought up to believe that theoretical claims needed to be checked 
experimentally and, in particular, simple linear rules might not always be right. 

At age 17, Galileo went to the University of Pisa.  He enrolled as a medical student, following his 
father’s advice, but turned to math, after persuading his father that he didn’t want to be a 
doctor.  His father allowed him to be tutored by the Tuscan court mathematician, Ricci, who 

designed fortifications, which no doubt impressed Galileo (Reston, 
page 15). 

13.3 Pendulums and Pulses 

When he was eighteen, Galileo watched a lamp being lit in the 
cathedral at Pisa.  (Fahie, page 9; but apparently Fahie is wrong on 
one (irrelevant!) detail, the Possenti lamp he shows was only hung 

http://books.google.com/books?hl=en&id=4s5ZsuwEhikC&dq=fahie+galileo&printsec=frontcover&source=web&ots=xjLynKZvsj&sig=zfJVfSywbJpJ85HsFhy-cZO_ut4&sa=X&oi=book_result&resnum=1&ct=result#PRA2-PA6-IA1,M1
http://en.wikipedia.org/wiki/Aristoxenus
http://books.google.com/books?id=S2ocT0ttGcgC&pg=PR46&lpg=PR46&dq=vincenzio+galilei&source=web&ots=5Lf8JbgkE5&sig=RgKwVIZ6lcAfYxwEvA_Bad2bNu0&hl=en&sa=X&oi=book_result&resnum=6&ct=result#PPR29,M1
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a few years later.)  These cathedral lamps were very ornate affairs, with many candles.  The 
lamplighter would pull the lamp towards himself, light the candles then let it go.  Galileo 
watched the swinging lit lamp for some time.  He timed its swinging with his pulse, and realized 
that the period of one swing stayed the same, or very close to the same,  as the swings became 
smaller and smaller.  He realized this constancy of swing time could be used to measure a 
patient’s pulse in hospital.  (This was before watches had been invented—even pendulum clocks 
came a little later, both Galileo and Huygens developed the concept.  Huygens was better.)   
Anyway, Galileo, working with a physician friend Santorio, constructed a simple device, which 
became known as a pulsilogia, and became widely used.  Basically, it was a pendulum of 
adjustable length, the length being set by the physician so the swings coincided with the 
patient’s pulse, a built-in ruler than read off the pulse rate. 

13.4 The Roof of Hell  

Galileo proved to be an extremely talented mathematician, and in his early twenties he wrote 
some tracts extending results of Archimedes on centers of gravity of shapes.  At age 25, he was 
appointed to the Chair of Mathematics at Pisa.  His job interview was to give two lectures to the 
Florentine Academy on mathematical topics.  This Academy’s main function was to glorify the 
Medicis, the ruling family, and of course Florence itself.  Now Dante was to Florence what 
Thomas Jefferson is to Charlottesville, only on a bigger scale: perhaps his most famous work was 

his delineation of hell in Dante’s Inferno.  Hell started 
below ground, and continued down to the center of 
the earth.  In contrast to heaven, out there 
somewhere and doubtless made of aetherial material, 
Hell was constructed of familiar stuff, so could be 
mathematically analyzed, like any architectural 
construction. 

Galileo presented his lecture as a description of two 
different plans of hell, one by Antonio Manetti, a 
Florentine, and one by Alessandro Vellutello, from 
Lucca, a rival city.  Manetti’s Hell extended 8/9ths of 
the way from the Earth’s center to the surface,  
Vellutello’s only one-tenth of the way, giving a much 
smaller volume available, as Galileo pointed out.  He 
showed off some of his new mathematical results 
here: the volume of a cone goes as the cube of its 
height, so the factor of about 10 difference in height of 
the two hells meant a difference of about a thousand 
in volume.  People had been skeptical of Manetti’s 
hell, though: they doubted that vast arched roof could 

hold up against gravity.  Galileo argued that this was no problem: the dome in the cathedral in 
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Florence held up beautifully, and was relatively thinner than the 405 miles that Galileo 
estimated to be the thickness of Dante’s cover.   

The lectures went over very well, and he got the job.  But then it dawned on him that he’d made 
a mistake, and his whole analysis, comparing the roof of hell with the cathedral, was seriously 
flawed.  He kept very quiet.  No-one else noticed.  We’ll return to this important point later. 

At age 28, in 1592, Galileo moved to a better position at Padua, in the Venetian Republic, where 
he stayed until the age of 46. 

13.5 Venice: Wine, Women and Dialogue  

Reston’s book certainly paints a vivid picture of the Venetian Republic at the time Galileo moved 
there!  Venice, a city of 150,000 people, apparently consumed 40 million bottles of wine 
annually.  There were more courtesans than in Rome.  In 1599, Galileo met one Marina Gamba, 
21 years old.  He had three children by her, greatly upsetting his mother.  Galileo also spent a lot 
of time with Sagredo, a young Venetian nobleman, both in the town and at Sagredo’s very fancy 
house, or palace.  Sagredo is featured as one of the disputants in Dialogue Concerning the Two 
Chief World Systems, and Two New Sciences.  Another close friend during this period was Fra 
Paolo Sarpi, a Servite friar, and official theologian to the Republic of Venice in 1606, when Pope 
Paul put Venice under the interdict.  Tensions between Venice and Rome were partly generated 
because Venice wanted to be able to tax churches built in Venice by Rome. Sarpi advised the 
Venetians to ignore the interdict, and the Jesuits were expelled from Venice.  A nearly successful 
attempt on Sarpi’s life was generally blamed on the Jesuits (from Drake, page 28). 

13.6 The Telescope: Heaven Abolished? 

(In Bertolt Brecht’s play Galileo , on page 65 Sagredo tells Galileo that he’s as naïve as his 
daughter, and the pope is not going to just scribble a note in his diary: “Tenth of January, 1610, 
Heaven abolished.”)  

When Galileo was 46 years old, in 1610, he developed the telescope, secured tenure and a big 
raise at Padua, then went on to make all the discoveries announced in Sidereus Nuncius: 
mountains on the moon, the moons of Jupiter, phases of Venus, etc.  By naming the moons of 
Jupiter after the Medici family, Galileo landed the job of Mathematician and Philosopher 
(meaning Physicist) to the Grand Duke of Tuscany, and was able to return to his native land.  
This move upset his friends in Venice who had worked so hard to secure his promotion at Padua 
only months before.  

Of course, Galileo’s belief that his discoveries with the telescope strongly favored the 
Copernican world view meant he was headed for trouble with the Church.  In fact, his Venetian 
friends warned him that it might be dangerous to leave the protection of the Venetian state.  

http://books.google.com/books?id=weOwNKGYHGoC&pg=PA65&lpg=PA65&dq=brecht+galileo+1610+heaven+abolish&source=web&ots=khmfiCULyi&sig=-rjeap13oILULJqXuHaU9xKvFlQ&hl=en&sa=X&oi=book_result&resnum=1&ct=result#PPP1,M1
http://www.galileosdaughter.com/
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13.7 Galileo Wins Over Some Jesuit Astronomers…   

Nevertheless, in 1611, Galileo went to Rome and met with the Jesuit astronomers.  Probably he 
felt that if he could win them over, he would smooth his path in any future problems with the 
Church.  Father Clavius, author of Gregorian Calendar and undisputed leader of Jesuit 
astronomy had a hard time believing there were mountains on the moon, but he surrendered 
with good grace on looking through the telescope (Sant., pages 18, 20)  

One archbishop wrote (p 20): “Bellarmine asked the Jesuits for an opinion on Galileo, and the 
learned fathers sent the most favorable letter you can think of …”   Bellarmine was chief 
theologian of the Church, and a Jesuit himself.  Bellarmine wrote in a letter to A. Foscarini, 12 
April 1615: 

Third, I say that if there were a true demonstration that the sun is at the center of the world and 
the earth in the third heaven, and that the sun does not circle the earth but the earth circles the 
sun, then one would have to proceed with great care in explaining the Scriptures that appear 
contrary, and say rather that we do not understand them than that what is demonstrated is 
false. But I will not believe that there is such a demonstration, until it is shown me.” 

(Quote from Feldhay, Galileo and the Church, Cambridge, 1995, page 35) 

This was far from a mindless rejection of the Copernican picture—it just demanded a more 
convincing demonstration. 

Somewhat earlier—Dec 1613—Galileo had written a letter to Castelli (a Benedictine abbot and 
former pupil of Galileo’s) saying in essence that Scripture cannot contradict what we see in 
nature, so scripture, written for the business of saving souls and readable by everybody, 
sometimes is metaphorical in describing nature.  It seems that Bellarmine and Galileo might 
have been able to come to some agreement on a world view. 

Incidentally, Galileo was thinking about quite a different series of physics problems at this same 
time-trying to understand when things will float and when they sink.  He believed Archimedes’ 
Principle, that denser objects than water sink in water.  (To be precise, the Principle states that 
the buoyant supporting force from the water on an immersed object is equal to the weight of 
the water displaced by the object.  That is, it is equal to the weight of a volume of water equal to 
the volume of the object.  So if the object is denser than water, its weight is greater than the 
buoyancy force and it sinks.)  

It was pointed out to him that a ball made of ebony sinks in water, but a flat chip of ebony 
floats.  We now understand this in terms of surface tension, but that had not been understood 
in Galileo’s time.  Nevertheless, Galileo gave an essentially correct answer: he observed that the 
chip floated somewhat below the previous level of the surface, dragging the water down slightly 
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around its edges,  so one should consider the floating body to be the chip plus the thin sheet of 
air over it, and putting these together gives an average density equal to that of water.  Galileo 
discussed problems of this kind with a Florentine patrician, Filippo Salviati, and a group of his 
acquaintances.  As usual, Galileo’s style and ability to pulverize the opposition did not win many 
friends. (see Drake, pages 49-51). Salviati appears as one of the three disputants in Galileo’s 
Dialogue. 

13.8 …but Alienates Some Others 

One more source of tension between Galileo and the Jesuits arose at this point.  Since 1611, 
Galileo had been observing the motion of sunspots: small dark spots on the surface of the sun, 
easily visible through a telescope at sunset.  They were observed independently at about the 
same time by Christopher Scheiner, a German Jesuit from Ingoldstadt.  (It is possible that 
Scheiner had somehow heard of Galileo’s observations.)  Scheiner thought they were small dark 
objects circling the sun at some distance, Galileo correctly surmised they were actually on the 
sun’s surface, another blow to the perfect incorruptibility of a heavenly body.  Galileo published 
his findings in 1613, with a preface asserting his priority of discovery.  This greatly upset 
Scheiner.  

About this time, some members of another order of the Church, the Dominicans, were 
becoming aware of the Copernican world view, and began to preach against it.  In 1613, Father 
Nicolo Lorini, a professor of ecclesiastical history in Florence, inveighed against the new 
astronomy, in particular “Ipernicus”. (Sant p 25).  He wrote a letter of apology after being 
reproved.  In 1614, another Dominican, Father Tommaso Caccini, who had previously been 
reprimanded for rabble-rousing, preached a sermon with the text “Ye men of Galilee, why stand 
ye gazing up into the heaven?”  He attacked mathematicians, and in particular Copernicus.  (In 
the popular mind, mathematician tended to mean astrologer.)  It should be added that these 
two were by no means representative of the order as a whole.  The Dominican Preacher 
General, Father Luigi Maraffi, wrote Galileo an apology, saying “unfortunately I have to answer 
for all the idiocies that thirty or forty thousand brothers may or actually do commit”. 

According to De Santillana (page 45) in 1615 Father Lorini sends an altered copy of Galileo’s 
letter to Castelli (mentioned above) to the Inquisition.  He made two changes, one of which was 
to go from “There are in scripture words which, taken in the strictly literal meaning, look as if 
they differ from the truth” to “which are false in the literal meaning”.  Still, the inquisitor who 
read it thought it passable, although open to being misconstrued.  

Nevertheless, in February 1616, the Copernican System was condemned.  According to Drake 
(page 63): “A principal area of contention between Catholics and Protestants was freedom to 
interpret the Bible, which meant that any new Catholic interpretation could be used by the 
Protestants as leverage: if one reinterpretation could be made, why not wholesale 
reinterpretations?  A dispute between the Dominicans and the Jesuits over certain issues of free 
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will was still fresh in the pope’s mind, as he had to take action in 1607 to stop members of the 
two great teaching orders from hurling charges of heresy at each other.  These things suggest 
that Paul V, if not temperamentally anti-intellectual, had formed a habit of nipping in the bud 
any intellectual dispute that might grow into factionalism within the Church and become a 
source of strength for the contentions of the Protestants.” 

The pope asked Bellarmine to convey the ruling against the Copernican system to Galileo.  
Bellarmine had a meeting with Galileo, and apparently there were also some Dominicans 
present.  Just what happened at this meeting is not quite clear, at least to me.  Later (in May) 
Galileo was given an affidavit by Bellarmine stating that he must no longer hold or defend the 
propositions that the earth moves and the sun doesn’t.  Another document, however, which 
was unsigned (and therefore perhaps of questionable accuracy), stated that the Commissary of 
the Inquisition, in the name of the pope, ordered that Galileo could no longer hold, defend or 
teach the two propositions (Drake, page 67).  This second document was not given to Galileo.  
The inclusion of teach was a crucial difference:  it meant Galileo couldn’t even describe the 
Copernican system.  A week later (early March) books describing a moving earth were placed on 
the Index of Prohibited Books, some pending correction. 

In the fall of 1618, three comets appeared.  A book by a prominent Jesuit argued that the 
comets followed orbits close to those of planets, although they had short lifetimes.  Galileo 
knew the comets moved in almost straight line motion much of the time.  As usual, Galileo could 
not conceal his contempt of the incorrect views of others:  

In Sarsi I seem to discern the belief that in philosophizing one must support oneself on the 
opinion of some celebrated author, as if our minds ought to remain completely sterile and barren 
unless wedded to the reasoning of someone else.  Possibly he thinks that philosophy is a book of 
fiction by some author, like the Iliad … . Well, Sarsi, that is not how things are.  Philosophy is 
written in this grand book of the universe, which stands continually open to our gaze.  But the 
book cannot be understood unless one first learns to comprehend the language and to read the 
alphabet in which it is composed.  It is written in the language of mathematics, and its 
characters are triangles, circles and other geometric figures, without which it is humanly 
impossible to understand a single word of it; without these, one wanders in a dark labyrinth.  

(This is from The Assayer, 1623) 

Naturally, this further alienated the Jesuits.  

In 1623, Galileo’s admirer the Florentine Maffeo Barberini becomes Pope Urban VIII.  The new 
pope saw himself as a widely educated man, who appreciated even Galileo’s current theories.  
He had written a poem “In Dangerous Adulation” about Galileo’s ideas.  He also suggests his 
own pet theory to Galileo: even though the universe may be most simply understood by 
thinking of the sun at rest, God could have arranged it that way, but really with the earth at rest. 
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Galileo felt that with his friend and admirer as pope, and his affidavit from Bellarmine that didn’t 
actually forbid him from describing the Copernican system, it was safe to write further about his 
world view.  His ambition was to prove that the Copernican system must be correct, even 
though the more cumbersome Ptolemaic system might be fixed up to describe observations.  
(For example, the Danish Astronomer Tycho Brahe suggested that the sun went around the 
earth, but all the other planets went around the sun.  That would account correctly for the 
phases of Venus.)  Galileo was searching for some real proof that the earth was moving.  He 
thought he found it in the tides.  Why should all the water on the surface of the earth slosh 
around once or twice a day?  Galileo decided it was because the earth was both rotating and 
moving around the sun, so for a given place on earth, its speed varies throughout the day, 
depending on whether its speed from the daily rotation is in the same direction as its speed 
from the earth’s moving around the sun.  This constant speeding up and slowing down is what 
Galileo thought generated the tides, so the tides were proof the earth was moving! (Actually this 
is not a good argument-the tides are really caused by the moon’s gravity.) 

Galileo worked on his new book, which he intended to call “Dialogue on the Tides”, from 1624 
to 1630.  He was warned as he completed the work that that title seemed to imply he really held 
the view that the earth was moving, so he changed the title to Dialogue Concerning the Two 
Chief Systems of the World-Ptolemaic and Copernican.  As usual, Galileo spared no-one in the 
book.  He mocked the pope himself, by putting Urban’s suggestion (see above) in the mouth of 
Simplicio, then dismissing it contemptuously (Reston, page 195). 

The book was published in March 1632 in Florence.  In August, an order came from the 
Inquisition in Rome to stop publication, and Galileo was ordered to stand trial.  Apparently, 
someone—probably Scheiner, now living in Rome—had shown the pope the unsigned memo 
from the 1616 meeting, forbidding Galileo even to describe the Copernican system.  Galileo was 
not too upset at the thought of a trial, because he held a trump card: the affidavit from 
Bellarmine.  At the trial, Galileo said he had no memory of being forbidden to teach, and no 
signed document could be found to support the unsigned memo.  

The trial did not address the scientific merits of the case, it was about whether or not Galileo 
had disobeyed an official order.  It was suggested that he admit to some wrongdoing, and he 
would get off lightly.  He agreed to tone down the Dialogue, pleading that he had been carried 
away by his own arguments.  He was condemned to indefinite imprisonment, and, after some 
negotiation, was confined to his villa until his death in 1642.  During this period, he wrote Two 
New Sciences, a book on the strength of materials and on the science of motion. 

Galileo wrote in his old age, in his own copy of the Dialogue:  

Take note, theologians, that in your desire to make matters of faith out of propositions relating 
to the fixity of sun and earth, you run the risk of eventually having to condemn as heretics those 
who would declare the earth to stand still and the sun to change position-eventually, I say, at 
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such a time as it might be physically or logically proved that the earth moves and the sun stands 
still. 

(Quoted in Drake, page 62).  

It’s perhaps worth adding one last word from the Jesuits (Reston, page 273) : 

“If Galileo had only known how to retain the favor of the fathers of this college, he would have 
stood in renown before the world; he would have been spared all his misfortunes, and could have 
written about everything, even about the motion of the earth.”  

(and here are some pictures from the museum in Florence: Galileo’s preserved forefinger, and 
his meeting with Milton.) 

 

14 Scaling: Why Giants Don’t Exist 
Galileo begins “Two New Sciences” with the striking observation that if two ships, one large and 
one small, have identical proportions and are constructed of the same materials, so that one is 
purely a scaled up version of the other in every respect, nevertheless the larger one will require 
proportionately more scaffolding and support on launching to prevent its breaking apart under its 
own weight.  He goes on to point out that similar considerations apply to animals, the larger ones 
being more vulnerable to stress from their own weight (page 4): 

Who does not know that a horse falling from a height of three or four cubits will 
break his bones, while a dog falling from the same height or a cat from a height of 
eight or ten cubits will suffer no injury?  ... and just as smaller animals are 

http://www.imss.fi.it/
http://galileoandeinstein.physics.virginia.edu/tns1.htm
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proportionately stronger and more robust than the larger, so also smaller plants 
are able to stand up better than the larger.  I am certain you both know that an oak 
two hundred cubits high would not be able to sustain its own branches if they 
were distributed as in a tree of ordinary size; and that nature cannot produce a 
horse as large as twenty ordinary horses or a giant ten times taller than an ordinary 
man unless by miracle or by greatly altering the proportions of his limbs and 
especially his bones, which would have to be considerably enlarged over the 
ordinary. 

For more of the text, click here. 

To see what Galileo is driving at here, consider a chandelier lighting fixture, with bulbs and shades 
on a wooden frame suspended from the middle of the ceiling by a thin rope, just sufficient to take 
its weight (taking the electrical supply wires to have negligible strength for this purpose).  Suppose 
you like the design of this particular fixture, and would like to make an exactly similar one for a 
room twice as large in every dimension.  The obvious approach is simply to double the dimensions 
of all components.  Assuming essentially all the weight is in the wooden frame, its height, length 
and breadth will all be doubled, so its volume—and hence its weight—will increase eightfold.   Now 
think about the rope between the chandelier and the ceiling.  The new rope will be eight times 
bigger than the old rope just as the wooden frame was.  But the weight-bearing capacity of a 
uniform rope does not depend on its length (unless it is so long that its own weight becomes 
important, which we take not to be the case here).  How much weight a rope of given material will 
bear depends on the cross-sectional area of the rope, which is just a count of the number of rope 
fibers available to carry the weight.  The crucial point is that if the rope has all its dimensions 
doubled, this cross-sectional area, and hence its weight-carrying capacity, is only increased fourfold.  
Therefore, the doubled rope will not be able to hold up the doubled chandelier, the weight of 
which increased eightfold.  For the chandelier to stay up, it will be necessary to use a new rope 
which is considerably fatter than that given by just doubling the dimensions of the original rope. 

This same problem arises when a weight is supported by a pillar of some kind.  If enough weight is 
piled on to a stone pillar, it begins to crack and crumble.  For a uniform material, the weight it can 
carry is proportional to the cross-sectional area.  Thinking about doubling all the dimensions of a 
stone building  supported on stone pillars, we see that the weights are all increased eightfold, but 
the supporting capacities only go up fourfold.  Obviously, there is a definite limit to how many times 
the dimensions can be doubled and we still have a stable building.   

As Galileo points out, this all applies to animals and humans too (page 130): “(large) increase in 
height can be accomplished only by employing a material which is harder and stronger than usual, 
or by enlarging the size of the bones, thus changing their shape until the form and appearance of 
the animals suggests a monstrosity.”   

He even draws a picture:  

 

http://galileoandeinstein.physics.virginia.edu/tns1.htm
http://galileoandeinstein.physics.virginia.edu/tns_draft/tns_109to152.html
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Galileo understood that  you cannot have a creature looking a lot like an ordinary gorilla except that 
it’s sixty feet high.  What about Harry Potter’s friend Hagrid?  Apparently he’s twice normal height 
(according to the book) and three times normal width (although he doesn’t look it on this link).  But 
even that’s not enough extra width (if the bone width is in proportion). 

There is a famous essay on this point by the biologist J. B. S. Haldane, in which he talks of the more 
venerable giants in Pilgrim’s Progress, who were ten times bigger than humans in every dimension, 
so their weight would have been a thousand times larger, say eighty tons or so.  As Haldane says, 
their thighbones would only have a hundred times the cross section of a human thighbone, which is 
known to break if stressed by ten times the weight it normally carries.  So these giants would break 
their thighbones on their first step.  Or course, big creatures could get around this if they could 
evolve a stronger skeletal material, but so far this hasn’t happened.   

Another example of the importance of size used by Galileo comes from considering a round stone 
falling through water at its terminal speed.  What happens if we consider a stone of the same 
material and shape, but one-tenth the radius?  It falls much more slowly.  Its weight is down by a 
factor of one-thousand, but the surface area, which gives rise to the frictional retardation, is only 
down by a factor of one hundred.  Thus a fine powder in water---mud, in other words---may take 
days to settle, even though a stone of the same material will fall the same distance in a second or 
two.  The point here is that as we look on smaller scales, gravity becomes less and less important 
compared with viscosity, or air resistance—this is why an insect is not harmed by falling from a tree. 

This ratio of surface area to volume has also played a crucial role in evolution, as pointed out by 
Haldane.  Almost all life is made up of cells which have quite similar oxygen requirements.  A 
microscopic creature, such as the tiny worm rotifer, absorbs oxygen over its entire surface, and the 
oxygen rapidly diffuses to all the cells.   As larger creatures evolved, if the shape stayed the same 
more or less, the surface area went down relative to the volume, so it became more difficult to 

http://www.artdolls.com/images/gallery/fullSize/PhilCuthbert-Hagrid.jpg
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absorb enough oxygen.  Insects, for example, have many tiny blind tubes over the surface of their 
bodies which air enters and diffuses into finer tubes to reach all parts of the body.  The limitations 
on how well air will diffuse are determined by the properties of air, and diffusion beyond a quarter-
inch or so takes a long time, so this limits the size of insects.  Giant ants like those in the old movie 
“Them” wouldn’t be able to breathe!  The evolutionary breakthrough to larger size animals came 
with the development of blood circulation as a means of distributing oxygen (and other nutrients).  
Even so, for animals of our size, there has to be a tremendous surface area available for oxygen 
absorption.  This was achieved by the development of lungs---the lungs of an adult human have a 
surface area of a hundred square meters approximately.  Going back to the microscopic worm 
rotifer, it has a simple straight tube gut to absorb nutrients from food.  Again, if larger creatures 
have about the same requirements per cell, and the gut surface absorbs nutrients at the same rate, 
problems arise because the surface area of the gut increases more slowly than the number of cells 
needing to be fed as the size of the creature is increased.  this problem is handled by replacing the 
straight tube gut by one with many convolutions, in which also the smooth surface is replaced by 
one with many tiny folds to increase surface area.  Thus many of the complications of internal 
human anatomy can be understood as strategies that have evolved for increasing available surface 
area per cell for oxygen and nutrient absorption towards what it is for simpler but much smaller 
creatures. 

On the other hand, there is some good news about being big—it makes it feasible to maintain a 
constant body temperature.  This has several advantages.  For example, it is easier to evolve 
efficient muscles if they are only required to function in a narrow range of temperatures than if 
they must perform well over a wide range of temperatures.  However, this temperature control 
comes at a price.  Warm blooded creatures (unlike insects) must devote a substantial part of their 
food energy simply to keeping warm.  For an adult human, this is a pound or two of food per day.  
For a mouse, which has about one-twentieth the dimensions of a human, and hence twenty times 
the surface area per unit volume, the required food for maintaining the same body temperature is 
twenty times as much as a fraction of body weight, and a mouse must consume a quarter of its own 
body weight daily just to stay warm. This is why, in the arctic land of Spitzbergen, the smallest 
mammal is the fox.   

How high can a giant flea jump?  Suppose we know that a regular flea can jump to a height of three 
feet, and a giant flea is one hundred times larger in all dimensions, so its weight is up by a factor of 
a million.  Its amount of muscle is also up by a factor of a million, and when it jumps it rapidly 
transforms chemical energy stored in the muscle into kinetic energy, which then goes to 
gravitational potential energy on the upward flight.  But the amount of energy stored in the muscle 
and the weight to be lifted are up by the same factor,  so we conclude that the giant flea can also 
jump three feet!  We can also use this argument in reverse—a shrunken human (as in I shrunk the 
kids) could jump the same height as a normal human, again about three feet, say.  So the tiny 
housewife trapped in her kitchen sink in the movie could have just jumped out, which she’d better 
do fast, because she’s probably very hungry! 

http://en.wikipedia.org/wiki/Image:Them%21_DVD.jpg
http://en.wikipedia.org/wiki/Image:Honey_I_Shrunk_the_kids.jpg
http://en.wikipedia.org/wiki/Image:Honey_I_Shrunk_the_kids.jpg
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15 Galileo’s Acceleration Experiment 

15.1 Summarizing Aristotle’s View 

Aristotle held that there are two kinds of motion for inanimate matter, natural and unnatural. 
Unnatural (or “violent”) motion is when something is being pushed, and in this case the speed of 
motion is proportional to the force of the push. (This was probably deduced from watching 
oxcarts and boats.) Natural motion is when something is seeking its natural place in the 
universe, such as a stone falling, or fire rising. (We are only talking here about substances 
composed of earth, water, air and fire, the “natural circular motion” of the planets, composed of 
aether, is considered separately).  

For the natural motion of heavy objects falling to earth, Aristotle asserted that the speed of fall 
was proportional to the weight, and inversely proportional to the density of the medium the 
body was falling through. He did also mention that there was some acceleration, as the body 
approached more closely its own element, its weight increased and it speeded up. However, 
these remarks in Aristotle are very brief and vague, and certainly not quantitative.  

Actually, these views of Aristotle did not go unchallenged even in ancient Athens. Thirty years or 
so after Aristotle’s death, Strato pointed out that a stone dropped from a greater height had a 
greater impact on the ground, suggesting that the stone picked up more speed as it fell from the 
greater height.  

15.2 Two New Sciences 

Galileo set out his ideas about falling bodies, and about projectiles in general, in a book called 
“Two New Sciences”. The two were the science of motion, which became the foundation-stone 
of physics, and the science of materials and construction, an important contribution to 
engineering.  

The ideas are presented in lively fashion as a dialogue involving three characters, Salviati, 
Sagredo and Simplicio. The official Church point of view, that is, Aristotelianism, is put forward 
by the character called Simplicio, and usually demolished by the others. Galileo’s defense when 
accused of heresy in a similar book was that he was just setting out all points of view, but this is 
somewhat disingenuous---Simplicio is almost invariably portrayed as simpleminded.  

For example, on TNS page 62, Salviati states:  

I greatly doubt that Aristotle ever tested by experiment whether it be true that two stones, one 
weighing ten times as much as the other, if allowed to fall, at the same instant, from a height of, 
say, 100 cubits, would so differ in speed that when the heavier had reached the ground, the 
other would not have fallen more than 10 cubits.  

http://galileoandeinstein.physics.virginia.edu/tns61.htm
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Simplicio’s response to this is not to think in terms of doing the experiment himself to respond 
to Salviati’s challenge, but to scrutinize more closely the holy writ:  

SIMP: His language would seem to indicate that he had tried the experiment, because he says: 
We see the heavier; now the word see shows he had made the experiment.  

Sagredo then joins in:  

SAGR: But I, Simplicio, who have made the test, can assure you that a cannon ball weighing one 
or two hundred pounds, or even more, will not reach the ground by as much as a span ahead of a 
musket ball weighing only half a pound, provided both are dropped from a height of 200 cubits.  

This then marks the beginning of the modern era in science---the attitude that assertions about 
the physical world by authorities, no matter how wise or revered, stand or fall by experimental 
test. Legend has it that Galileo performed this particular experiment from the leaning tower of 
Pisa.  

Galileo goes on to give a detailed analysis of falling bodies. He realizes that for extremely light 
objects, such as feathers, the air resistance becomes the dominant effect, whereas it makes only 
a tiny difference in the experiment outlined above.  

15.3 Naturally Accelerated Motion 

Having established experimentally that heavy objects fall at practically the same rate, Galileo 
went on to consider the central question about speed of fall barely touched on by Aristotle---
how does the speed vary during the fall?  

The problem is that it’s very difficult to answer this question by just watching something fall---
it’s all over too fast. To make any kind of measurement of the speed, the motion must somehow 
be slowed down. Of course, some falling motions are naturally slow, such as a feather, or 
something not too heavy falling through water. Watching these motions, one sees that after 
being dropped the body rapidly gains a definite speed, then falls steadily at that speed. The 
mistake people had been making was in assuming that all falling bodies followed this same 
pattern, so that most of the fall was at a steady speed. Galileo argued that this point of view was 
false by echoing the forgotten words of Strato almost two thousand years earlier:  

(TNS, page 163) But tell me, gentlemen, is it not true that if a block be allowed to fall upon a 
stake from a height of four cubits and drive it into the earth, say, four finger-breadths, that 
coming from a height of two cubits it will drive the stake a much less distance; and finally if the 
block be lifted only one finger-breadth how much more will it accomplish than if merely laid on 
top of the stake without percussion? Certainly very little. If it be lifted only the thickness of a leaf, 
the effect will be altogether imperceptible. And since the effect of the blow depends upon the 
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velocity of this striking body, can any one doubt the motion is very slow .. whenever the effect is 
imperceptible?  

15.4 Galileo’s Acceleration Hypothesis 

Having established by the above arguments and experiments that a falling body continues to 
pick up speed, or accelerate, as it falls, Galileo suggested the simplest possible hypothesis 
(paraphrasing the discussion on TNS page 161):  

A falling body accelerates uniformly: it picks up equal amounts of speed in equal time intervals, 
so that, if it falls from rest, it is moving twice as fast after two seconds as it was moving after one 
second, and moving three times as fast after three seconds as it was after one second.  

This is an appealingly simple hypothesis, but not so easy for Galileo to check by experiment---
how could he measure the speed of a falling stone twice during the fall and make the 
comparison?  

15.5 Slowing Down the Motion 

The trick is to slow down the motion somehow so that speeds can be measured, without at the 
same time altering the character of the motion. Galileo knew that dropping something through 
water that fell fairly gently did alter the character of the motion, it would land as gently on the 
bottom dropped from ten feet as it did from two feet, so slowing down the motion by dropping 
something through water changed things completely.  

Galileo’s idea for slowing down the motion was to have a ball roll down a ramp rather than to 
fall vertically. He argued that the speed gained in rolling down a ramp of given height didn’t 
depend on the slope. His argument was based on an experiment with a pendulum and a nail, 
shown on page 171 of Two New Sciences. The pendulum consists of a thread and a lead bullet. It 
is drawn aside, the string taut, to some point C.  

 

A nail is placed at E directly below the top end of the thread, so that as the pendulum swings 
through its lowest point, the thread hits the nail and the pendulum is effectively shortened, so 
that the bullet swings up more steeply, to G with the nail at E. Nevertheless, the pendulum will 

http://galileoandeinstein.physics.virginia.edu/tns153.htm
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be seen to swing back up to almost the same height it started at, that is, the points G and C are 
the same height above level ground. Furthermore, when it swings back, it gets up as far as point 
C again, if we neglect a slight loss caused by air resistance. From this we can conclude that the 
speed with which the ball passes through the lowest point is the same in both directions. To see 
this, imagine first the situation without the nail at E. The ball would swing backwards and 
forwards in a symmetrical way, an ordinary pendulum, and certainly in this case the speed at the 
lowest point is the same for both directions (again ignoring gradual slowing down from air 
resistance). When we do put the nail in, though, we see from the experiment that on the swing 
back, the ball still manages to get to the beginning point C. We conclude that it must have been 
going the same speed as it swung back through the lowest point as when the nail wasn’t there, 
because the instant it leaves the nail on the return swing it is just an ordinary pendulum, and 
how far it swings out from the vertical depends on how fast it’s moving at the lowest point.  

Galileo argues that a similar pattern will be observed if a ball rolls down a ramp which is 
smoothly connected to another steeper upward ramp, that is, the ball will roll up the second 
ramp to a level essentially equal to the level it started at, even though the two ramps have 
different slopes. It will then continue to roll backwards and forwards between the two ramps, 
eventually coming to rest because of friction, air resistance, etc.  

 

 

Thinking about this motion, it is clear that (ignoring the gradual slowing down on successive 
passes) it must be going the same speed coming off one ramp as it does coming off the other. 
Galileo then suggests we imagine the second ramp steeper and steeper---and we see that if it’s 
steep enough, we can think of the ball as just falling! He concludes that for a ball rolling down a 
ramp, the speed at various heights is the same as the speed the ball would have attained (much 
more quickly!) by just falling vertically from its starting point to that height. But if we make the 
ramp gentle enough, the motion will be slow enough to measure. (Actually, there is a difference 
between a rolling ball and a smoothly sliding or falling ball, but it does not affect the pattern of 
increase of speed, so we will not dwell on it here.)  

15.6 Galileo’s Acceleration Experiment 

We are now ready to consider Galileo’s experiment in which he tested his hypothesis about the 
way falling bodies gain speed. We quote the account from Two New Sciences, page 178:  
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A piece of wooden moulding or scantling, about 12 cubits long, half a cubit wide, and three 
finger-breadths thick, was taken; on its edge was cut a channel a little more than one finger in 
breadth; having made this groove very straight, smooth, and polished, and having lined it with 
parchment, also as smooth and polished as possible, we rolled along it a hard, smooth, and very 
round bronze ball. Having placed this board in a sloping position, by raising one end some one or 
two cubits above the other, we rolled the ball, as I was just saying, along the channel, noting, in 
a manner presently to be described, the time required to make the descent. We repeated this 
experiment more than once in order to measure the time with an accuracy such that the 
deviation between two observations never exceeded one-tenth of a pulse-beat. Having 
performed this operation and having assured ourselves of its reliability, we now rolled the ball 
only one-quarter the length of the channel; and having measured the time of its descent, we 
found it precisely one-half of the former. Next we tried other distances, compared the time for 
the whole length with that for the half, or with that for two-thirds, or three-fourths, or indeed for 
any fraction; in such experiments, repeated a full hundred times, we always found that the 
spaces traversed were to each other as the squares of the times, and this was true for all 
inclinations of the plane, i.e., of the channel, along which we rolled the ball. We also observed 
that the times of descent, for various inclinations of the plane, bore to one another precisely that 
ratio which, as we shall see later, the Author had predicted and demonstrated for them.  

For the measurement of time, we employed a large vessel of water placed in an elevated 
position; to the bottom of this vessel was soldered a pipe of small diameter giving a thin jet of 
water which we collected in a small glass during the time of each descent, whether for the whole 
length of the channel or for part of its length; the water thus collected was weighed, after each 
descent, on a very accurate balance; the differences and ratios of these weights gave us the 
differences and ratios of the times, and this with such accuracy that although the operation was 
repeated many, many times, there was no appreciable discrepancy in the results.  

15.7 Actually Doing the Experiment 

(We do the experiment in class.) O.K., we don’t line the channel with parchment, and we use an 
ordinary large steel ball (about one inch in diameter). We do use a water clock, with a student 
letting a jet of water into a polystyrene(!) cup during the interval between another student 
releasing the ball at some distance up the ramp and it hitting the stop at the bottom. We 
perform the experiment three times for the full ramp, and three times for a quarter of the 
distance. We weigh the amount of water in the cup with an ordinary balance. In one run we 
found (somewhat to our surprise!) that the average amount for the full ramp was 56 grams, for 
the quarter ramp 28 grams. This was partly luck, there was a scatter of a few grams. However, it 
does suggest that Galileo was not exaggerating in his claims of accuracy in Two New Sciences, 
since he was far more careful than we were, and repeated the experiment many more times.  
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16 Naturally Accelerated Motion 

16.1 Distance Covered in Uniform Acceleration  

In the last lecture, we stated what we called Galileo’s acceleration hypothesis:  

A falling body accelerates uniformly: it picks up equal amounts of speed in equal time intervals, 
so that, if it falls from rest, it is moving twice as fast after two seconds as it was moving after one 
second, and moving three times as fast after three seconds as it was after one second.   

We also found, from the experiment, that a falling body will fall four times as far in twice the 
time.  That is to say, we found that the time to roll one-quarter of the way down the ramp was 
one-half the time to roll all the way down.   

Galileo asserted that the result of the rolling-down-the-ramp experiment confirmed his claim 
that the acceleration was uniform.  Let us now try to understand why this is so.  The simplest 
way to do this is to put in some numbers.  Let us assume, for argument’s sake, that the ramp is 
at a convenient slope such that, after rolling down it for one second, the ball is moving at two 
meters per second.  This means that after two seconds it would be moving at four meters per 
second, after three seconds at six meters per second and so on until it hits the end of the ramp.  
(Note: to get an intuitive feel for these speeds, one  meter per second is 3.6 km/hr, or 2.25 
mph.) 

To get a clear idea of what’s happening, you should sketch a graph of how speed increases with 

time.  This is a straight line graph, beginning at zero speed at zero time, then going through a 
point corresponding to two meters per second at time one second, four at two seconds and so 
on.  It sounds trivial, but is surprisingly helpful to have this graph in front of you as you read—so, 
find a piece of paper or an old envelope (this doesn’t have to be too precise) and draw a line 
along the bottom marked 0, 1, 2, for seconds of time, then a vertical line (or y-axis) indicating 
speed at a given time—this could be marked 0, 2, 4, … meters per second.  Now, put in the points 
(0,0), (1,2) and so on, and join them with a line.   

From your graph, you can now read off its speed not just at 0, 1, 2 seconds, but at, say 1.5 
seconds or 1.9 seconds or any other time within the time interval covered by the graph.   

The hard part, though, is figuring out how far it moves in a given time.  This is the core of 
Galileo’s argument, and it is essential that you understand it before going further, so read the 

next paragraphs slowly and carefully!  

Let us ask a specific question: how far does it get in two seconds? If it were moving at a steady 
speed of four meters per second for two seconds, it would of course move eight meters.  But it 
can’t have gotten that far after two seconds, because it just attained the speed of four meters 
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per second when the time reached two seconds, so it was going at slower speeds up to that 
point.  In fact, at the very beginning, it was moving very slowly.  Clearly, to figure out how far it 
travels during that first two seconds what we must do is to find its average speed during that 
period.   

This is where the assumption of uniform acceleration comes in.  What it means is that the speed 
starts from zero at the beginning of the period, increases at a constant rate, is two meters per 
second after one second (half way through the period) and four meters per second after two 
seconds, that is, at the end of the period we are considering.  Notice that the speed is one meter 
per second after half a second, and three meters per second after one-and-a-half seconds.  
From the graph you should have drawn above of the speed as it varies in time, it should be 
evident that, for this uniformly accelerated motion, the average speed over this two second 
interval is the speed reached at half-time, that is, two meters per second.   

Now, the distance covered in any time interval is equal to the average speed multiplied by the 
time taken, so the distance traveled in two seconds is four meters—that is, two meters per 
second for two seconds.   

Now let us use the same argument to figure how far the ball rolls in just one second.  At the end 
of one second, it is moving at two meters per second.  At the beginning of the second, it was at 
rest.  At the half-second point, the ball was moving at one meter per second.  By the same 
arguments as used above, then, the average speed during the first second was one meter per 
second.  Therefore, the total distance rolled during the first second is jus tone meter.   

We can see from the above why, in uniform acceleration, the ball rolls four times as far when 
the time interval doubles.  If the average speed were the same for the two second period as for 
the one second period, the distance covered would double since the ball rolls for twice as long a 
time.  But since the speed is steadily increasing, the average speed also doubles.  It is the 
combination of these two factors—moving at twice the average speed for twice the time—that 
gives the factor of four in distance covered!  

It is not too difficult to show using these same arguments that the distances covered in 1, 2, 3, 4, 
...seconds are proportional to 1, 4, 9, 16, .., that is, the squares of the times involved.  This is left 
as an exercise for the reader.   

16.2 A Video Test of Galileo’s Hypothesis  

In fact, using a video camera, we can check the hypothesis of uniform acceleration very directly 
on a falling object.  We drop the ball beside a meter stick with black and white stripes each ten 
centimeters wide, so that on viewing the movie frame by frame, we can estimate where the ball 
is at each frame.  Furthermore, the camera has a built-in clock—it films at thirty frames per 
second.  Therefore, we can constantly monitor the speed by measuring how many centimeters 



 111 

the ball drops from one frame to the next.  Since this measures distance traveled in one-thirtieth 
of a second, we must multiply the distance dropped between frames by thirty to get the 
(average) speed in that short time interval in centimeters per second.   

By systematically going through all the frames showing the ball falling, and finding the (average) 
speed for each time interval, we were able to draw a graph of speed against time.  It was a little 
rough, a result of our crude measuring of distance, but it was clear that speed was increasing 
with time at a steady rate, and in fact we could measure the rate by finding the speed reached 
after, say half a second.  We found that, approximately, the rate of increase of speed was ten 
meters (1,000 cms) per second in each second of fall, so after half a second it was moving at 
about five meters per second, and after a quarter of a second it was going two and a half meters 
per second.   

This rate of increase of speed is the same for all falling bodies, neglecting the effect of air 
resistance (and buoyancy for extremely light bodies such as balloons).  It is called the 
acceleration due to gravity, written g, and is actually close to 9.8 meters per second per second.  
However, we shall take it to be 10 for convenience.   

16.3 Throwing a Ball Upwards 

To clarify ideas on the acceleration due to gravity, it is worth thinking about throwing a ball 
vertically upwards.  If we made another movie, we would find that the motion going upwards is 
like a mirror image of that on the way down—the distances traveled between frames on the 
way up get shorter and shorter.  In fact, the ball on its way up loses speed at a steady rate, and 
the rate turns out to be ten meters per second per second—the same as the rate of increase on 
the way down.  For example, if we throw the ball straight upwards at 20 meters per second 
(about 45 mph) after one second it will have slowed to 10 meters per second, and after two 
seconds it will be at rest momentarily before beginning to come down.  After a total of four 
seconds, it will be back where it started.   

An obvious question so: how high did it go?  The way to approach this is to find its average 
speed on the way up and multiply it by the time taken to get up.  As before, it is helpful to 
sketch a graph of how the speed is varying with time.  The speed at the initial time is 20 meters 
per second, at one second it’s down to 10, then at two seconds it’s zero.  It is clear from the 
graph that the average speed on the way up is 10 meters per second, and since it takes two 
seconds to get up, the total distance traveled must be 20 meters.   

16.4 Speed and Velocity 

Let us now try to extend our speed plot to keep a record of the entire fall.  The speed drops to 
zero when the ball reaches the top, then begins to increase again.  We could represent this by a 
V-shaped curve, but it turns out to be more natural to introduce the idea of velocity.  
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Unfortunately velocity and speed mean the same thing in ordinary usage, but in science velocity 
means more: it includes speed and direction.   

Our convention:  velocity upwards is positive, downwards is negative. 

This is just a convention: it might sometimes be convenient to take the opposite, with 
downward positive.  The important thing is to have opposite signs for the two opposite 
directions.  You can see this is useful if you’re trying to calculate distance covered by multiplying 
together time and average velocity—if you traveled the same speed for equal times in opposite 
directions, your average velocity was zero, and you got nowhere.  (In case you’re wondering 
how we deal with velocities in several different directions, we’ll come to that soon.  For now, 
we’ll stick with up and down motion.) 

If we plot the velocity of the ball at successive times, it is +20 initially, +10 after one second, 0 
after two seconds, -10 after three seconds, -20 after four seconds.  If you plot this on a graph 
you will see that it is all on the same straight line.  Over each one-second interval, the velocity 
decreases by ten meters per second throughout the flight.  In other words, the acceleration due 
to gravity is -10 meters per second per second, or you could say it is 10 meters per second per 
second downwards.   

16.5 What’s the Acceleration at the Topmost Point? 

Most people on being asked that for the first time say zero.  That’s wrong.  But to see why takes 
some very clear thinking about just what is meant by velocity and acceleration.  Recall Zeno 
claimed motion was impossible because at each instant of time an object has to be in a 
particular position, and since an interval of time is made up of instants, it could never move.  
The catch is that a second of time cannot be built up of instants.  It can, however, be built up of 
intervals of time each as short as you wish.  Average velocity over an interval of time is defined 
by dividing the distance moved in that interval by the time taken—the length of the interval.  
We define velocity at an instant of time, such as the velocity of the ball when the time is one 
second, by taking a small time interval which includes the time one second, finding the average 
velocity over that time interval, then repeating the process with smaller and smaller time 
intervals to home in on the answer.   

Now, to find acceleration at an instant of time we have to go through the same process.  
Remember, acceleration is rate of change of velocity.  This means that acceleration, too, can be 
positive or negative!  You might think negative acceleration is just slowing down, but it could 
also mean speeding up in the direction you’ve chosen for velocity to be negative—so, be 
careful!   

To find the acceleration at an instant we have to take some short but non-zero time interval that 
includes the point in question and find how much the velocity changes during that time interval.  
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Then we divide that velocity change by the time it took to find the acceleration, in, say, meters 
per second per second.   

The point is that at the topmost point of the throw, the ball does come to rest for an instant.  
Before and after that instant, there is a brief period where the velocity is so small it looks as if 
the ball is at rest.  Also, our eyes tend to lock on the ball, so there is an illusion that the ball has 
zero velocity for a short but non-zero period of time.  But this isn’t the case.  The ball’s velocity is 
always changing.  To find its acceleration at the topmost point, we have to find how its velocity 
changes in a short time interval which includes that point.  If we took, for example, a period of 
one-thousandth of a second, we would find the velocity to have changed by one centimeter per 
second.  So the ball would fall one two-thousandth of a centimeter during that first thousandth 
of a second from rest-not too easy to see! The bottom line, though, is that the acceleration of 
the ball is 10 meters per second per second downwards throughout the flight.   

If you still find yourself thinking it’s got no acceleration at the top, maybe you’re confusing 
velocity with acceleration.  All these words are used rather loosely in everyday life, but we are 
forced to give them precise meanings to discuss motion unambiguously.  In fact, lack of clarity of 
definitions like this delayed understanding of these things for centuries.   

16.6 The Motion of Projectiles  

We follow fairly closely here the discussion of Galileo in Two New Sciences, Fourth Day, from 
page 244 to the middle of page 257.   

To analyze how projectiles move, Galileo describes two basic types of motion:  

(i) Naturally accelerated vertical motion, which is the motion of a vertically falling body that we 
have already discussed in detail.   

(ii) Uniform horizontal motion, which he defines as straight-line horizontal motion which covers 
equal distances in equal times.   

This uniform horizontal motion, then, is just the familiar one of an automobile going at a steady 
speed on a straight freeway.  Galileo puts it as follows:  

“Imagine any particle projected along a horizontal plane without friction; then we know...that 
this particle will move along this same plane with a motion that is uniform and perpetual, 
provided the plane has no limits.”  

This simple statement is in itself a substantial advance on Aristotle, who thought that an 
inanimate object could only continue to move as long as it was being pushed.  Galileo realized 
the crucial role played by friction: if there is no friction, he asserted, the motion will continue 

http://galileoandeinstein.phys.virginia.edu/tns244.htm
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indefinitely.  Aristotle’s problem in this was that he observed friction-dominated systems, like 
oxcarts, where motion stopped almost immediately when the ox stopped pulling.  Recall that 
Galileo, in the rolling a ball down a ramp experiment, went to great pains to get the ramp very 
smooth, the ball very round, hard and polished.  He knew that only in this way could he get 
reliable, reproducible results.  At the same time, it must have been evident to him that if the 
ramp were to be laid flat, the ball would roll from one end to the other, after an initial push, 
with very little loss of speed.   

16.7 Compound Motion  

Galileo introduces projectile motion by imagining that a ball, rolling in uniform horizontal 
motion across a smooth tabletop, flies off the edge of the table.  He asserts that when this 
happens, the particle’s horizontal motion will continue at the same uniform rate, but, in 
addition, it will acquire a downward vertical motion identical to that of any falling body.  He 
refers to this as a compound motion.   

The simplest way to see what is going on is to study Galileo’s diagram on page 249, which we 
reproduce here.   

 

Imagine the ball to have been rolling across a tabletop moving to the left, passing the point a 
and then going off the edge at the point b.  Galileo’s figure shows its subsequent position at 
three equal time intervals, say, 0.1 seconds, 0.2 seconds and 0.3 seconds after leaving the table, 
when it will be at i, f, and h respectively.   
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The first point to notice is that the horizontal distance it has travelled from the table increases 
uniformly with time: bd is just twice bc, and so on.  That is to say, its horizontal motion is just the 
same as if it had stayed on the table.   

The second point is that its vertical motion is identical to that of a vertically falling body.  In 
other words, if another ball had been dropped vertically from b at the instant that our ball flew 
off the edge there, they would always be at the same vertical height, so after 0.1 seconds when 
the first ball reaches i, the dropped ball has fallen to o, and so on.  It also follows, since we know 
the falling body falls four times as far if the time is doubled, that bg is four times bo, so for the 
projectile fd is four times ic.  This can be stated in a slightly different way, which is the way 
Galileo formulated it to prove the curve was a parabola:  

The ratio of the vertical distances dropped in two different times, for example bg/bo, is always 
the square of the ratio of the horizontal distances travelled in those times, in this case fg/io.   

You can easily check that this is always true, from the rule of uniform acceleration of a falling 
body.  For example, bl is nine times bo, and hl is three times io.   

Galileo proved, with a virtuoso display of Greek geometry, that the fact that the vertical drop 
was proportional to the square of the horizontal distance meant that the trajectory was a 
parabola.  His definition of a parabola, the classic Greek definition, was that it was the 
intersection of a cone with a plane parallel to one side of the cone.  Starting from this definition 
of a parabola, it takes quite a lot of work to establish that the trajectory is parabolic.  However, 
if we define a parabola as a curve of the form  y  = Cx²  then of course we’ve proved it already!  

17 Using Vectors to Describe Motion 

17.1 Uniform Motion in a Straight Line 

Let us consider first the simple case of a car moving at a steady speed down a straight road.  
Once we’ve agreed on the units we are using to measure speed—such as miles per hour or 
meters per second, or whatever—a simple number, such as 55 (mph), tells us all there is to say 
in describing steady speed motion.  Well, actually, this is not quite all—it doesn’t tell us which 
way (east or west, say) the car is moving.  For some purposes, such as figuring gas consumption, 
this is irrelevant, but if the aim of the trip is to get somewhere, as opposed to just driving 
around, it is useful to know the direction as well as the speed.   

To convey the direction as well as the speed, physicists make a distinction between two words 
that mean the same thing in everyday life: speed and velocity.   

Speed, in physics jargon, keeps its ordinary meaning—it is simply a measure of how fast 
something’s moving, and gives no clue about which direction it’s moving in.   
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Velocity, on the other hand, in physics jargon includes direction.  For motion along a straight line, 
velocity can be positive or negative.  For a given situation, such as Charlottesville to Richmond, 
we have to agree beforehand that one particular direction, such as away from Charlottesville, 
counts as positive, so motion towards Charlottesville would then always be at a negative 
velocity (but, of course, a positive speed, since speed is always positive, or zero).   

17.2 Uniform Motion in a Plane 

Now think about how you would describe quantitatively the motion of a smooth ball rolling 
steadily on a flat smooth tabletop (so frictional effects are negligible, and we can take the speed 
to be constant).  Obviously, the first thing to specify is the speed—how fast is it moving, say in 
meters per second? But next, we have to tackle how to give its direction of motion, and just 
positive or negative won’t do, since it could be moving at any angle to the table edge.   

 

One approach to describing uniform motion in the plane is a sort of simplified version of 
Galileo’s “compound motion” analysis of projectiles.  One can think of the motion of the ball 

A B 

Vectors add like displacements:  

if the ball rolls from A to C along the red line, its displacement from A can 
be represented by the red arrow.   

The identical displacement can be achieved by first moving the ball to B, 
then up to C:  the two black vectors add to the red vector. 

C 

3 meters 

4 meters 

5 meters 
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rolling steadily across the table as being compounded of two motions, one a steady rolling 
parallel to the length of the table, the other a steady rolling parallel to the width of the table.  
For example, one could say that in its steady motion the ball is proceeding at a steady four 
meters per second along the length of the table, and, at the same time, it is proceeding at a 
speed of three meters per second parallel to the width of the table (this is a big table!).  To 
visualize what this means, think about where the ball is at some instant, then where it is one 
second later.  It will have moved four meters along the length of the table, and also three 
meters along the width.  How far did it actually move?  And in what direction?  

We can see that if the ball’s uniform motion is compounded of a steady velocity of 4 meters per 
second parallel to the length of the table and a steady velocity of 3 meters per second parallel to 
the width, as shown above, the actual distance the ball moves in one second is 5 meters 
(remembering Pythagoras’ theorem, and in particular that a right angled triangle with the two 
shorter sides 3 and 4 has the longest side 5—we chose these numbers to make it easy).  That is 
to say, the speed of the ball is 5 meters per second.   

What, exactly, is its velocity?  As stated above, the velocity includes both speed and direction of 
motion.  The simplest and most natural way to represent direction is with an arrow.  So, we 
represent velocity by drawing an arrow in the plane indicating the direction the ball is rolling in.  
We can see on the above representation of a table that this is the direction of the slanting line 
arrow, which showed from where to where the ball moved in one second, obviously in the 
direction of its velocity.  Hence, we represent the direction of the velocity by drawing an arrow 
pointing in that direction.   

We can make the arrow represent the speed, as well, by agreeing on a rule for its length, such as 
an arrow 1 cm long corresponds to a speed of 1 meter per second, one 2 cm long represents 2 
meters per second, etc.  These arrows are usually called vectors.   

Let us agree that we represent velocities for the moment by arrows pointing in the direction of 
motion, and an arrow 2 cm long corresponds to a speed of 1 meter per second.  Then the 
velocity of the ball, which is 5 meters per second in the direction of the slanting arrow above, is 
in fact represented quantitatively by that arrow, since it has the right length—10 cms.  Recalling 
that we began by saying the ball had a velocity 4 meters per second parallel to the length of the 
table, and 3 meters per second parallel to the width, we notice from the figure that these 
individual velocities, which have to be added together to give the total velocity, can themselves 
be represented by arrows (or vectors), and, in fact, are represented by the horizontal and 
vertical arrows in the figure.  All we are saying here is that the arrows showing how far the ball 
moves in a given direction in one second also represent its velocity in that direction, because for 
uniform motion velocity just means how far something moves in one second.   

The total velocity of 5 meters per second in the direction of the dashed arrow can then be 
thought of as the sum of the two velocities of 4 meters per second parallel to the length and 3 
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meters per second parallel to the width.  Of course, the speeds don’t add.  Staring at the figure, 
we see the way to add these vectors is to place the tail of one of them at the head of the other, 
then the sum is given by the vector from the other tail to the other head.  In other words, putting 
the two vectors together to form two sides of a triangle with the arrows pointing around the 
triangle the same way, the sum of them is represented by the third side of the triangle, but with 
the arrow pointing the other way.   

17.3 Relative Velocities: a Child Running in a Train 

As we shall see, relative velocities play an important role in relativity, so it is important to have a 
clear understanding of this concept.  As an example, consider a child running at 3 meters per 
second (about 6 mph) in a train.  The child is running parallel to the length of the train, towards 
the front, and the train is moving down the track at 30 meters per second.  What is the child’s 
velocity relative to the ground? It is 33 meters per second in the direction the train is moving 
along the track (notice we always specify direction for a velocity).  To really nail this down, you 
should think through just how far the child moves relative to the ground in one second—three 
meters closer to the front of the train, and the train has covered 30 meters of ground.  A trickier 
point arises if the child is running across the train, from one side to the other.  (This run will only 
last about one second!)  Again, the way to find the child’s velocity relative to the ground is to 
visualize how much ground the child covers in one second—three meters in the direction across 
the track, from one side to the other, plus thirty meters in the direction along the track.   

 

Velocity vectors add just like displacements:  

 

Two vectors are added by putting the tail of the second at the head of the 
first, the sum is then the vector from the tail of the first to the head of the 
second.   To see this makes sense for velocities, think through how far the 
child running across the train has moved relative to the ground in one 
second. 

 

Child runs across train 
at 3 meters per second 

Train moves at 30 meters per second 

Child’s velocity relative to ground 
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To find the total velocity, we now have to add two velocities at right angles, using the “head to 
tail” rule for adding vectors.  This is just the same problem as the ball rolling across the table at 
an angle discussed above, and we need to use Pythagoras’ theorem to find the child’s speed 
relative to the ground.   

Here is another example of vector addition, this time the two vectors to be added are not 
perpendicular to each other, but the same rules apply:  

 

 

So in the diagram above, the two vectors on the left add to give the vector on the right.  To get a 
bit less abstract, this could represent relative velocity in the following way: the big arrow on the 
left might be the speed at which a person is swimming relative to water in a river, the little 
arrow is the velocity at which the river water is moving over the river bed.  then the vector sum 
of these two represents the velocity of our swimmer relative to the river bed, which is what 
counts for actually getting somewhere!  

Exercise:  Suppose you are swimming upstream at a speed relative to the water exactly equal to 
the rate the water is flowing downstream, so you’re staying over the same spot on the river bed.  
Draw vectors representing your velocity relative to the water, the water’s velocity relative to the 
river bed, and your velocity relative to the river bed.  From this trivial example, if I draw a vector 
A, you can immediately draw -A, the vector which when added to A (using the rule for vector 
addition stated above) gives zero. 

17.4 Aristotle’s Law of Horizontal Motion 

We restrict our considerations here to an object, such as an oxcart, moving in a horizontal plane.  
Aristotle would say (with some justification) that it moves in the direction it’s being pushed (or 
pulled), and with a speed proportional to the force being applied.  Let us think about that in 
terms of vectors.  He is saying that the magnitude of the velocity of the object is proportional to 
the applied force, and the direction of the velocity is the direction of the applied force.  It seems 
natural to conclude that not only is the velocity a vector, but so is the applied force! The applied 

+ = 

Vectors always add by the “head to tail” rule 

= 
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force certainly has magnitude (how hard are we pushing?) and direction, and can be 
represented by an arrow (we would have to figure out some units of force if we want the length 
to represent force quantitatively—we will come back to this later).  But that isn’t quite the 
whole story—an essential property of vectors is that you can add them to each other, head to 
tail, as described above.  But if you have two forces acting on a body, is their total effect 
equivalent to that of a force represented by adding together two arrows representing the 
individual forces head to tail? It turns out that if the two forces act at the same point, the 
answer is yes, but this is a fact about the physical world, and needs to be established 
experimentally.  (It is not true in the subnuclear world, where the forces of attraction between 
protons and neutrons in a nucleus are affected by the presence of the other particles.) 

So Aristotle’s rule for horizontal motion is: velocity is proportional to applied force.   

This rule seems to work well for oxcarts, but doesn’t make much sense for our ball rolling across 
a smooth table, where, after the initial shove, there is no applied force in the direction of 
motion.   

17.5 Galileo’s Law of Horizontal Motion 

Galileo’s Law of Horizontal Motion can be deduced from his statement near the beginning of 
Fourth day in Two New Sciences,  

Imagine any particle projected along a horizontal plane without friction; then we know  ...  that 
this particle will move along this same plane with a motion which is uniform and perpetual, 
provided the plane has no limits.   

So Galileo’s rule for horizontal motion is: velocity = constant, provided no force, including 
friction, acts on the body.   

The big advance from Aristotle here is Galileo’s realization that friction is an important part of 
what’s going on.  He knows that if there were no friction, the ball would keep at a steady 
velocity.  The reason Aristotle thought it was necessary to apply a force to maintain constant 
velocity was that he failed to identify the role of friction, and to realize that the force applied to 
maintain constant velocity was just balancing the frictional loss.  In contrast, Galileo realized the 
friction acted as a drag force on the ball, and the external force necessary to maintain constant 
motion just balanced this frictional drag force, so there was no total horizontal force on the ball.   

17.6 Galileo’s Law of Vertical Motion 

As we have already discussed at length, Galileo’s Law of Vertical Motion is:  

For vertical motion: acceleration = constant (neglecting air resistance, etc.) 
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17.7 Describing Projectile Motion with Vectors 

As an exercise in using vectors to represent velocities, consider the velocity of a cannonball shot 
horizontally at 100 meters per second from the top of a cliff: what is the velocity after 1, 2, 3 
seconds? As usual, neglect air resistance.   

The initial velocity is represented by a horizontal arrow, which we take to be 10 cms long, for 
convenience:  

 

After one second, the downward velocity will have increased from zero to 10 meters per 
second, as usual for a falling body.  Thus, to find the total velocity after one second, we need to 
add to the initial velocity, the vector above, a vertically downward vector of length 1 cm, to give 
the right scale: 

 

It is worth noting that although the velocity has visibly changed in this first second, the speed 
has hardly changed at all—remember the speed is represented by the length of the slanting 
vector, which from Pythagoras’ theorem is the square root of 101 cms long, or about 10.05 cms, 
a very tiny change.  The velocity after two seconds would be given by adding two of the dashed 
downward arrows head-to-tail to the initial horizontal arrow, and so on, so that after ten 
seconds, if the cliff were high enough, the velocity would be pointing downwards at an angle of 
45 degrees, and the speed by this point would have increased substantially.   

17.8 Acceleration 

Galileo defined naturally accelerated motion as downward motion in which speed increased at a 
steady rate, giving rise to units for acceleration that look like a misprint, such as 10 meters per 
second per second.   

Cannonball initial velocity: 100 m/sec horizontal 

Cannonball velocity after one second 

Gravity adds 10 
m/sec vertical 
in one sec 
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In everyday life, this is just what acceleration means—how fast something’s picking up speed.   

However, in physics jargon, acceleration (like velocity) has a more subtle meaning: the 
acceleration of an object is its rate of change of velocity.  From now on, this is what we mean 
when we say acceleration.   

At first this might seem to you a nitpicking change of definition—but it isn’t.  Remember velocity 
is a vector.  It can change without its length changing—it could just swing around and point in a 
different direction.  This means a body can accelerate without changing speed!  

Why would we want to define acceleration in such a nonintuitive way? It almost seems as if we 
are trying to make things difficult! It turns out that our new definition is what Galileo might call 
the natural definition of acceleration.  In the true laws of motion that describe things that 
happen in the universe, as we shall discuss below, if a body has a net force acting on it, it 
accelerates.  But it doesn’t necessarily change speed—it might just swing its velocity around, in 
other words veer off in a different direction.  Therefore, as we shall see, this new definition of 
acceleration is what we need to describe the real world.   

For motion in a straight line, our definition is the same as Galileo’s—we agree, for example, that 
the acceleration of a falling body is 10 meters per second per second downwards.   

NOTE: the next topics covered in the course are the contributions of two very colorful 
characters, Tycho Brahe and Johannes Kepler.  I gave a more complete account of these two and 
their works in an earlier version of this course.  If you would like to read the more complete (and 
more interesting) version, click on Tycho Brahe.   

18 Tycho Brahe and Johannes Kepler  
 

These two colorful characters made crucial contributions to our understanding of the 
universe:  Tycho’s observations were accurate enough for Kepler to discover that the planets 
moved in elliptic orbits, and his other laws, which gave Newton the clues he needed to establish 
universal inverse-square gravitation. 

Tycho Brahe (1546-1601), from a rich Danish noble family, was fascinated by astronomy, but 
disappointed with the accuracy of tables of planetary motion at the time.  He decided to 
dedicate his life and considerable resources to recording planetary positions ten times more 
accurately than the best previous work.  After some early successes, and in gratitude for having 
his life saved by Tycho’s uncle, the king of Denmark gave Tycho tremendous resources: an island 
with many families on it, and money to build an observatory.  (One estimate is that this was 10% 
of the gross national product at the time!)  Tycho built vast instruments to set accurate sights on 
the stars, and used multiple clocks and timekeepers.   

http://galileoandeinstein.physics.virginia.edu/1995/lectures/tychob.html


 123 

He achieved his goal of measuring to one minute of arc.  This was a tremendous feat before the 
invention of the telescope.  His aim was to confirm his own picture of the universe, which was 
that the earth was at rest, the sun went around the earth and the planets all went around the 
sun - an intermediate picture between Ptolemy and Copernicus. 

Johannes Kepler (1571-1630) believed in Copernicus’ picture.  Having been raised in the Greek 
geometric tradition, he believed God must have had some geometric reason for placing the six 
planets at the particular distances from the sun that they occupied.  He thought of their orbits as 
being on spheres, one inside the other.  One day, he suddenly remembered that there were just 
five perfect Platonic solids, and this gave a reason for there being six planets - the orbit spheres 
were maybe just such that between two successive ones a perfect solid would just fit.  He 
convinced himself that, given the uncertainties of observation at the time, this picture might be 
the right one.  However, that was before Tycho’s results were used.  Kepler realized that Tycho’s 
work could settle the question one way or the other, so he went to work with Tycho in 
1600.  Tycho died the next year, Kepler stole the data, and worked with it for nine years.   

He reluctantly concluded that his geometric scheme was wrong.  In its place, he found his three 
laws of planetary motion:  

I    The planets move in elliptical orbits with the sun at a focus.   

II   In their orbits around the sun, the planets sweep out equal areas in equal times.   

III  The squares of the times to complete one orbit are proportional to the cubes of the average 
distances from the sun.   

These are the laws that Newton was able to use to establish universal gravitation. 

Kepler was the first to state clearly that the way to understand the motion of the planets was in 
terms of some kind of force from the sun.  However, in contrast to Galileo, Kepler thought that a 
continuous force was necessary to maintain motion, so he visualized the force from the sun like 
a rotating spoke pushing the planet around its orbit.   

On the other hand, Kepler did get right that the tides were caused by the moon’s 
gravity.  Galileo mocked him for this suggestion.   

A much fuller treatment of Tycho Brahe and Johannes Kepler can be found in my earlier notes: 

Links to:    Tycho Brahe    Kepler     More Kepler   

http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/kepler6.htm
http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/kepler6.htm
http://galileoandeinstein.physics.virginia.edu/1995/lectures/tychob.html
http://galileoandeinstein.physics.virginia.edu/1995/lectures/kepler.html
http://galileoandeinstein.physics.virginia.edu/1995/lectures/morekepl.html
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19 Isaac Newton 

19.1 Newton’s Life  

In 1642, the year Galileo died, Isaac Newton was born in Woolsthorpe, Lincolnshire, England on 
Christmas Day.  His father had died three months earlier, and baby Isaac, very premature, was 
also not expected to survive.  It was said he could be fitted into a quart pot.  When Isaac was 
three, his mother married a wealthy elderly clergyman from the next village, and went to live 
there, leaving Isaac behind with his grandmother.  The clergyman died, and Isaac’s mother came 
back, after eight years, bringing with her three small children.  Two years later, Newton went 
away to the Grammar School in Grantham, where he lodged with the local apothecary, and was 
fascinated by the chemicals.  The plan was that at age seventeen he would come home and look 
after the farm.  He turned out to be a total failure as a farmer.   

His mother’s brother, a clergyman who had been an undergraduate at Cambridge, persuaded 
his mother that it would be better for Isaac to go to university, so in 1661 he went up to Trinity 
College, Cambridge.  Isaac paid his way through college for the first three years by waiting tables 
and cleaning rooms for the fellows (faculty) and the wealthier students.  In 1664, he was elected 
a scholar, guaranteeing four years of financial support.  Unfortunately, at that time the plague 
was spreading across Europe, and reached Cambridge in the summer of 1665.  The university 
closed, and Newton returned home, where he spent two years concentrating on problems in 
mathematics and physics.  He wrote later that during this time he first understood the theory of 
gravitation, which we shall discuss below, and the theory of optics (he was the first to realize 
that white light is made up of the colors of the rainbow), and much mathematics, both integral 
and differential calculus and infinite series.  However, he was always reluctant to publish 
anything, at least until it appeared someone else might get credit for what he had found earlier.   

On returning to Cambridge in 1667, he began to work on alchemy, but then in 1668 Nicolas 
Mercator published a book containing some methods for dealing with infinite series.  Newton 
immediately wrote a treatise, De Analysi, expounding his own wider ranging results.  His friend 
and mentor Isaac Barrow communicated these discoveries to a London mathematician, but only 
after some weeks would Newton allow his name to be given.  This brought his work to the 
attention of the mathematics community for the first time.  Shortly afterwards, Barrow resigned 
his Lucasian Professorship (which had been established only in 1663, with Barrow the first 
incumbent) at Cambridge so that Newton could have the Chair.   

Newton’s first major public scientific achievement was the invention, design and construction of 
a reflecting telescope.  He ground the mirror, built the tube, and even made his own tools for 
the job.  This was a real advance in telescope technology, and ensured his election to 
membership in the Royal Society.  The mirror gave a sharper image than was possible with a 
large lens because a lens focusses different colors at slightly different distances, an effect called 
chromatic aberration.  This problem is minimized nowadays by using compound lenses, two 

http://www.newton.cam.ac.uk/newton.html
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lenses of different kinds of glass stuck together, that err in opposite directions, and thus tend to 
cancel each other’s shortcomings, but mirrors are still used in large telescopes.   

Later in the 1670’s, Newton became very interested in theology.  He studied Hebrew scholarship 
and ancient and modern theologians at great length, and became convinced that Christianity 
had departed from the original teachings of Christ.  He felt unable to accept the current beliefs 
of the Church of England, which was unfortunate because he was required as a Fellow of Trinity 
College to take holy orders.  Happily, the Church of England was more flexible than Galileo had 
found the Catholic Church in these matters, and King Charles II issued a royal decree excusing 
Newton from the necessity of taking holy orders! Actually, to prevent this being a wide 
precedent, the decree specified that, in perpetuity, the Lucasian professor need not take holy 
orders.  (The current Lucasian professor is Stephen Hawking.)  

In 1684, three members of the Royal Society, Sir Christopher Wren, Robert Hooke and Edmond 
Halley, argued as to whether the elliptical orbits of the planets could result from a gravitational 
force towards the sun proportional to the inverse square of the distance.  Halley writes:  

Mr.  Hook said he had had it, but that he would conceal it for some time so that others, triing 
and failing might know how to value it, when he should make it publick.   

Halley went up to Cambridge, and put the problem to Newton, who said he had solved it four 
years earlier, but couldn’t find the proof among his papers.  Three months later, he sent an 
improved version of the proof to Halley, and devoted himself full time to developing these 
ideas, culminating in the publication of the Principia in 1686.  This was the book that really did 
change man’s view of the universe, as we shall shortly discuss, and its importance was fully 
appreciated very quickly.  Newton became a public figure.  He left Cambridge for London, where 
he was appointed Master of the Mint, a role he pursued energetically, as always, including 
prosecuting counterfeiters.  He was knighted by Queen Anne.  He argued with Hooke about who 
deserved credit for discovering the connection between elliptical orbits and the inverse square 
law until Hooke died in 1703, and he argued with a German mathematician and philosopher, 
Leibniz, about which of them invented calculus.  Newton died in 1727, and was buried with 
much pomp and circumstance in Westminster Abbey—despite his well-known reservations 
about the Anglican faith.   

An excellent, readable book is The Life of Isaac Newton, by Richard Westfall, Cambridge 1993, 
which I used in writing the above summary of Newton’s life.   

A fascinating collection of articles, profusely illustrated, on Newton’s life, work and impact on 
the general culture is Let Newton Be!, edited by John Fauvel and others, Oxford 1988, which I 
also consulted.   
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19.2 Projectiles and Planets  

Let us now turn to the central topic of the Principia, the universality of the gravitational force.  
The legend is that Newton saw an apple fall in his garden in Lincolnshire, thought of it in terms 
of an attractive gravitational force towards the earth, and realized the same force might extend 
as far as the moon.  He was familiar with Galileo’s work on projectiles, and suggested that the 
moon’s motion in orbit could be understood as a natural extension of that theory.  To see what 
is meant by this, consider a gun shooting a projectile horizontally from a very high mountain, 
and imagine using more and more powder in successive shots to drive the projectile faster and 
faster.   

 

The parabolic paths would become flatter and flatter, and, if we imagine that the mountain is so 
high that air resistance can be ignored, and the gun is sufficiently powerful, eventually the point 
of landing is so far away that we must consider the curvature of the earth in finding where it 
lands.   

In fact, the real situation is more dramatic—the earth’s curvature may mean the projectile never 
lands at all.  This was envisioned by Newton in the Principia.  The following diagram is from his 
later popularization, A Treatise of the System of the World, written in the 1680’s:  
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The mountaintop at V is supposed to be above the earth’s atmosphere, and for a suitable initial 
speed, the projectile orbits the earth in a circular path.  In fact, the earth’s curvature is such that 
the surface falls away below a truly flat horizontal line by about five meters in 8,000 meters (five 
miles).  Recall that five meters is just the vertical distance an initially horizontally moving 
projectile will fall in the first second of motion.  But this implies that if the (horizontal) muzzle 
velocity were 8,000 meters per second, the downward fall of the cannonball would be just 
matched by the earth’s surface falling away, and it would never hit the ground! This is just the 
motion, familiar to us now, of a satellite in a low orbit, which travels at about 8,000 meters (five 
miles) a second, or 18,000 miles per hour.  (Actually, Newton drew this mountain impossibly 
high, no doubt for clarity of illustration.  A satellite launched horizontally from the top would be 
far above the usual shuttle orbit, and go considerably more slowly than 18,000 miles per hour.) 
For an animated version of Newton’s cannon on a mountain, click here! 

http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/NewtMtn/NewtMtn.html
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19.3 The Moon is Falling 

Newton realized that the moon’s circular path around the earth could be caused in this way by 
the same gravitational force that would hold such a cannonball in low orbit, in other words, the 
same force that causes bodies to fall.   

To think about this idea, let us consider the moon’s motion, beginning at some particular 
instant, as deviating downwards—falling—from some initial “horizontal” line, just as for the 
cannonball shot horizontally from a high mountain.  The first obvious question is: does the moon 
fall five meters below the horizontal line, that is, towards the earth, in the first second? This was 
not difficult for Newton to check, because the path of the moon was precisely known by this 
time.  The moon’s orbit is approximately a circle of radius about 384,000 kilometers (240,000 
miles), which it goes around in a month (to be precise, in 27.3 days), so the distance covered in 
one second is, conveniently, very close to one kilometer.  It is then a matter of geometry to 
figure out how far the curved path falls below a “horizontal” line in one second of flight, and the 
answer turns out to be not five meters, but only a little over one millimeter! (Actually around 
1.37 millimeters.) 

It’s completely impossible to draw a diagram showing how far it falls in one second, but the 
geometry is the same if we look how far it falls in one day, so here it is: 

 

The Moon in orbiting the Earth 
goes from A to D in one day. 
Without the Earth’s pull, it 
would have gone in a straight 
line to B.  

 

It has therefore fallen below 
the straight line in one day by 
the distance between D and 
B. 

 

Since we know the radius of 
the orbit, and we know how 
far the Moon travels in one 
day, we can find the distance 
DB using Pythagoras’ 
theorem for the triangle CAB, 

        
 

A 

 

B 

 

C 

 

D 
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For one second, AB would be only one kilometer, so since AC is 384,000 km., the triangle ABC is 
really thin, but we can still use Pythagoras’ theorem! 

Thus the “natural acceleration” of the moon towards the earth, measured by how far it falls 
below straight line motion in one second, is less than that of an apple here on earth by the ratio 
of five meters to 1.37 millimeters, which works out to be about 3,600.   

What can be the significance of this much smaller rate of fall? Newton’s answer was that the 
natural acceleration of the moon was much smaller than that of the cannonball because they 
were both caused by a force—a gravitational attraction towards the earth, and that the 
gravitational force became weaker on going away from the earth.   

In fact, the figures we have given about the moon’s orbit enable us to compute how fast the 
gravitational attraction dies away with distance.  The distance from the center of the earth to 
the earth’s surface is about 6,350 kilometers (4,000 miles), so the moon is about 60 times 
further from the center of the earth than we and the cannonball are.   

From our discussion of how fast the moon falls below a straight line in one second in its orbit, 
we found that the gravitational acceleration for the moon is down by a factor of 3,600 from the 
cannonball’s (or the apple’s).   

Putting these two facts together, and noting that 3,600 = 60 x 60, led Newton to his famous 
inverse square law: the force of gravitational attraction between two bodies decreases with 
increasing distance between them as the inverse of the square of that distance, so if the 
distance is doubled, the force is down by a factor of four.  
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20 How Newton built on Galileo’s Ideas 

20.1 Newton’s Laws 
We are now ready to move on to Newton’s Laws of Motion, which for the first time presented a 
completely coherent analysis of motion, making clear that the motion in the heavens could be 
understood in the same terms as motion of ordinary objects here on earth.   

20.2 Acceleration Again  

The crucial Second Law, as we shall see below, links the acceleration of a body with the force 
acting on the body.  To understand what it says, it is necessary to be completely clear what is 
meant by acceleration, so let us briefly review.   

Speed is just how fast something’s moving, so is fully specified by a positive number and suitable 
units, such as 55 mph or 10 meters per second.   

Velocity, on the other hand, means to a scientist more than speed---it also includes a 
specification of the direction of the motion, so 55 mph to the northwest is a velocity.  Usually 
wind velocities are given in a weather forecast, since the direction of the wind affects future 
temperature changes in a direct way.  The standard way of representing a velocity in physics is 
with an arrow pointing in the appropriate direction, its length representing the speed in suitable 
units.  These arrows are called “vectors”.   

(WARNING: Notice, though, that for a moving object such as a projectile, both its position at a 
given time (compared with where it started) and its velocity at that time can be represented by 
vectors, so you must be clear what your arrow represents!)  

Acceleration: as we have stated, acceleration is defined as rate of change of velocity.   

It is not defined as rate of change of speed.  A body can have nonzero acceleration while moving 
at constant speed!  

20.3 An Accelerating Body that isn’t Changing Speed  

Consider Newton’s cannon on an imaginary high mountain above the atmosphere, that shoots a 
ball so fast it circles the earth at a steady speed.  Of course, its velocity is changing constantly, 
because velocity includes direction.   

Let us look at how its velocity changes over a period of one second.  (Actually, in the diagram 
below we exaggerate how far it would move in one second, the distance would in fact be one-
five thousandth of the distance around the circle, impossible to draw.)  
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Here we show the cannonball (greatly exaggerated in size!) at two points in its orbit, and the 
velocity vectors at those points.  On the right, we show the two velocity vectors again, but we 
put their ends together so that we can see the difference between them, which is the small 
dashed vector. 

In other words, the small dashed vector is the velocity that has to be added to the first velocity 
to get the second velocity: it is the change in velocity on going around that bit of the orbit.   

Now, if we think of the two points in the orbit as corresponding to positions of the cannonball 
one second apart, the small dashed vector will represent the change in velocity in one second, 
and that is—by definition—the acceleration.  The acceleration is the rate of change of velocity, 
and that is how much the velocity changes in one second (for motions that change reasonably 
smoothly over the one-second period, which is certainly the case here.  To find the rate of 
change of velocity of a fly’s wing at some instant, we obviously would have to measure its 
velocity change over some shorter interval, maybe a thousandth of a second).   

The velocity vectors (length v) for a ball moving at steady speed in a circle are shown one 
second apart.   To find the acceleration—the difference between these two vectors—we 
must put their tails together and draw a new vector (the red dotted one) from the head of 
the first to the head of the second.   This new vector (length a) is the difference: what must 
be added to the first to give the second. 

 

                

A B 

C 

v 

v 

a 
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So we see that, with our definition of acceleration as the rate of change of velocity, which is a 
vector, a body moving at a steady speed around a circle is accelerating towards the center all 
the time, although it never gets any closer to it.  If this thought makes you uncomfortable, it is 
because you are still thinking that acceleration must mean a change of speed, and just changing 
direction doesn’t count.   

20.4 Finding the Acceleration in Circular Motion  

It is possible to find an explicit expression for the magnitude of the acceleration towards the 
center (sometimes called the centripetal acceleration) for a body moving on a circular path at 
speed v.  Look again at the diagram above showing two values of the velocity of the cannonball 
one second apart.  As is explained above, the magnitude a of the acceleration is the length of 
the small dashed vector on the right, where the other two sides of this long narrow triangle 
have lengths equal to the speed v of the cannonball.  We’ll call this the “vav” triangle, because 
those are the lengths of its sides.  What about the angle between the two long sides?  That is 
just the angle the velocity vector turns through in one second as the cannonball moves around 
its orbit.  Now look over at the circle diagram on the left showing the cannonball’s path.  Label 
the cannonball’s position at the beginning of the second A, and at the end of the second B, so 
the length AB is how far the cannonball travels in one second, that is, v.  (It’s true that the part 
of the path AB is slightly curved, but we can safely ignore that very tiny effect.)  Call the center 
of the circle C.  Draw the triangle ACB.  (The reader should sketch the figure and actually draw 
these triangles!)  The two long sides AC and BC have lengths equal to the radius of the circular 
orbit.  We could call this long thin triangle an “rvr” triangle, since those are the lengths of its 
sides.   

The important point to realize now is that the “vav” triangle and the “rvr” triangle are similar, 
because since the velocity vector is always perpendicular to the radius line from the center of 
the circle to the point where the cannonball is in orbit, the angle the velocity vector rotates by in 
one second is the same as the angle the radius line turns through in one second.  Therefore, the 
two triangles are similar, and their corresponding sides are in the same ratios, that is, a/v = v/r.  
It follows immediately that the magnitude of the acceleration a for an object moving at steady 
speed v in a circle of radius r is v2/r directed towards the center of the circle.   

This result is true for all circular motions, even those where the moving body goes round a large 
part of the circle in one second.  To establish it in a case like that, recall that the acceleration is 
the rate of change of velocity, and we would have to pick a smaller time interval than one 
second, so that the body didn’t move far around the circle in the time chosen.  If, for example, 
we looked at two velocity vectors one-hundredth of a second apart, and they were pretty close, 
then the acceleration would be given by the difference vector between them multiplied by one-
hundred, since acceleration is defined as what the velocity change in one second would be if it 
continued to change at that rate.  (In the circular motion situation, the acceleration is of course 
changing all the time.  To see why it is sometimes necessary to pick small time intervals, 
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consider what would happen if the body goes around the circle completely in one second.  Then, 
if you pick two times one second apart, you would conclude the velocity isn’t changing at all, so 
there is no acceleration.)  

20.5 An Accelerating Body that isn’t Moving  

We’ve stated before that a ball thrown vertically upwards has constant downward acceleration 
of 10 meters per second in each second, even when it’s at the very top and isn’t moving at all.  
The key point here is that acceleration is rate of change of velocity.  You can’t tell what the rate 
of change of something is unless you know its value at more than one time.  For example, speed 
on a straight road is rate of change of distance from some given point.  You can’t get a speeding 
ticket just for being at a particular point at a certain time—the cop has to prove that a short 
time later you were at a point well removed from the first point, say, three meters away after 
one-tenth of a second.  That would establish that your speed was thirty meters per second, 
which is illegal in a 55 m.p.h.  zone.  In just the same way that speed is rate of change of 
position, acceleration is rate of change of velocity.  Thus to find acceleration, you need to know 
velocity at two different times.  The ball thrown vertically upwards does have zero velocity at 
the top of its path, but that is only at a single instant of time.  One second later it is dropping at 
ten meters per second.  One millionth of a second after it reached the top, it is falling at one 
hundred-thousandth of a meter per second.  Both of these facts correspond to a downward 
acceleration, or rate of change of velocity, of 10 meters per second in each second.  It would 
only have zero acceleration if it stayed at rest at the top for some finite period of time, so that 
you could say that its velocity remained the same—zero—for, say, a thousandth of a second, 
and during that period the rate of change of velocity, the acceleration, would then of course be 
zero.  Part of the problem is that the speed is very small near the top, and also that our eyes 
tend to lock on to a moving object to see it better, so there is the illusion that it comes to rest 
and stays there, even if not for long.   

20.6 Galileo’s Analysis of Motion: Two Kinds  

Galileo’s analysis of projectile motion was based on two concepts:  

1.  Naturally accelerated motion, describing the vertical component of motion, in which the 
body picks up speed at a uniform rate.   

2.  Natural horizontal motion, which is motion at a steady speed in a straight line, and happens 
to a ball rolling across a smooth table, for example, when frictional forces from surface or air can 
be ignored.   
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20.7 Newton Puts Them Together  

Newton’s major breakthrough was to show that these two different kinds of motion can be 
thought of as different aspects of the same thing.  He did this by introducing the idea of motion 
being affected by a force, then expressing this idea in a quantitative way.  Galileo, of course, had 
been well aware that motion is affected by external forces.  Indeed, his definition of natural 
horizontal motion explicitly states that it applies to the situation where such forces can be 
neglected.  He knew that friction would ultimately slow the ball down, and—very important—a 
force pushing it from behind would cause it to accelerate.  What he didn’t say, though, and 
Newton did, was that just as a force would cause acceleration in horizontal motion, the natural 
acceleration actually observed in vertical motion must be the result of a vertical force on the 
body, without which the natural vertical motion would also be at a constant speed, just like 
natural horizontal motion.  This vertical force is of course just the force of gravity. 

20.8 Force is the Key  

Therefore the point Newton is making is that the essential difference between Galileo’s natural 
steady speed horizontal motion and the natural accelerated vertical motion is that vertically, 
there is always the force of gravity acting, and without that—for example far into space—the 
natural motion (that is, with no forces acting) in any direction would be at a steady speed in a 
straight line. 

(Actually, it took Newton some time to clarify the concept of force, which had previously been 
unclear.  This is discussed at length in Never at Rest, by Richard Westfall, and I have summarized 
some of the points here.)  

20.9 Newton’s First Law: no Force, no Change in Motion  

To put it in his own words (although actually he wrote it in Latin, this is from an 1803 
translation):  

Law 1  

Every body perseveres in its state of rest, or of uniform motion in a right line, unless it is 
compelled to change that state by forces impressed thereon.   

He immediately adds, tying this in precisely with Galileo’s work:  

Projectiles persevere in their motions, so far as they are not retarded by the resistance of the air, 
or impelled downwards by the force of gravity.   

file://localhost/Users/derekteaney/Library/Containers/com.apple.Preview/Data/Downloads/Newtons2ndLaw1.htm
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Notice that here “persevere in their motions” must mean in steady speed straight line motions, 
because he is adding the gravitational acceleration on to this.   

This is sometimes called “The Law of Inertia”: in the absence of an external force, a body in 
motion will continue to move at constant speed and direction, that is, at constant velocity.   

So any acceleration, or change in speed (or direction of motion), of a body signals that it is being 
acted on by some force.   

20.10 Newton’s Second Law: Acceleration of a Body is Proportional to 
Force  

Newton’s next assertion, based on much experiment and observation, is that, for a given body, 
the acceleration produced is proportional to the strength of the external force, so doubling the 
external force will cause the body to pick up speed twice as fast.   

Law 2  

The alteration of motion is ever proportional to the motive force impressed; and is made in the 
direction of the right line in which that force is impressed.   

20.11 What About Same Force, Different Bodies?  

Another rather obvious point he doesn’t bother to make is that for a given force, such as, for 
example, the hardest you can push, applied to two different objects, say a wooden ball and a 
lead ball of the same size, with the lead ball weighing seven times as much as the wooden ball, 
then the lead ball will only pick up speed at one-seventh the rate the wooden one will.   

20.12 Falling Bodies One More Time: What is Mass?  

Now let us consider the significance of this law for falling bodies.  Neglecting air resistance, 
bodies of all masses accelerate downwards at the same rate.  This was Galileo’s discovery.   

Let us put this well established fact together with Newton’s Second Law: the acceleration is 
proportional to the external force, but inversely proportional to the mass of the body the force 
acts on.   

Consider two falling bodies, one having twice the mass of the other.  Since their acceleration is 
the same, the body having twice the mass must be experiencing a gravitational force which is 
twice as strong.  Of course, we are well aware of this, all it’s saying is that two bricks weigh twice 
as much as one brick.  Any weight measuring device, such as a bathroom scales, is just 
measuring the force of gravity.  However, this proportionality of mass and weight is not a 
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completely trivial point.  Masses can be measured against each other without using gravity at 
all, for example far into space, by comparing their relative accelerations when subject to a 
standard force, a push.  If one object accelerates at half the rate of another when subject to our 
standard push, we conclude it has twice the mass.  Thinking of the mass in this way as a 
measure of resistance to having velocity changed by an outside force, Newton called it inertia.  
(Note that this is a bit different from everyday speech, where we think of inertia as being 
displayed by something that stays at rest.  For Newton, steady motion in a straight line is the 
same as being at rest.  That seems perhaps counterintuitive, but that’s because in ordinary life, 
steady motion in a straight line usually causes some frictional or resistive forces to come into 
play).   

20.13 Mass and Weight  

To return to the concept of mass, it is really just a measure of the amount of stuff.  For a uniform 
material, such as water, or a uniform solid, the mass is the volume multiplied by the density—
the density being defined as the mass of a unit of volume, so water, for example, has a density 
of one gram per cubic centimeter, or sixty-two pounds per cubic foot.   

Hence, from Galileo’s discovery of the uniform acceleration of all falling bodies, we conclude 
that the weight of a body, which is the gravitational attraction it feels towards the earth, is 
directly proportional to its mass, the amount of stuff it’s made of.   

20.14 The Unit of Force  

All the statements above about force, mass and acceleration are statements about 
proportionality.  We have said that for a body being accelerated by a force acting on it the 
acceleration is proportional to the (total) external force acting on the body, and, for a given 
force, inversely proportional to the mass of the body.   

If we denote the force, mass and acceleration by F, m and a respectively (bearing in mind that 
really F and a are vectors pointing in the same direction) we could write this:  

F is proportional to ma  

To make any progress in applying Newton’s Laws in a real situation, we need to choose some 
unit for measuring forces.  We have already chosen units for mass (the kilogram) and 
acceleration (meters per second per second).  The most natural way to define our unit of force 
is:  

The unit of force is that force which causes a unit mass (one kilogram) to accelerate with unit 

acceleration (one meter per second per second).   
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This unit of force is named, appropriately, the newton.   

If we now agree to measure forces in newtons, the statement of proportionality above can be 
written as a simple equation:  

F = ma  

which is the usual statement of Newton’s Second Law.   

If a mass is now observed to accelerate, it is a trivial matter to find the total force acting on it.  
The force will be in the direction of the acceleration, and its magnitude will be the product of 
the mass and acceleration, measured in newtons.  For example, a 3 kilogram falling body, 
accelerating downwards at 10 meters per second per second, is being acted on by a force ma 
equal to 30 newtons, which is, of course, its weight.   

20.15 Newton’s Third Law: Action and Reaction  

Having established that a force—the action of another body—was necessary to cause a body to 
change its state of motion, Newton made one further crucial observation: such forces always 
arise as a mutual interaction of two bodies, and the other body also feels the force, but in the 
opposite direction.   

Law 3  

To every action there is always opposed an equal and opposite reaction: or the mutual actions 
of two bodies upon each other are always equal, and directed to contrary parts.   

Newton goes on:  

Whatever draws or presses another is as much drawn or pressed by that other.  If you press a 
stone with your finger, the finger is also pressed by the stone.  If a horse draws a stone tied to a 
rope, the horse (if I may so say) will be equally drawn back towards the stone: for the distended 
rope, by the same endeavour to relax or unbend itself, will draw the horse as much towards the 
stone, as it does the stone towards the horse, and will obstruct the progress of the one as much 
as it advances that of the other.  If a body impinge upon another, and by its force change the 
motion of the other, that body also (because of the equality of the mutual pressure) will undergo 
an equal change, in its own motion, towards the contrary part.  The changes made by these 
actions are equal, not in the velocities but in the motions of bodies; that is to say, if the bodies 
are not hindered by any other impediments.  For, because the motions are equally changed, the 
changes of the velocities made towards contrary parts are reciprocally proportional to the 
bodies.  This law takes place also in attractions.   
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All this maybe sounds kind of obvious.  Anyone who’s had a dog on a leash, especially a big dog, 
is well aware that tension in a rope pulls both ways.  If you push against a wall, the wall is 
pushing you back.  If that’s difficult to visualize, imagine what would happen if the wall suddenly 
evaporated.  Newton’s insight here, his realization that every acting force has a reacting force, 
and that acceleration of a body only occurs when an external force acts on it, was one of the big 
forward steps in our understanding of how the Universe works.   

20.16 Newton’s Second Law in Everyday Life  

The Second Law states that if a body is accelerating, there must be an external force acting on it.  
It’s not always obvious what this external force is even in the most trivial everyday occurrences.  
Suppose you’re standing still, then begin to walk.  What was the external force that caused you 
to accelerate? Think about that for a while.  Here’s a clue: it’s very hard to start walking if you’re 
wearing smooth-bottomed shoes and standing on smooth ice.  You tend to skid around in the 
same place.  If you understand that, you also know what external force operates when a car 
accelerates.   

The reason the external force causing the acceleration may not be immediately evident is that it 
may not be what’s doing the work.  Consider the following scenario: you are standing on level 
ground, on rollerskates, facing a wall with your palms pressed against it.  You push against the 
wall, and roll away backwards.  You accelerated.  Clearly, you did the work that caused the 
acceleration.  But from Newton’s second law, your acceleration was, in fact, caused by the 
reactive external force of the wall pushing your hands, and hence the rest of you.  That is to say, 
the force causing the acceleration may not be generated directly by what—or who—is doing the 
work! In this example, it’s generated indirectly, as a reaction force to that of the hands pushing 
on the wall.  But if the wall were on wheels, and it accelerated away when you pushed (having 
taken off your roller skates) the force causing the acceleration of the wall would be generated 
directly by the agent doing the work, you.   

Now imagine two people on roller skates, standing close facing each other, palms raised and 
pushing the other person away.  According to Newton’s discussion above following his Third 
Law, the two bodies involved will undergo equal changes of motion, but to contrary parts, that 
is, in opposite directions.  That sounds reasonable.  They obviously both move off backwards.  
Notice, however, that Newton makes a special point of the fact that these equal (but opposite) 
“motions” do not imply equal (but opposite) velocities—this becomes obvious when you 
imagine the experiment with a 100 pound person and a 200 pound person.  Newton tells us that 
in that situation the heavier person will roll backwards at half the speed—notice he says the 
velocities are “reciprocally proportional to the bodies”.   

Roller skates actually provide a pretty good example of the necessity of generating an external 
force if you want to accelerate.  If you keep the skates pointing strictly forwards, and only the 
wheels are in contact with the ground, it’s difficult to get going.  The way you start is to turn the 
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skates some, so that there is some sideways push on the wheels.  Since the wheels can’t turn 
sideways, you are thus able to push against the ground, and therefore it is pushing you—you’ve 
managed to generate the necessary external force to accelerate you.  Note that if the wheels 
were to be replaced by ball bearings somehow, you wouldn’t get anywhere, unless you provided 
some other way for the ground to push you, such as a ski pole, or maybe twisting your foot so 
that some fixed part of the skate contacted the ground.   

20.17 Gravity  

We have now reached the last sentence in Newton’s discussion of his Third Law: “This law also 
takes place in attractions”.  This of course is central to Newton’s (and our) view of the Universe.  
If the Earth is attracting the Moon gravitationally with a certain force holding it in its orbit, then 
the Moon is attracting the Earth with an equal force.  So why isn’t the Earth going around the 
Moon? The answer is that the masses are so different.  The Earth’s mass is more than one 
hundred times that of the Moon.  Consequently, the Earth’s acceleration, “falling” towards the 
Moon, is very small.  What actually happens is that they both circle around a balance point 
between them, which in fact lies within the Earth.  This motion of the Earth is easily detectable 
with instruments, but tiny compared with the daily rotation.  Of course, it also follows from the 
above considerations that since the Earth is attracting you downwards with a force equal to 
your weight, you are attracting the Earth upwards—towards you—with a force of exactly the 
same strength.   

20.18 The Law of Gravity  

Let us now put together what we know about the gravitational force:  

1.  The gravitational force on a body (its weight, at the Earth’s surface) is proportional to its 
mass.   

2.  If a body A attracts a body B with a gravitational force of a given strength, then B attracts A 
with a force of equal strength in the opposite direction.   

3.  The gravitational attraction between two bodies decreases with distance, being proportional 
to the inverse square of the distance between them.  That is, if the distance is doubled, the 
gravitational attraction falls to a quarter of what it was.   

One interesting point here—think about how the earth is gravitationally attracting you.  
Actually, all the different parts of the earth are attracting you! Mount Everest is pulling you one 
way, the Antarctic ice mass a different way, and the earth’s core is pulling you downwards.  
Newton managed to prove, after thinking about it for years, that if the earth is a sphere (which 
is a very good approximation) then all these different attractions add up to what you would feel 
if all the earth’s mass were concentrated in one point at the center.  So, when we’re talking 
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about the gravitational attraction between you and the earth, and we talk about the distance of 
separation, we mean the distance between you and the center of the earth, which is just less 
than four thousand miles (6300 kilometers).   

Let’s denote the gravitational attractive force between two bodies A and B (as mentioned in 
item 2 above) by F.  The forces on the two bodies are really equal and opposite vectors, each 
pointing to the other body, so our letter F means the length of these vectors, the strength of the 
force of attraction.   

Now, item 1 tells us that the gravitational attraction between the earth and a mass m is 
proportional to m.  This is an immediate consequence of the experimental fact that falling 
bodies accelerate at the same rate, usually written g (approximately 10 meters per second per 
second), and the definition of force from Newton’s Second Law above.  Thus we have  

F is proportional to mass m  

for the earth’s gravitational attraction on a body (often written weight W = mg), and Newton 
generalized this finding to assert that this proportionality to mass would be true for any 
gravitational attraction on the body.   

From the symmetry of the force (item 2 above) and the proportionality to the mass (item 1), it 
follows that the gravitational force between two bodies must be proportional to both masses.  
So, if we double both masses, say, the gravitational attraction between them increases by a 
factor of four.  We see that if the force is proportional to both masses, let’s call them M and m, 
it is actually proportional to the product Mm of the masses.  From item 3 above, the force is also 
proportional to 1/r2, where r is the distance between the bodies, so for the gravitational 
attractive force between two bodies  

F is proportional to Mm/r2  

This must mean that by measuring the gravitational force on something, we should be able to 
figure out the mass of the Earth! But there’s a catch—all we know is that the force is 
proportional to the Earth’s mass.  From that we could find, for instance, the ratio of the mass of 
the Earth to the mass of Jupiter, by comparing how fast the Moon is “falling” around the Earth 
to how fast Jupiter’s moons are falling around Jupiter.  For that matter, we could find the ratio 
of the Earth’s mass to the Sun’s mass by seeing how fast the planets swing around the Sun.  Still, 
knowing all these ratios doesn’t tell us the Earth’s mass in tons.  It does tell us that if we find 
that out, we can then find the masses of the other planets, at least those that have moons, and 
the mass of the Sun.   
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20.19 Weighing the Earth 

So how do we measure the mass of the Earth? The only way is to compare the Earth’s 
gravitational attraction with that of something we already know the mass of.  We don’t know 
the masses of any of the heavenly bodies.  What this really means is that we have to take a 
known mass, such as a lead ball, and measure how strongly it attracts a smaller lead ball, say, 
and compare that force with the earth’s attraction for the smaller lead ball.  This is very difficult 
to accomplish because the forces are so small, but it was done successfully in 1798, just over a 
century after Newton’s work, by Cavendish.   

In other words, Cavendish took two lead weights M and m, a few kilograms each, and actually 
detected the tiny gravitational attraction between them (of order of magnitude millionths of a 
newton)! This was a sufficiently tough experiment that even now, two hundred years later, it’s 
not easy to give a lecture demonstration of the effect.   

Making this measurement amounts to finding the constant of proportionality in the statement 
about F above, so that we can sharpen it up from a statement about proportionality to an actual 
useable equation,  

F = GMm/r
2  

where the constant G is what Cavendish measured, and found to be 6.67 x 10-11 in the 
appropriate units, where the masses are in kilograms, the distance in meters and the force in 
newtons.  (Notice here that we can’t get rid of the constant of proportionality G, as we did in the 
equation F = ma, Newton’s Second Law, above.  We succeeded there by defining the unit of 
force appropriately.  In the present case, we have already defined our units of mass, distance 
and force, so we have no further room to maneuver.)  

From Newton’s theory of universal gravitational attraction, the same constant G determines the 
gravitational attraction between any two masses in the universe.  This means we can now find 

the mass of the earth.  We just consider a one kilogram mass at the earth’s surface.  We know it 
feels a force of approximately 10 newtons, and is a distance of about 6300 km, or 6,300,000 
meters, from the center of the earth.  So we know every term in the above equation except the 
mass of the earth, and therefore can find it.  This is left as an exercise.  
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21 The Speed of Light 

21.1 Early Ideas about Light Propagation  

As we shall soon see, attempts to measure the speed of light played an important part in the 
development of the theory of special relativity, and, indeed, the speed of light is central to the 
theory.   

The first recorded discussion of the speed of light (I think) is in Aristotle, where he quotes 
Empedocles as saying the light from the sun must take some time to reach the earth, but 
Aristotle himself apparently disagrees, and even Descartes thought that light traveled 
instantaneously.  Galileo, unfairly as usual, in Two New Sciences (page 42) has Simplicio stating 
the Aristotelian position,  

SIMP.  Everyday experience shows that the propagation of light is instantaneous; for when we 
see a piece of artillery fired at great distance, the flash reaches our eyes without lapse of time; 
but the sound reaches the ear only after a noticeable interval.   

Of course, Galileo points out that in fact nothing about the speed of light can be deduced from 
this observation, except that light moves faster than sound.  He then goes on to suggest a 
possible way to measure the speed of light.  The idea is to have two people far away from each 
other, with covered lanterns.  One uncovers his lantern, then the other immediately uncovers 
his on seeing the light from the first.  This routine is to be practised with the two close together, 
so they will get used to the reaction times involved, then they are to do it two or three miles 
apart, or even further using telescopes, to see if the time interval is perceptibly lengthened.  
Galileo claims he actually tried the experiment at distances less than a mile, and couldn’t detect 
a time lag.  From this one can certainly deduce that light travels at least ten times faster than 
sound.   

21.2 Measuring the Speed of Light with Jupiter’s Moons  

The first real measurement of the speed of light came about half a century later, in 1676, by a 
Danish astronomer, Ole Römer, working at the Paris Observatory.  He had made a systematic 
study of Io, one of the moons of Jupiter, which was eclipsed by Jupiter at regular intervals, as Io 
went around Jupiter in a circular orbit at a steady rate.  Actually, Römer found, for several 
months the eclipses lagged more and more behind the expected time, but then they began to 
pick up again.  In September 1676,he correctly predicted that an eclipse on November 9 would 
be 10 minutes behind schedule.  This was indeed the case, to the surprise of his skeptical 
colleagues at the Royal Observatory in Paris.  Two weeks later, he told them what was 
happening: as the Earth and Jupiter moved in their orbits, the distance between them varied.  
The light from Io (actually reflected sunlight, of course) took time to reach the earth, and took 
the longest time when the earth was furthest away.  When the Earth was furthest from Jupiter, 

http://en.wikipedia.org/wiki/Ole_R%C3%B8mer
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there was an extra distance for light to travel equal to the diameter of the Earth’s orbit 
compared with the point of closest approach.  The observed eclipses were furthest behind the 
predicted times when the earth was furthest from Jupiter.   

From his observations, Römer concluded that light took about twenty-two minutes to cross the 
earth’s orbit.  This was something of an overestimate, and a few years later Newton wrote in the 
Principia (Book I, section XIV): “For it is now certain from the phenomena of Jupiter’s satellites, 
confirmed by the observations of different astronomers, that light is propagated in succession 
(note: I think this means at finite speed) and requires about seven or eight minutes to travel 
from the sun to the earth.”  This is essentially the correct value.   

Of course, to find the speed of light it was also necessary to know the distance from the earth to 
the sun.  During the 1670’s, attempts were made to measure the parallax of Mars, that is, how 
far it shifted against the background of distant stars when viewed simultaneously from two 
different places on earth at the same time.  This (very slight) shift could be used to find the 
distance of Mars from earth, and hence the distance to the sun, since all relative distances in the 
solar system had been established by observation and geometrical analysis.  According to Crowe 
(Modern Theories of the Universe, Dover, 1994, page 30), they concluded that the distance to 
the sun was between 40 and 90 million miles.  Measurements presumably converged on the 
correct value of about 93 million miles soon after that, because it appears Römer (or perhaps 
Huygens, using Römer’s data a short time later) used the correct value for the distance, since 
the speed of light was calculated to be 125,000 miles per second, about three-quarters of the 
correct value of 186,300 miles per second.  This error is fully accounted for by taking the time 
light needs to cross the earth’s orbit to be twenty-two minutes (as Römer did) instead of the 
correct value of sixteen minutes.   

21.3 Starlight and Rain  

The next substantial improvement in measuring the speed of light took place in 1728, in 
England.  An astronomer James Bradley, sailing on the Thames with some friends, noticed that 
the little pennant on top of the mast changed position each time the boat put about, even 
though the wind was steady.  He thought of the boat as the earth in orbit, the wind as starlight 
coming from some distant star, and reasoned that the apparent direction the starlight was 
“blowing” in would depend on the way the earth was moving.  Another possible analogy is to 
imagine the starlight as a steady downpour of rain on a windless day, and to think of yourself as 
walking around a circular path at a steady pace.  The apparent direction of the incoming rain will 
not be vertically downwards—more will hit your front than your back.  In fact, if the rain is 
falling at, say, 15 mph, and you are walking at 3 mph, to you as observer the rain will be coming 
down at a slant so that it has a vertical speed of 15 mph, and a horizontal speed towards you of 
3 mph.  Whether it is slanting down from the north or east or whatever at any given time 
depends on where you are on the circular path at that moment.  Bradley reasoned that the 
apparent direction of incoming starlight must vary in just this way, but the angular change 
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would be a lot less dramatic.  The earth’s speed in orbit is about 18 miles per second, he knew 
from Römer’s work that light went at about 10,000 times that speed.  That meant that the 
angular variation in apparent incoming direction of starlight was about the magnitude of the 
small angle in a right-angled triangle with one side 10,000 times longer than the other, about 
one two-hundredth of a degree.  Notice this would have been just at the limits of Tycho’s 
measurements, but the advent of the telescope, and general improvements in engineering, 
meant this small angle was quite accurately measurable by Bradley’s time, and he found the 
velocity of light to be 185,000 miles per second, with an accuracy of about one percent.   

21.4 Fast Flickering Lanterns  

The problem is, all these astronomical techniques do not have the appeal of Galileo’s idea of 
two guys with lanterns.  It would be reassuring to measure the speed of a beam of light between 
two points on the ground, rather than making somewhat indirect deductions based on apparent 
slight variations in the positions of stars.  We can see, though, that if the two lanterns are ten 
miles apart, the time lag is of order one-ten thousandth of a second, and it is difficult to see how 
to arrange that.  This technical problem was solved in France about 1850 by two rivals, Fizeau 
and Foucault, using slightly different techniques.  In Fizeau’s apparatus, a beam of light shone 
between the teeth of a rapidly rotating toothed wheel, so the “lantern” was constantly being 
covered and uncovered.  Instead of a second lantern far away, Fizeau simply had a mirror, 
reflecting the beam back, where it passed a second time between the teeth of the wheel.  The 
idea was, the blip of light that went out through one gap between teeth would only make it back 
through the same gap if the teeth had not had time to move over significantly during the round 
trip time to the far away mirror.  It was not difficult to make a wheel with a hundred teeth, and 
to rotate it hundreds of times a second, so the time for a tooth to move over could be arranged 
to be a fraction of one ten thousandth of a second.  The method worked.  Foucault’s method 
was based on the same general idea, but instead of a toothed wheel, he shone the beam on to a 
rotating mirror.  At one point in the mirror’s rotation, the reflected beam fell on a distant mirror, 
which reflected it right back to the rotating mirror, which meanwhile had turned through a small 
angle.  After this second reflection from the rotating mirror, the position of the beam was 
carefully measured.  This made it possible to figure out how far the mirror had turned during the 
time it took the light to make the round trip to the distant mirror, and since the rate of rotation 
of the mirror was known, the speed of light could be figured out.  These techniques gave the 
speed of light with an accuracy of about 1,000 miles per second.   

21.5 Albert Abraham Michelson  

Albert Michelson was born in 1852 in Strzelno, Poland.  His father Samuel was a Jewish 
merchant, not a very safe thing to be at the time.  Purges of Jews were frequent in the 
neighboring towns and villages.  They decided to leave town.  Albert’s fourth birthday was 
celebrated in Murphy’s Camp, Calaveras County, about fifty miles south east of Sacramento, a 
place where five million dollars worth of gold dust was taken from one four acre lot.  Samuel 
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prospered selling supplies to the miners.  When the gold ran out, the Michelsons moved to 
Virginia City, Nevada, on the Comstock lode, a silver mining town.  Albert went to high school in 
San Francisco.  In 1869, his father spotted an announcement in the local paper that 
Congressman Fitch would be appointing a candidate to the Naval Academy in Annapolis, and 
inviting applications.  Albert applied but did not get the appointment, which went instead to the 
son of a civil war veteran.  However, Albert knew that President Grant would also be appointing 
ten candidates himself, so he went east on the just opened continental railroad to try his luck.  
Unknown to Michelson, Congressman Fitch wrote directly to Grant on his behalf, saying this 
would really help get the Nevada Jews into the Republican party.  This argument proved 
persuasive.  In fact, by the time Michelson met with Grant, all ten scholarships had been 
awarded, but the President somehow came up with another one.  Of the incoming class of 
ninety-two, four years later twenty-nine graduated.  Michelson placed first in optics, but twenty-
fifth in seamanship.  The Superintendent of the Academy, Rear Admiral Worden, who had 
commanded the Monitor in its victory over the Merrimac, told Michelson: “If in the future you’d 
give less attention to those scientific things and more to your naval gunnery, there might come a 
time when you would know enough to be of some service to your country.”  

21.6 Sailing the Silent Seas: Galilean Relativity  

Shortly after graduation, Michelson was ordered aboard the USS Monongahela, a sailing ship, 
for a voyage through the Carribean and down to Rio.  According to the biography of Michelson 
written by his daughter (The Master of Light, by Dorothy Michelson Livingston, Chicago, 1973) 
he thought a lot as the ship glided across the quiet Caribbean about whether one could decide 
in a closed room inside the ship whether or not the vessel was moving.  In fact, his daughter 
quotes a famous passage from Galileo on just this point:  

[SALV.] Shut yourself up with some friend in the largest room below decks of some large ship and 
there procure gnats, flies, and other such small winged creatures.  Also get a great tub full of 
water and within it put certain fishes; let also a certain bottle be hung up, which drop by drop 
lets forth its water into another narrow-necked bottle placed underneath.  Then, the ship lying 
still, observe how those small winged animals fly with like velocity towards all parts of the room; 
how the fish swim indifferently towards all sides; and how the distilling drops all fall into the 
bottle placed underneath.  And casting anything toward your friend, you need not throw it with 
more force one way than another, provided the distances be equal; and leaping with your legs 
together, you will reach as far one way as another.  Having observed all these particulars, 
though no man doubts that, so long as the vessel stands still, they ought to take place in this 
manner, make the ship move with what velocity you please, so long as the motion is uniform and 
not fluctuating this way and that.  You will not be able to discern the least alteration in all the 
forenamed effects, nor can you gather by any of them whether the ship moves or stands still.  
...in throwing something to your friend you do not need to throw harder if he is towards the front 
of the ship from you...  the drops from the upper bottle still fall into the lower bottle even though 
the ship may have moved many feet while the drop is in the air ...  Of this correspondence of 
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effects the cause is that the ship’s motion is common to all the things contained in it and to the 
air also; I mean if those things be shut up in the room; but in case those things were above the 
deck in the open air, and not obliged to follow the course of the ship, differences would be 
observed, ...  smoke would stay behind...  .   

[SAGR.] Though it did not occur to me to try any of this out when I was at sea, I am sure you are 
right.  I remember being in my cabin wondering a hundred times whether the ship was moving or 
not, and sometimes I imagined it to be moving one way when in fact it was moving the other 
way.  I am therefore satisfied that no experiment that can be done in a closed cabin can 
determine the speed or direction of motion of a ship in steady motion.   

I have paraphrased this last remark somewhat to clarify it.  This conclusion of Galileo’s, that 
everything looks the same in a closed room moving at a steady speed as it does in a closed room 
at rest, is called The Principle of Galilean Relativity.  We shall be coming back to it.   

21.7 Michelson Measures the Speed of Light  

On returning to Annapolis from the cruise, Michelson was commissioned Ensign, and in 1875 
became an instructor in physics and chemistry at the Naval Academy, under Lieutenant 
Commander William Sampson.  Michelson met Mrs. Sampson’s niece, Margaret Heminway, 
daughter of a very successful Wall Street tycoon, who had built himself a granite castle in New 
Rochelle, NY.  Michelson married Margaret in an Episcopal service in New Rochelle in 1877.   

At work, lecture demonstrations had just been introduced at Annapolis.  Sampson suggested 
that it would be a good demonstration to measure the speed of light by Foucault’s method.  
Michelson soon realized, on putting together the apparatus, that he could redesign it for much 
greater accuracy, but that would need money well beyond that available in the teaching 
demonstration budget.  He went and talked with his father in law, who agreed to put up $2,000.  
Instead of Foucault’s 60 feet to the far mirror, Michelson had about 2,000 feet along the bank of 
the Severn, a distance he measured to one tenth of an inch.  He invested in very high quality 
lenses and mirrors to focus and reflect the beam.  His final result was 186,355 miles per second, 
with possible error of 30 miles per second or so.  This was twenty times more accurate than 
Foucault, made the New York Times, and Michelson was famous while still in his twenties.  In 
fact, this was accepted as the most accurate measurement of the speed of light for the next 
forty years, at which point Michelson measured it again.   

The next lecture is on the Michelson-Morley experiment to detect the aether. 
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22 The Michelson-Morley Experiment  
  

Flashlet of the Experiment! 

22.1 The Nature of Light  

As a result of Michelson’s efforts in 1879, the speed of light was known to be 186,350 miles per 
second with a likely error of around 30 miles per second.  This measurement, made by timing a 
flash of light travelling between mirrors in Annapolis, agreed well with less direct measurements 
based on astronomical observations.  Still, this did not really clarify the nature of light.  Two 
hundred years earlier, Newton had suggested that light consists of tiny particles generated in a 
hot object, which spray out at very high speed, bounce off other objects, and are detected by 
our eyes.  Newton’s arch-enemy Robert Hooke, on the other hand, thought that light must be a 
kind of wave motion, like sound.  To appreciate his point of view, let us briefly review the nature 
of sound.  

22.2 The Wavelike Nature of Sound  

Actually, sound was already quite well understood by the ancient Greeks.  The essential point 
they had realized is that sound is generated by a vibrating material object, such as a bell, a string 
or a drumhead.  Their explanation was that the vibrating drumhead, for example, alternately 
pushes and pulls on the air directly above it, sending out waves of compression and 
decompression (known as rarefaction), like the expanding circles of ripples from a disturbance 
on the surface of a pond.  On reaching the ear, these waves push and pull on the eardrum with 
the same frequency (that is to say, the same number of pushes per second) as the original 
source was vibrating at, and nerves transmit from the ear to the brain both the intensity 
(loudness) and frequency (pitch) of the sound.  

There are a couple of special properties of sound waves (actually any waves) worth mentioning 
at this point.  The first is called interference.  This is most simply demonstrated with water 
waves.  If you put two fingers in a tub of water, just touching the surface a foot or so apart, and 
vibrate them at the same rate to get two expanding circles of ripples, you will notice that where 
the ripples overlap there are quite complicated patterns of waves formed.  The essential point is 
that at those places where the wave-crests from the two sources arrive at the same time, the 
waves will work together and the water will be very disturbed, but at points where the crest 
from one source arrives at the same time as the wave trough from the other source, the waves 
will cancel each other out, and the water will hardly move.  You can hear this effect for sound 
waves by playing a constant note through stereo speakers.  As you move around a room, you 
will hear quite large variations in the intensity of sound.  Of course, reflections from walls 
complicate the pattern.  This large variation in volume is not very noticeable when the stereo is 
playing music, because music is made up of many frequencies, and they change all the time.  
The different frequencies, or notes, have their quiet spots in the room in different places.  The 

http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/mmexpt6.htm
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other point that should be mentioned is that high frequency tweeter-like sound is much more 
directional than low frequency woofer-like sound.  It really doesn’t matter where in the room 
you put a low-frequency woofer—the sound seems to be all around you anyway.  On the other 
hand, it is quite difficult to get a speaker to spread the high notes in all directions.  If you listen 
to a cheap speaker, the high notes are loudest if the speaker is pointing right at you.  A lot of 
effort has gone into designing tweeters, which are small speakers especially designed to 
broadcast high notes over a wide angle of directions.  

22.3 Is Light a Wave?  

Bearing in mind the above minireview of the properties of waves, let us now reconsider the 
question of whether light consists of a stream of particles or is some kind of wave.  The 
strongest argument for a particle picture is that light travels in straight lines.  You can hear 
around a corner, at least to some extent, but you certainly can’t see.  Furthermore, no wave-like 
interference effects are very evident for light.  Finally, it was long known, as we have mentioned, 
that sound waves were compressional waves in air.  If light is a wave, just what is waving?  It 
clearly isn’t just air, because light reaches us from the sun, and indeed from stars, and we know 
the air doesn’t stretch that far, or the planets would long ago have been slowed down by air 
resistance.  

Despite all these objections, it was established around 1800 that light is in fact some kind of 
wave.  The reason this fact had gone undetected for so long was that the wavelength is really 
short, about one fifty-thousandth of an inch.  In contrast, the shortest wavelength sound 
detectable by humans has a wavelength of about half an inch.  The fact that light travels in 
straight lines is in accord with observations on sound that the higher the frequency (and shorter 
the wavelength) the greater the tendency to go in straight lines.  Similarly, the interference 
patterns mentioned above for sound waves or ripples on a pond vary over distances of the same 
sort of size as the wavelengths involved.  Patterns like that would not normally be noticeable for 
light because they would be on such a tiny scale.  In fact, it turns out, there are ways to see 
interference effects with light.  A familiar example is the many colors often visible in a soap 
bubble.  These come about because looking at a soap bubble you see light reflected from both 
sides of a very thin film of water—a thickness that turns out to be comparable to the 
wavelength of light.  The light reflected from the lower layer has to go a little further to reach 
your eye, so that light wave must wave an extra time or two before getting to your eye 
compared with the light reflected from the top layer.  What you actually see is the sum of the 
light reflected from the top layer and that reflected from the bottom layer.  Thinking of this now 
as the sum of two sets of waves, the light will be bright if the crests of the two waves arrive 
together, dim if the crests of waves reflected from the top layer arrive simultaneously with the 
troughs of waves reflected from the bottom layer.  Which of these two possibilities actually 
occurs for reflection from a particular bit of the soap film depends on just how much further the 
light reflected from the lower surface has to travel to reach your eye compared with light from 
the upper surface, and that depends on the angle of reflection and the thickness of the film.  
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Suppose now we shine white light on the bubble.  White light is made up of all the colors of the 
rainbow, and these different colors have different wavelengths, so we see colors reflected, 
because for a particular film, at a particular angle, some colors will be reflected brightly (the 
crests will arrive together), some dimly, and we will see the ones that win.  

22.4 If Light is a Wave, What is Waving?  

Having established that light is a wave, though, we still haven’t answered one of the major 
objections raised above.  Just what is waving?  We discussed sound waves as waves of 
compression in air.  Actually, that is only one case—sound will also travel through liquids, like 
water, and solids, like a steel bar.  It is found experimentally that, other things being equal, 
sound travels faster through a medium that is harder to compress: the material just springs back 
faster and the wave moves through more rapidly.  For media of equal springiness, the sound 
goes faster through the less heavy medium, essentially because the same amount of springiness 
can push things along faster in a lighter material.  So when a sound wave passes, the material—
air, water or solid—waves as it goes through.  Taking this as a hint, it was natural to suppose 
that light must be just waves in some mysterious material, which was called the aether, 
surrounding and permeating everything.  This aether must also fill all of space, out to the stars, 
because we can see them, so the medium must be there to carry the light.  (We could never 
hear an explosion on the moon, however loud, because there is no air to carry the sound to us.)  
Let us think a bit about what properties this aether must have.  Since light travels so fast, it must 
be very light, and very hard to compress.  Yet, as mentioned above, it must allow solid bodies to 
pass through it freely, without aether resistance, or the planets would be slowing down.  Thus 
we can picture it as a kind of ghostly wind blowing through the earth.  But how can we prove 
any of this? Can we detect it?  

22.5 Detecting the Aether Wind: the Michelson-Morley Experiment  

Detecting the aether wind was the next challenge Michelson set himself after his triumph in 
measuring the speed of light so accurately.  Naturally, something that allows solid bodies to pass 
through it freely is a little hard to get a grip on.  But Michelson realized that, just as the speed of 
sound is relative to the air, so the speed of light must be relative to the aether.  This must mean, 
if you could measure the speed of light accurately enough, you could measure the speed of light 
travelling upwind, and compare it with the speed of light travelling downwind, and the 
difference of the two measurements should be twice the windspeed.  Unfortunately, it wasn’t 
that easy.  All the recent accurate measurements had used light travelling to a distant mirror 
and coming back, so if there was an aether wind along the direction between the mirrors, it 
would have opposite effects on the two parts of the measurement, leaving a very small overall 
effect.  There was no technically feasible way to do a one-way determination of the speed of 
light.  
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At this point, Michelson had a very clever idea for detecting the aether wind.  As he explained to 
his children (according to his daughter), it was based on the following puzzle:  

Suppose we have a river of width w (say, 100 feet), and two swimmers who both swim at the 
same speed v feet per second (say, 5 feet per second).  The river is flowing at a steady rate, say 3 
feet per second.  The swimmers race in the following way: they both start at the same point on 
one bank.  One swims directly across the river to the closest point on the opposite bank, then 
turns around and swims back.  The other stays on one side of the river, swimming upstream a 
distance (measured along the bank) exactly equal to the width of the river, then swims back to 
the start.  Who wins?  

Let’s consider first the swimmer going upstream and back.  Going 100 feet upstream, the speed 
relative to the bank is only 2 feet per second, so that takes 50 seconds.  Coming back, the speed 
is 8 feet per second, so it takes 12.5 seconds, for a total time of 62.5 seconds.  

 

The swimmer going across the flow is trickier.  It won’t do simply to aim directly for the opposite 
bank-the flow will carry the swimmer downstream.  To succeed in going directly across, the 
swimmer must actually aim upstream at the correct angle (of course, a real swimmer would do 
this automatically).  Thus, the swimmer is going at 5 feet per second, at an angle, relative to the 
river, and being carried downstream at a rate of 3 feet per second.  If the angle is correctly 
chosen so that the net movement is directly across, in one second the swimmer must have 
moved four feet across:  the distances covered in one second will form a 3,4,5 triangle.  So, at a 
crossing rate of 4 feet per second, the swimmer gets across in 25 seconds, and back in the same 
time, for a total time of 50 seconds.  The cross-stream swimmer wins.  This turns out to true 

B bank vt 

river 
ct 

In time t, the swimmer has moved ct relative to the water, 
and been carried downstream a distance vt. 
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whatever their swimming speed.  (Of course, the race is only possible if they can swim faster 
than the current!)  

 

Michelson’s great idea was to construct an exactly similar race for pulses of light, with the 
aether wind playing the part of the river.  The scheme of the experiment is as follows: a pulse of 
light is directed at an angle of 45 degrees at a half-silvered, half transparent mirror, so that half 
the pulse goes on through the glass, half is reflected.  These two half-pulses are the two 
swimmers.  They both go on to distant mirrors which reflect them back to the half-silvered 
mirror.  At this point, they are again half reflected and half transmitted, but a telescope is placed 
behind the half-silvered mirror as shown in the figure so that half of each half-pulse will arrive in 
this telescope.  Now, if there is an aether wind blowing, someone looking through the telescope 
should see the halves of the two half-pulses to arrive at slightly different times, since one would 
have gone more upstream and back, one more across stream in general.  To maximize the 
effect, the whole apparatus, including the distant mirrors, was placed on a large turntable so it 
could be swung around. 

An animated flashlet of the experiment is available here–it makes the account above a lot 
clearer! 

Let us think about what kind of time delay we expect to find between the arrival of the two half-
pulses of light.  Taking the speed of light to be c miles per second relative to the aether, and the 
aether to be flowing at v miles per second through the laboratory, to go a distance w miles 
upstream will take w/(c-v) seconds, then to come back will take w/(c+v) seconds.  The total 

a 

b 
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This diagram is from the original paper.  The source of light is at s, the 45 
degree line is the half-silvered mirror, b and c are mirrors and d the observer. 

http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/mmexpt6.htm
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roundtrip time upstream and downstream is the sum of these, which works out to be 2wc/(c²-
v²), which can also be written (2w/c)×1/(1-v²/c²).  Now, we can safely assume the speed of the 
aether is much less than the speed of light, otherwise it would have been noticed long ago, for 
example in timing of eclipses of Jupiter’s satellites.  This means v²/c² is a very small number, and 
we can use some handy mathematical facts to make the algebra a bit easier.  First, if x is very 
small compared to 1, 1/(1-x) is very close to 1+x.  (You can check it with your calculator.)  
Another fact we shall need in a minute is that for small x, the square root of 1+x is very close to 
1+x/2.   

 

Putting all this together, 
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Now, what about the cross-stream time?  The actual cross-stream speed must be figured out as 
in the example above using a right-angled triangle, with the hypoteneuse equal to the speed c, 
the shortest side the aether flow speed v, and the other side the cross-stream speed we need to 
find the time to get across.  From Pythagoras’ theorem, then, the cross-stream speed is the 
square root of (c²-v²).   

Since this will be the same both ways, the roundtrip cross-stream time will be 
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This is also from the original paper, and shows the expected path of light relative 
to the aether with an aether wind blowing. 
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Looking at the two roundtrip times at the ends of the two paragraphs above, we see that they 
differ by an amount (2w/c) × v²/2c².  Now, 2w/c is just the time the light would take if there 
were no aether wind at all, say, a few millionths of a second.  If we take the aether windspeed to 
be equal to the earth’s speed in orbit, for example, v/c is about 1/10,000, so v²/c² is about 
1/100,000,000.  This means the time delay between the pulses reflected from the different 
mirrors reaching the telescope is about one-hundred-millionth of a few millionths of a second.  
It seems completely hopeless that such a short time delay could be detected.  However, this 
turns out not to be the case, and Michelson was the first to figure out how to do it.  The trick is 
to use the interference properties of the lightwaves.  Instead of sending pulses of light, as we 
discussed above, Michelson sent in a steady beam of light of a single color.  This can be 
visualized as a sequence of ingoing waves, with a wavelength one fifty-thousandth of an inch or 
so.  Now this sequence of waves is split into two, and reflected as previously described.  One set 
of waves goes upstream and downstream, the other goes across stream and back.  Finally, they 
come together into the telescope and the eye.  If the one that took longer is half a wavelength 
behind, its troughs will be on top of the crests of the first wave, they will cancel, and nothing will 
be seen.  If the delay is less than that, there will still be some dimming.  However, slight errors in 
the placement of the mirrors would have the same effect.  This is one reason why the apparatus 
is built to be rotated.  On turning it through 90 degrees, the upstream-downstream and the 
cross-stream waves change places.  Now the other one should be behind.  Thus, if there is an 
aether wind, if you watch through the telescope while you rotate the turntable, you should 
expect to see variations in the brightness of the incoming light.  

To magnify the time difference between the two paths, in the actual experiment the light was 
reflected backwards and forwards several times, like a several lap race.  For a diagram, click 
here.  For an actual photograph of the real apparatus, click here.  

http://carnap.umd.edu:90/phil250/images/1887_intf_color.gif
http://carnap.umd.edu:90/phil250/images/1887_intf_color.gif
http://carnap.umd.edu:90/phil250/images/Michelson_Morley_intf.gif
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Michelson calculated that an aether windspeed of only one or two miles a second would have 
observable effects in this experiment, so if the aether windspeed was comparable to the earth’s 
speed in orbit around the sun, it would be easy to see.  In fact, nothing was observed.  The light 
intensity did not vary at all.  Some time later, the experiment was redesigned so that an aether 
wind caused by the earth’s daily rotation could be detected.  Again, nothing was seen.  Finally, 
Michelson wondered if the aether was somehow getting stuck to the earth, like the air in a 
below-decks cabin on a ship, so he redid the experiment on top of a high mountain in California.  
Again, no aether wind was observed.  It was difficult to believe that the aether in the immediate 
vicinity of the earth was stuck to it and moving with it, because light rays from stars would 
deflect as they went from the moving faraway aether to the local stuck aether.  

The only possible conclusion from this series of very difficult experiments was that the whole 
concept of an all-pervading aether was wrong from the start.  Michelson was very reluctant to 
think along these lines.  In fact, new theoretical insight into the nature of light had arisen in the 
1860’s from the brilliant theoretical work of Maxwell, who had written down a set of equations 
describing how electric and magnetic fields can give rise to each other.  He had discovered that 
his equations predicted there could be waves made up of electric and magnetic fields, and the 
speed of these waves, deduced from experiments on how these fields link together, would be 
186,300 miles per second.   This is, of course, the speed of light, so it is natural to assume that 
light is made up of fast-varying electric and magnetic fields.  But this leads to a big problem: 
Maxwell’s equations predict a definite speed for light, and it is the speed found by 
measurements.  But what is the speed to be measured relative to?  The whole point of bringing 
in the aether was to give a picture for light resembling the one we understand for sound, 
compressional waves in a medium.  The speed of sound through air is measured relative to air.  
If the wind is blowing towards you from the source of sound, you will hear the sound sooner.  If 
there isn’t an aether, though, this analogy doesn’t hold up.  So what does light travel at 186,300 
miles per second relative to?  

There is another obvious possibility, which is called the emitter theory: the light travels at 
186,300 miles per second relative to the source of the light.  The analogy here is between light 
emitted by a source and bullets emitted by a machine gun.  The bullets come out at a definite 
speed (called the muzzle velocity) relative to the barrel of the gun.  If the gun is mounted on the 
front of a tank, which is moving forward, and the gun is pointing forward, then relative to the 
ground the bullets are moving faster than they would if shot from a tank at rest.  The simplest 
way to test the emitter theory of light, then, is to measure the speed of light emitted in the 
forward direction by a flashlight moving in the forward direction, and see if it exceeds the 
known speed of light by an amount equal to the speed of the flashlight.  Actually, this kind of 
direct test of the emitter theory only became experimentally feasible in the nineteen-sixties.  It 
is now possible to produce particles, called neutral pions, which decay each one in a little 
explosion, emitting a flash of light.  It is also possible to have these pions moving forward at 
185,000 miles per second when they self destruct, and to catch the light emitted in the forward 
direction, and clock its speed.  It is found that, despite the expected boost from being emitted 
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by a very fast source, the light from the little explosions is going forward at the usual speed of 
186,300 miles per second.  In the last century, the emitter theory was rejected because it was 
thought the appearance of certain astronomical phenomena, such as double stars, where two 
stars rotate around each other, would be affected.  Those arguments have since been criticized, 
but the pion test is unambiguous.  The definitive experiment was carried out by Alvager et al., 
Physics Letters 12, 260 (1964).  

22.6 Einstein’s Answer  

The results of the various experiments discussed above seem to leave us really stuck.  
Apparently light is not like sound, with a definite speed relative to some underlying medium.  
However, it is also not like bullets, with a definite speed relative to the source of the light.  Yet 
when we measure its speed we always get the same result.  How can all these facts be 
interpreted in a simple consistent way?  We shall show how Einstein answered this question in 
the next lecture. 

23 Special Relativity 

23.1 Galilean Relativity again  

At this point in the course, we finally enter the twentieth century—Albert Einstein wrote his first 
paper on relativity in 1905.  To put his work in context, let us first review just what is meant by 
“relativity” in physics.  The first example, mentioned in a previous lecture, is what is called 
“Galilean relativity” and is nothing but Galileo’s perception that by observing the motion of 
objects, alive or dead, in a closed room there is no way to tell if the room is at rest or is in fact in 
a boat moving at a steady speed in a fixed direction.  (You can tell if the room is accelerating or 
turning around.)  Everything looks the same in a room in steady motion as it does in a room at 
rest.  After Newton formulated his Laws of Motion, describing how bodies move in response to 
forces and so on, physicists reformulated Galileo’s observation in a slightly more technical, but 
equivalent, way: they said the laws of physics are the same in a uniformly moving room as they 
are in a room at rest.  In other words, the same force produces the same acceleration, and an 
object experiencing no force moves at a steady speed in a straight line in either case.  Of course, 
talking in these terms implies that we have clocks and rulers available so that we can actually 
time the motion of a body over a measured distance, so the physicist envisions the room in 
question to have calibrations along all the walls, so the position of anything can be measured, 
and a good clock to time motion.  Such a suitably equipped room is called a “frame of 
reference”—the calibrations on the walls are seen as a frame which you can use to specify the 
precise position of an object at a given time.  (This is the same as a set of “coordinates”.)  
Anyway, the bottom line is that no amount of measuring of motions of objects in the “frame of 
reference” will tell you whether this is a frame at rest or one moving at a steady velocity.  
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What exactly do we mean by a frame “at rest” anyway?  This seems obvious from our 
perspective as creatures who live on the surface of the earth—we mean, of course, at rest 
relative to fixed objects on the earth’s surface.  Actually, the earth’s rotation means this isn’t 
quite a fixed frame, and also the earth is moving in orbit at 18 miles per second.  From an 
astronaut’s point of view, then, a frame fixed relative to the sun might seem more reasonable.  
But why stop there?  We believe the laws of physics are good throughout the universe.  Let us 
consider somewhere in space far from the sun, even far from our galaxy.  We would see galaxies 
in all directions, all moving in different ways.  Suppose we now set up a frame of reference and 
check that Newton’s laws still work.  In particular, we check that the First Law holds—that a 
body experiencing no force moves at a steady speed in a straight line.  This First law is often 
referred to as The Principle of Inertia, and a frame in which it holds is called an Inertial Frame.  
Then we set up another frame of reference, moving at a steady velocity relative to the first one, 
and find that Newton’s laws are o.k. in this frame too.  The point to notice here is that it is not at 
all obvious which—if either—of these frames is “at rest”.  We can, however, assert that they are 
both inertial frames, after we’ve checked that in both of them, a body with no forces acting on it 
moves at a steady speed in a straight line (the speed could be zero).  In this situation, Michelson 
would have said that a frame “at rest” is one at rest relative to the aether.  However, his own 
experiment found motion through the aether to be undetectable, so how would we ever know 
we were in the right frame?  

As we mentioned in the last lecture, in the middle of the nineteenth century there was a 
substantial advance in the understanding of electric and magnetic fields.  (In fact, this advance is 
in large part responsible for the improvement in living standards since that time.)  The new 
understanding was summarized in a set of equations called Maxwell’s equations describing how 
electric and magnetic fields interact and give rise to each other, just as, two centuries earlier, 
the new understanding of dynamics was summarized in the set of equations called Newton’s 
laws.  The important thing about Maxwell’s equations for our present purposes is that they 
predicted waves made up of electric and magnetic fields that moved at 3×108 meters per 
second, and it was immediately realized that this was no coincidence—light waves must be 
nothing but waving electric and magnetic fields.  (This is now fully established to be the case.)  

It is worth emphasizing that Maxwell’s work predicted the speed of light from the results of 
experiments that were not thought at the time they were done to have anything to do with 
light—experiments on, for example, the strength of electric field produced by waving a magnet.  
Maxwell was able to deduce a speed for waves like this using methods analogous to those by 
which earlier scientists had figured out the speed of sound from a knowledge of the density and 
the springiness of air.  
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23.2 Generalizing Galilean Relativity to Include Light: Special Relativity  

We now come to Einstein’s major insight: the Theory of Special Relativity.  It is deceptively 
simple.  Einstein first dusted off Galileo’s discussion of experiments below decks on a uniformly 
moving ship, and restated it as :  

The Laws of Physics are the same in all Inertial Frames.  

Einstein then simply brought this up to date, by pointing out that the Laws of Physics must now 
include Maxwell’s equations describing electric and magnetic fields as well as Newton’s laws 
describing motion of masses under gravity and other forces.  (Note for experts and the curious:  
we shall find that Maxwell’s equations are completely unaltered by special relativity, but, as will 
become clear later, Newton’s Laws do need a bit of readjustment to include special relativistic 
phenomena.  The First Law is still O.K., the Second Law in the form F = ma is not, because we 
shall find mass varies; we need to equate force to rate of change of momentum (Newton 
understood that, of course—that’s the way he stated the law!).  The Third Law, stated as action 
equals reaction, no longer holds because if a body moves, its electric field, say, does not readjust 
instantaneously—a ripple travels outwards at the speed of light.  Before the ripple reaches 
another charged body, the electric forces between the two will be unbalanced.  However, the 
crucial consequence of the Third Law—the conservation of momentum when two bodies 
interact, still holds.  It turns out that the rippling field itself carries momentum, and everything 
balances.) 

Demanding that Maxwell’s equations be satisfied in all inertial frames has one major 
consequence as far as we are concerned. As we stated above, Maxwell’s equations give the 
speed of light to be 3×108 meters per second.  Therefore, demanding that the laws of physics 
are the same in all inertial frames implies that the speed of any light wave, measured in any 
inertial frame, must be 3×108 meters per second.  

This then is the entire content of the Theory of Special Relativity: the Laws of Physics are the 
same in any inertial frame, and, in particular, any measurement of the speed of light in any 
inertial frame will always give 3×108 meters per second.   

23.3 You Really Can’t Tell You’re Moving!  

Just as Galileo had asserted that observing gnats, fish and dripping bottles, throwing things and 
generally jumping around would not help you to find out if you were in a room at rest or moving 
at a steady velocity, Einstein added that no kind of observation at all, even measuring the speed 
of light across your room to any accuracy you like, would help find out if your room was “really 
at rest”.  This implies, of course, that the concept of being “at rest” is meaningless.  If Einstein is 
right, there is no natural rest-frame in the universe.  Naturally, there can be no “aether”, no thin 
transparent jelly filling space and vibrating with light waves, because if there were, it would 
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provide the natural rest frame, and affect the speed of light as measured in other moving 
inertial frames as discussed above.  

So we see the Michelson-Morley experiment was doomed from the start.  There never was an 
aether wind.  The light was not slowed down by going “upstream”—light always travels at the 
same speed, which we shall now call c,  

c = 3×108 meters per second 

to save writing it out every time.  This now answers the question of what the speed of light, c, is 
relative to.  We already found that it is not like sound, relative to some underlying medium.  It is 
also not like bullets, relative to the source of the light (the discredited emitter theory).  Light 
travels at c relative to the observer, since if the observer sets up an inertial frame (clocks, rulers, 
etc.) to measure the speed of light he will find it to be c.  (We always assume our observers are 
very competent experimentalists!)  

23.4 Truth and Consequences  

The Truth we are referring to here is the seemingly innocuous and plausible sounding statement 
that all inertial frames are as good as each other—the laws of physics are the same in all of 
them—and so the speed of light is the same in all of them.  As we shall soon see, this Special 
Theory of Relativity has some surprising consequences, which reveal themselves most 
dramatically when things are moving at relative speeds comparable to the speed of light.  
Einstein liked to explain his theory using what he called “thought experiments” involving trains 
and other kinds of transportation moving at these speeds (technically unachievable so far!), and 
we shall follow his general approach.  

To begin with, let us consider a simple measurement of the speed of light carried out at the 
same time in two inertial frames moving at half the speed of light relative to each other.  The 
setup is as follows: on a flat piece of ground, we have a flashlight which emits a blip of light, like 
a strobe.  We have two photocells, devices which click and send a message down a wire when 
light falls on them.  The photocells are placed 10 meters apart in the path of the blip of light, 
they are somehow wired into a clock so that the time taken by the blip of light to travel from the 
first photocell to the second, in other words, the time between clicks, can be measured.  From 
this time and the known distance between them, we can easily find the speed of the blip of 
light. 
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Meanwhile, there is another observer, passing overhead in a spaceship traveling at half the 
speed of light.  She is also equipped with a couple of photocells, placed 10 meters apart on the 
bottom of her spaceship as shown, and she is able to measure the speed of the same blip of 
light, relative to her frame of reference (the spaceship).  The observer on the spaceship will 
measure the blip of light to be traveling at c relative to the spaceship, the observer on the ground 
will measure the same blip to be traveling at c relative to the ground.  That is the unavoidable 
consequence of the Theory of Relativity.   

(Note: actually the picture above is not quite the way it would really look.  As we shall find, 
objects moving at relativistic speeds are contracted, and this combined with the different times 
light takes to reach the eye from different parts of the ship would change the ship’s appearance.   
But this does not affect the validity of the statements above.) 

  

speed c/2 

The speed of the same blip of light is measured by two observers, having 
relative speed c/2.   Both measure the time the blip takes from one photocell 
to a second one 10 meters further on.  Both find the speed to be c. 

photocells on ground light blip  light source 
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24 Special Relativity: What Time is it?  

24.1 Special Relativity in a Nutshell  

Einstein’s Theory of Special Relativity, discussed in the last lecture, may be summarized as 
follows:  

The Laws of Physics are the same in any Inertial Frame of Reference.  (Such frames 
move at steady velocities with respect to each other.)   

These Laws include in particular Maxwell’s Equations describing electric and magnetic 
fields, which predict that light always travels at a particular speed c, equal to about 3×108 

meters per second, that is,186,300 miles per second.   

It follows that any measurement of the speed of any flash of light by any observer 
in any inertial frame will give the same answer c.  

We have already noted one counter-intuitive consequence of this, that two different observers 
moving relative to each other, each measuring the speed of the same blob of light relative to 
himself, will both get c, even if their relative motion is in the same direction as the motion of the 
blob of light. 

We shall now explore how this simple assumption changes everything we thought we 
understood about time and space. 

24.2 A Simple but Reliable Clock  

We mentioned earlier that each of our (inertial) frames of reference is calibrated (had marks at 
regular intervals along the walls) to measure distances, and has a clock to measure time.  Let us 
now get more specific about the clock—we want one that is easy to understand in any frame of 
reference.  Instead of a pendulum swinging back and forth, which wouldn’t work away from the 
earth’s surface anyway, we have a blip of light bouncing back and forth between two mirrors 
facing each other.  We call this device a light clock.  To really use it as a timing device we need 
some way to count the bounces, so we position a photocell at the upper mirror, so that it 
catches the edge of the blip of light.  The photocell clicks when the light hits it, and this regular 
series of clicks drives the clock hand around, just as for an ordinary clock.  Of course, driving the 
photocell will eventually use up the blip of light, so we also need some provision to reinforce the 
blip occasionally, such as a strobe light set to flash just as it passes and thus add to the intensity 
of the light.  Admittedly, this may not be an easy way to build a clock, but the basic idea is 
simple.  
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It’s easy to figure out how frequently our light clock clicks.  If the two mirrors are a distance w 
apart, the round trip distance for the blip from the photocell mirror to the other mirror and back 
is 2w.  Since we know the blip always travels at c, we find the round trip time to be 2w/c, so this 
is the time between clicks.  This isn’t a very long time for a reasonable sized clock!  The crystal in 
a quartz watch “clicks “ of the order of 10,000 times a second.  That would correspond to 
mirrors about nine miles apart, so we need our clock to click about 1,000 times faster than that 
to get to a reasonable size.  Anyway, let us assume that such purely technical problems have 
been solved.  

24.3 Looking at Somebody Else’s Clock  

Let us now consider two observers, Jack and Jill, each equipped with a calibrated inertial frame 
of reference, and a light clock. To be specific, imagine Jack standing on the ground with his light 
clock next to a straight railroad line, while Jill and her clock are on a large flatbed railroad wagon 
which is moving down the track at a constant speed v. Jack now decides to check Jill’s light clock 

mirrors 

Photocell 
clicks when 
light hits 
top mirror 

Blip of light 
bouncing 
between 
mirrors 

Einstein’s Light Clock:  a blip of light bounces between two 
parallel mirrors w meters apart; each time it hits the top 
mirror, the photocell moves the clock on one click. 

 

       

w 
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against his own. He knows the time for his clock is 2w/c between clicks. Imagine it to be a 
slightly misty day, so with binoculars he can actually see the blip of light bouncing between the 
mirrors of Jill’s clock. How long does he think that blip takes to make a round trip? The one thing 
he’s sure of is that it must be moving at c = 186,300 miles per second, relative to him—that’s 
what Einstein tells him. So to find the round trip time, all he needs is the round trip distance. 
This will not be 2w, because the mirrors are on the flatbed wagon moving down the track, so, 
relative to Jack on the ground, when the blip gets back to the top mirror, that mirror has moved 
down the track some since the blip left, so the blip actually follows a zigzag path as seen from 
the ground.  

 

Suppose now the blip in Jill’s clock on the moving flatbed wagon takes time t to get from the 
bottom mirror to the top mirror as measured by Jack standing by the track. Then the length of 
the “zig” from the bottom mirror to the top mirror is necessarily ct, since that is the distance 
covered by any blip of light in time t.  Meanwhile, the wagon has moved down the track a 
distance vt, where v is the speed of the wagon. This should begin to look familiar—it is precisely 
the same as the problem of the swimmer who swims at speed c relative to the water crossing a 
river flowing at v!  We have again a right-angled triangle with hypotenuse ct, and shorter sides 
vt and w.  

Clock at rest   

w 

Clock moving at v   

ct   

vt   

Two identical light clocks: one at rest, one moving relative to us.  The light 
blips in both travel at the same speed relative to us, the one in the moving 
clock goes further, so must take longer between clicks.  
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From Pythagoras, then,  

c²t² = v²t² + w² 

so  

t²(c² - v²) = w² 

or  

t²(1 - v²/c²) = w²/c²  

and, taking the square root of each side, then doubling to get the round trip time, we conclude 
that Jack sees the time between clicks for Jill’s clock to be:  

2 2

2 1time between clicks for moving clock .
1 /

w
c v c

 
�

 

Of course, this gives the right answer 2w/c for a clock at rest, that is, v = 0.   

This means that Jack sees Jill’s light clock to be going slow—a longer time between clicks—
compared to his own identical clock.  Obviously, the effect is not dramatic at real railroad 

speeds.  The correction factor is 2 21 /v c� , which differs from 1 by about one part in a trillion 

even for a bullet train!  Nevertheless, the effect is real and can be measured, as we shall discuss 
later.  

It is important to realize that the only reason we chose a light clock, as opposed to some other 
kind of clock, is that its motion is very easy to analyze from a different frame.  Jill could have a 
collection of clocks on the wagon, and would synchronize them all.  For example, she could hang 
her wristwatch right next to the face of the light clock, and observe them together to be sure 
they always showed the same time.  Remember, in her frame her light clock clicks every 2w/c 
seconds, as it is designed to do.  Observing this scene from his position beside the track, Jack will 
see the synchronized light clock and wristwatch next to each other, and, of course, note that the 

wristwatch is also running slow by the factor 2 21 / .v c�   In fact, all her clocks, including her 

pulse, are slowed down by this factor according to Jack.  Jill is aging more slowly because she’s 
moving!  

But this isn’t the whole story—we must now turn everything around and look at it from Jill’s 
point of view.  Her inertial frame of reference is just as good as Jack’s.  She sees his light clock to 
be moving at speed v (backwards) so from her point of view his light blip takes the longer zigzag 
path, which means his clock runs slower than hers.  That is to say, each of them will see the 
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other to have slower clocks, and be aging more slowly.  This phenomenon is called time dilation.  
It has been verified in recent years by flying very accurate clocks around the world on jetliners 
and finding they register less time, by the predicted amount, than identical clocks left on the 
ground.  Time dilation is also very easy to observe in elementary particle physics, as we shall 
discuss in the next section.  

24.4 Fitzgerald Contraction  

Consider now the following puzzle: suppose Jill’s clock is equipped with a device that stamps a 
notch on the track once a second.  How far apart are the notches?  From Jill’s point of view, this 
is pretty easy to answer.  She sees the track passing under the wagon at v meters per second, so 
the notches will of course be v meters apart.  But Jack sees things differently. He sees Jill’s clocks 
to be running slow, so he will see the notches to be stamped on the track at intervals of  

2 21/ 1 /v c�  seconds (so for a relativistic train going at v = 0.8c, the notches are stamped at 

intervals of 5/3 = 1.67 seconds). Since Jack agrees with Jill that the relative speed of the wagon 

and the track is v, he will assert the notches are not v meters apart, but 2 2/ 1 /v v c�  meters 

apart, a greater distance.  Who is right?  It turns out that Jack is right, because the notches are in 
his frame of reference, so he can wander over to them with a tape measure or whatever, and 
check the distance.  This implies that as a result of her motion, Jill observes the notches to be 

closer together by a factor 2 21 /v c�  than they would be at rest.  This is called the Fitzgerald 

contraction, and applies not just to the notches, but also to the track and to Jack—everything 
looks somewhat squashed in the direction of motion!  

24.5 Experimental Evidence for Time Dilation: Dying Muons  

The first clear example of time dilation was provided over fifty years ago by an experiment 
detecting muons.  (David H. Frisch and James A. Smith, Measurement of the Relativistic Time 
Dilation Using Muons, American Journal of Physics, 31, 342, 1963).  These particles are produced 
at the outer edge of our atmosphere by incoming cosmic rays hitting the first traces of air.  They 
are unstable particles, with a “half-life” of 1.5 microseconds (1.5 millionths of a second), which 
means that if at a given time you have 100 of them, 1.5 microseconds later you will have about 
50, 1.5 microseconds after that 25, and so on.  Anyway, they are constantly being produced 
many miles up, and there is a constant rain of them towards the surface of the earth, moving at 
very close to the speed of light.  In 1941, a detector placed near the top of Mount Washington 
(at 6000 feet above sea level) measured about 570 muons per hour coming in.  Now these 
muons are raining down from above, but dying as they fall, so if we move the detector to a 
lower altitude we expect it to detect fewer muons because a fraction of those that came down 
past the 6000 foot level will die before they get to a lower altitude detector.  Approximating 
their speed by that of light, they are raining down at 186,300 miles per second, which turns out 
to be, conveniently, about 1,000 feet per microsecond.  Thus they should reach the 4500 foot 
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level 1.5 microseconds after passing the 6000 foot level, so, if half of them die off in 1.5 
microseconds, as claimed above, we should only expect to register about 570/2 = 285 per hour 
with the same detector at this level.  Dropping another 1500 feet, to the 3000 foot level, we 
expect about 280/2 = 140 per hour, at 1500 feet about 70 per hour, and at ground level about 
35 per hour.  (We have rounded off some figures a bit, but this is reasonably close to the 
expected value.)  

To summarize: given the known rate at which these raining-down unstable muons decay, and 
given that 570 per hour hit a detector near the top of Mount Washington, we only expect about 
35 per hour to survive down to sea level.  In fact, when the detector was brought down to sea 
level, it detected about 400 per hour!  How did they survive?  The reason they didn’t decay is 
that in their frame of reference, much less time had passed.  Their actual speed is about 0.994c, 
corresponding to a time dilation factor of about 9, so in the 6 microsecond trip from the top of 
Mount Washington to sea level, their clocks register only 6/9 = 0.67 microseconds.  In this 
period of time, only about one-quarter of them decay.  

What does this look like from the muon’s point of view?  How do they manage to get so far in so 
little time?  To them, Mount Washington and the earth’s surface are approaching at 0.994c, or 
about 1,000 feet per microsecond.  But in the 0.67 microseconds it takes them to get to sea 
level, it would seem that to them sea level could only get 670 feet closer, so how could they 
travel the whole 6000 feet from the top of Mount Washington?  The answer is the Fitzgerald 
contraction.  To them, Mount Washington is squashed in a vertical direction (the direction of 

motion) by a factor of  2 21 / ,v c�  the same as the time dilation factor, which for the muons is 

about 9.  So, to the muons, Mount Washington is only 670 feet high—this is why they can get 
down it so fast!  

25  Special Relativity:  Synchronizing Clocks 

Suppose we want to synchronize two clocks that are some distance apart.  

We could stand beside one of them and look at the other through a telescope, but we’d have to 
remember in that case that we are seeing the clock as it was when the light left it, and correct 
accordingly. 

Another way to be sure the clocks are synchronized, assuming they are both accurate, is to start 
them together. How can we do that? We could, for example, attach a photocell to each clock, so 
when a flash of light reaches the clock, it begins running.  
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If, then, we place a flashbulb at the midpoint of the line joining the two clocks, and flash it, the 
light flash will take the same time to reach the two clocks, so they will start at the same time, 
and therefore be synchronized.  

Let us now put this whole arrangement—the two clocks and the midpoint flashbulb—on a train, 
and we suppose the train is moving at some speed v to the right, say half the speed of light or 
so.  

Let’s look carefully at the clock-synchronizing operation as seen from the ground. In fact, an 
observer on the ground would say the clocks are not synchronized by this operation! The basic 
reason is that he would see the flash of light from the middle of the train traveling at c relative 
to the ground in each direction, but he would also observe the back of the train coming at v to 
meet the flash, whereas the front is moving at v away from the bulb, so the light flash must go 
further to catch up.  

In fact, it is not difficult to figure out how much later the flash reaches the front of the train 
compared with the back of the train, as viewed from the ground. First recall that as viewed from 

the ground the train has length 
2 21 / .L v c�   

 

vtB ctB 

Flash going to back of train 

The train is moving to the right: the central bulb emits a flash 
of light.  Seen from the ground, the part of the flash moving 
towards the rear travels at c, the rear travels at v to meet it. 

The clocks are triggered when the flash of light from the central bulb 
reaches the attached photocells. 
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Letting tB be the time it takes the flash to reach the back of the train, it is clear from the figure 
that  

2

21
2B B
L vvt ct

c
�  �

 

from which tB is given by  

2

2

1 1 .
2B
L vt

c v c
 �

�  

In a similar way, the time for the flash of light to reach the front of the train is (as measured by a 
ground observer)  

2

2

1 1 .
2F
L vt

c v c
 �

�  

Therefore the time difference between the starting of the two clocks, as seen from the ground, 
is 
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Remember, this is the time difference between the starting of the train’s back clock and its front 
clock as measured by an observer on the ground with clocks on the ground.  However, to this 

observer the clocks on the train appear to tick more slowly, by the factor � �21 /v c�
, so that 

although the ground observer measures the time interval between the starting of the clock at 

the back of the train and the clock at the front as 
� � � �� �22/ 1/ 1 /vL c v c�

seconds, he also 

sees the slow running clock at the back actually reading 
2/vL c  seconds at the instant he sees 

the front clock to start.  
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To summarize: as seen from the ground, the two clocks on the train (which is moving at v in the 

x-direction) are running slowly, registering only � �21 /v c�
 seconds for each second that 

passes.  Equally important, the clocks—which are synchronized by an observer on the train—
appear unsynchronized when viewed from the ground, the one at the back of the train reading 

2/vL c  seconds ahead of the clock at the front of the train, where L is the rest length of the 
train (the length as measured by an observer on the train). 

Note that if L = 0, that is, if the clocks are together, both the observers on the train and those on 
the ground will agree that they are synchronized.  We need a distance between the clocks, as 
well as relative motion, to get a disagreement about synchronization. 

26 Time Dilation: A Worked Example  

26.1  “Moving Clocks Run Slow” plus “Moving Clocks Lose 
Synchronization” plus “Length Contraction” leads to consistency!  

The object of this exercise is to show explicitly how it is possible for two observers in inertial 
frames moving relative to each other at a relativistic speed to each see the other’s clocks as 
running slow and as being unsynchronized, and yet if they both look at the same clock at the 
same time from the same place (which may be far from the clock), they will agree on what time 
it shows! 

Suppose that in Jack’s frame we have two synchronized clocks C1 and C2 set 18 x 108 meters 
apart (that’s about a million miles, or 6 light-seconds).  Jill’s spaceship, carrying a clock C',  is 
traveling at 0.6c, that is 1.8 x 108 meters per second, parallel to the line C1C2, passing close by 
each clock. 
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Suppose C'  is synchronized with C1 as they pass, so both read zero. 

As measured by Jack the spaceship will take just 10 seconds to reach C2, since the distance is 6 
light seconds, and the ship is traveling at 0.6c. 

What does clock C' (the clock on the ship) read as it passes C2?  

The time dilation factor 

� �2 21 / 4 / 5v c�  
 

 so C', Jill’s clock, will read 8 seconds. 

Clock  C' 

18×108 meters 

Jill in her relativistic rocket passes Jack’s first clock at an instant when both their clocks read zero. 

1.8×108 meters per sec. 

Jack 

Jill 

Clock  C1 Clock  C2 
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Thus if both Jack and Jill are at C2 as Jill and her clock C'  pass C2 , both will agree that the clocks 
look like: 

 

How, then, can Jill  claim that Jack’s clocks C1, C2 are the ones that are running slow? 

To Jill, C1, C2 are running slow, but remember they are not synchronized. To Jill, C1 is behind C2 by 

� � � �2/ / / 6 0.6 3.6 seconds.Lv c L c v c u  u   

Therefore, Jill will conclude that since C2 reads 10 seconds as she passes it, at that instant C1 
must be registering 6.4 seconds.  Jill’s own clock reads 8 seconds at that instant, so she 
concludes that C1 is running slow by the appropriate time dilation factor of 4/5.  This is how the 
change in synchronization makes it possible for both Jack and Jill to see the other’s clocks as 
running slow.  

Of course, Jill’s assertion that as she passes Jack’s second “ground” clock C2 the first “ground” 
clock C1 must be registering 6.4 seconds is not completely trivial to check!  After all, that clock is 
now a million miles away! 

Let us imagine, though, that both observers are equipped with Hubble-style telescopes attached 
to fast acting cameras, so reading a clock a million miles away is no trick.  

To settle the argument, the two of them agree that as she passes the second clock, Jack will be 
stationed at the second clock, and at the instant of her passing they will both take telephoto 
digital snapshots of the faraway clock C1, to see what time it reads.  

Jack, of course, knows that C1 is 6 light seconds away, and is synchronized with C2 which at that 
instant is reading 10 seconds, so his snapshot must show C1 to read 4 seconds.  That is, looking 
at C1 he sees it as it was six seconds ago. 

18×108 meters 

As Jill passes Jack’s second clock, both see that his clock reads 10 seconds, hers reads 8 seconds. 

Jack 

Clock  C' reads 8 seconds Jill 

Clock  C1 
Clock  C2 : reads 10 seconds 
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What does Jill’s digital snapshot show?  It must be identical—two snapshots taken from the 
same place at the same time must show the same thing!  So, Jill must also gets a picture of C1 
reading 4 seconds.  

How can she reconcile a picture of the clock reading 4 seconds with her assertion that at the 

instant she took the photograph the clock was registering 6.4 seconds?  

The answer is that she can if she knows her relativity!  

First point: length contraction. To Jill, the clock C1 is actually only 4/5 x 18 x 108 meters away (she 
sees the distance C1C2 to be Lorentz contracted!).  

Second point: The light didn’t even have to go that far!  In her frame, the clock C1 is moving 
away, so the light arriving when she’s at C2 must have left C1 when it was closer—at distance x in 
the figure below. The figure shows the light in her frame moving from the clock towards her at 
speed c, while at the same time the clock itself is moving to the left at 0.6c.  

It might be helpful to imagine yourself in her frame of reference, so you are at rest, and to think 
of clocks C1 and C2 as being at the front end and back end respectively of a train that is going 
past you at speed 0.6c.  Then, at the moment the back of the train passes you, you take a 
picture (through your telescope, of course) of the clock at the front of the train.  Obviously, the 
light from the front clock that enters your camera at that instant left the front clock some time 
ago.  During the time that light traveled towards you at speed c, the front of the train itself was 
going in the opposite direction at speed 0.6c. But you know the length of the train in your frame 
is 4/5 x 18 x 108 meters, so since at the instant you take the picture the back of the train is 
passing you, the front of the train must be 4/5 x 18 x 108 meters away. Now that distance, 4/5 x 
18 x 108, is the sum of the distance the light entering your camera traveled plus the distance the 
train traveled in the same time, that is, (1 + 0.6)/1 times the distance the light traveled.  
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So the image of the first ground clock she sees and records as she passes the second ground 
clock must have been emitted when the first clock was a distance x from her in her frame, 
where 

� � 8 81 3 / 5 4 / 5 18 10  meters, so 9 10  meters.x x�  u u  u  

Having established that the clock image she is seeing as she takes the photograph left the clock 
when it was only 9 x 108 meters away, that is, 3 light seconds, she concludes that she is 

observing the first ground clock as it was three seconds ago.  

Third point: time dilation. The story so far: she has a photograph of the first ground clock that 
shows it to be reading 4 seconds. She knows that the light took three seconds to reach her.  So, 
what can she conclude the clock must actually be registering at the instant the photo was 
taken?  If you are tempted to say 7 seconds, you have forgotten that in her frame, the clock is 
moving at 0.6c and hence runs slow by a factor 4/5.  

Including the time dilation factor correctly, she concludes that in the 3 seconds that the light 
from the clock took to reach her, the clock itself will have ticked away 3 × 4/5 seconds, or 2.4 
seconds.  

Therefore, since the photograph shows the clock to read 4 seconds, and she finds the clock must 
have run a further 2.4 seconds, she deduces that at the instant she took the photograph the 
clock must actually have been registering 6.4 seconds, which is what she had claimed all along! 

x 

Velocity of clock C1 =0.6c Light from C1 travels towards Jill at c 

4/5×18×108 meters 

As Jill passes C2, she photographs C1: at that instant, she knows C1 is 
4/5×18×108 meters away in her frame, but the light reaching her camera at 
that moment left C1 when it was at a distance x, not so far away.  As the light 
traveled towards her at speed c, C1 was receding at a speed of 0.6c, so the 
distance 4/5×18×108 meters is the sum of how far the light traveled towards 
her and how far the clock traveled away from her, both starting at x.   
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The key point of this lecture is that at first it seems impossible for two observers moving relative 
to each other to both maintain that the other one’s clocks run slow.  However, by bringing in the 
other necessary consequences of the theory of relativity, the Lorentz contraction of lengths, and 
that clocks synchronized in one frame are out of synchronization in another by a precise amount 
that follows necessarily from the constancy of the speed of light, the whole picture becomes 
completely consistent! 

27 More Relativity: The Train and The Twins   

27.1 Einstein’s Definition of Common Sense  

As you can see from the lectures so far, although Einstein’s Theory of Special Relativity solves 
the problem posed by the Michelson-Morley experiment—the nonexistence of an ether—it is at 
a price.  The simple assertion that the speed of a flash of light is always c in any inertial frame 
leads to consequences that defy common sense.  When this was pointed out somewhat 
forcefully to Einstein, his response was that common sense is the layer of prejudices put down 
before the age of eighteen.  All our intuition about space, time and motion is based on 
childhood observation of a world in which no objects move at speeds comparable to that of 
light.  Perhaps if we had been raised in a civilization zipping around the universe in spaceships 
moving at relativistic speeds, Einstein’s assertions about space and time would just seem to be 
common sense.  The real question, from a scientific point of view, is not whether Special 
Relativity defies common sense, but whether it can be shown to lead to a contradiction.  If that 
is so, common sense wins.  Ever since the theory was published, people have been writing 
papers claiming it does lead to contradictions.  The previous lecture, the worked example on 
time dilation, shows how careful analysis of an apparent contradiction leads to the conclusion 
that in fact there was no contradiction after all.  In this lecture, we shall consider other apparent 
contradictions and think about how to resolve them.  This is the best way to build up an 
understanding of Relativity.   

27.2 Trapping a Train in a Tunnel  

One of the first paradoxes to be aired was based on the Fitzgerald contraction.  Recall that any 
object moving relative to an observer will be seen by that observer to be contracted, 

foreshortened in the direction of motion by the ubiquitous factor � �2 21 /v c� .  Einstein lived 

in Switzerland, a very mountainous country where the railroads between towns often go 
through tunnels deep in the mountains.   

Suppose a train of length L is moving along a straight track at a relativistic speed and enters a 
tunnel, also of length L.  There are bandits inhabiting the mountain above the tunnel.  They 

observe a short train, one of length � �2 21 /L v c� , so they wait until this short train is 
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completely inside the tunnel of length L, then they close doors at the two ends, and the train is 
trapped fully inside the mountain.  Now look at this same scenario from the point of view of 
someone on the train.  He sees a train of length L, approaching a tunnel of length 

� �2 21 /L v c� , so the tunnel is not as long as the train from his viewpoint! What does he 

think happens when the bandits close both the doors?  

27.3 The Tunnel Doors are Closed Simultaneously  

The key to understanding what is happening here is that we said the bandits closed the two 
doors at the ends of the tunnel at the same time.  How could they arrange to do that, since the 
doors are far apart?  They could use walkie-talkies, which transmit radio waves, or just flash a 
light down the tunnel, since it’s long and straight.  Remember, though, that the train is itself 
going at a speed close to that of light, so they have to be quite precise about this timing!  The 
simplest way to imagine them synchronizing the closings of the two doors is to assume they 
know the train’s timetable, and at a prearranged appropriate time, a light is flashed halfway 
down the tunnel, and the end doors are closed when the flash of light reaches the ends of the 
tunnel.  Assuming the light was positioned correctly in the middle of the tunnel, that should 
ensure that the two doors close simultaneously.   

27.4 Or are They?  

Now consider this door-closing operation from the point of view of someone on the train.  
Assume he’s in an observation car and has incredible eyesight, and there’s a little mist, so he 
actually sees the light flash, and the two flashes traveling down the tunnels towards the two end 
doors.  Of course, the train is a perfectly good inertial frame, so he sees these two flashes to be 
traveling in opposite directions, but both at c, relative to the train.  Meanwhile, he sees the 
tunnel itself to be moving rapidly relative to the train.  Let us say the train enters the mountain 
through the “front” door.  The observer will see the door at the other end of the tunnel, the 
“back” door, to be rushing towards him, and rushing to meet the flash of light.  Meanwhile, once 
he’s in the tunnel, the front door is receding rapidly behind him, so the flash of light making its 
way to that door has to travel further to catch it.  So the two flashes of light going down the 
tunnel in opposite directions do not reach the two doors simultaneously as seen from the train.   

The concept of simultaneity, events happening at the same time, is not invariant as we move 
from one inertial frame to another.  The man on the train sees the back door close first, and, if it 
is not quickly reopened, the front of the train will pile into it before the front door is closed 
behind the train.   
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27.5 Does the Fitzgerald Contraction Work Sideways?  

The above discussion is based on Einstein’s prediction that objects moving at relativistic speed 
appear shrunken in their direction of motion.  How do we know that they’re not shrunken in all 
three directions, i.e.  moving objects maybe keep the same shape, but just get smaller? This can 
be seen not to be the case through a symmetry argument, also due to Einstein.  Suppose two 
trains traveling at equal and opposite relativistic speeds, one north, one south, pass on parallel 
tracks.  Suppose two passengers of equal height, one on each train, are standing leaning slightly 
out of open windows so that their noses should very lightly touch as they pass each other.  Now, 
if N (the northbound passenger) sees S as shrunken in height, N’s nose will brush against S’s 
forehead, say, and N will feel S’s nose brush his chin.  Afterwards, then, N will have a bruised 
chin (plus nose), S a bruised forehead (plus nose).  But this is a perfectly symmetric problem, so 
S would say N had the bruised forehead, etc.  They can both get off their trains at the next 
stations and get together to check out bruises.  They must certainly be symmetrical!  The only 
consistent symmetrical solution is given by asserting that neither sees the other to shrink in 
height (i.e. in the direction perpendicular to their relative motion), so that their noses touch 
each other.  Therefore, the Lorentz contraction only operates in the direction of motion, objects 
get squashed but not shrunken.   

27.6 How to Give Twins Very Different Birthdays  

Perhaps the most famous of the paradoxes of special relativity, which was still being hotly 
debated in national journals in the fifties, is the twin paradox.  The scenario is as follows.  One of 
two twins—the sister—is an astronaut.  (Flouting tradition, we will take fraternal rather than 
identical twins, so that we can use “he” and “she” to make clear which twin we mean).  She sets 
off in a relativistic spaceship to alpha-centauri, four light-years away, at a speed of, say, 0.6c.  
When she gets there, she immediately turns around and comes back.  As seen by her brother on 

earth, her clocks ran slowly by the time dilation factor � �2 21 /v c� , so although the round 

trip took 8/0.6 years = 160 months by earth time, she has only aged by 4/5 of that, or 128 
months.  So as she steps down out of the spaceship, she is 32 months younger than her twin 
brother.   

But wait a minute—how does this look from her point of view?  She sees the earth to be moving 
at 0.6c, first away from her then towards her.  So she must see her brother’s clock on earth to 
be running slow!  So doesn’t she expect her brother on earth to be the younger one after this 
trip?  

The key to this paradox is that this situation is not as symmetrical as it looks.  The two twins 
have quite different experiences.  The one on the spaceship is not in an inertial frame during the 
initial acceleration and the turnaround and braking periods. (To get an idea of the speeds 
involved, to get to 0.6c at the acceleration of a falling stone would take over six months.)  Our 
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analysis of how a clock in one inertial frame looks as viewed from another doesn’t work during 
times when one of the frames isn’t inertial—in other words, when one is accelerating.   

27.7 The Twins Stay in Touch  

To try to see just how the difference in ages might develop, let us imagine that the twins stay in 
touch with each other throughout the trip.  Each twin flashes a powerful light once a month, 
according to their calendars and clocks, so that by counting the flashes, each one can monitor 
how fast the other one is aging.   

The questions we must resolve are:  

If the brother, on earth, flashes a light once a month, how frequently, as measured by her clock, 
does the sister see his light to be flashing as she moves away from earth at speed 0.6c?  

How frequently does she see the flashes as she is returning at 0.6c?  

How frequently does the brother on earth see the flashes from the spaceship?  

Once we have answered these questions, it will be a matter of simple bookkeeping to find how 
much each twin has aged.   

27.8 Figuring the Observed Time between Flashes  

To figure out how frequently each twin observes the other’s flashes to be, we will use some 
results from the previous lecture, on time dilation.  In some ways, that was a very small scale 
version of the present problem.  Recall that we had two “ground” clocks only one million miles 
apart.  As the astronaut, conveniently moving at 0.6c, passed the first ground clock, both that 
clock and her own clock read zero.  As she passed the second ground clock, her own clock read 8 
seconds and the first ground clock, which she photographed at that instant, she observed to 
read 4 seconds.   

That is to say, after 8 seconds had elapsed on her own clock, constant observation of the first 
ground clock would have revealed it to have registered only 4 seconds. (This effect is 
compounded of time dilation and the fact that as she moves away, the light from the clock is 
taking longer and longer to reach her.)  

Our twin problem is the same thing, at the same speed, but over a longer time - we conclude 
that observation of any earth clock from the receding spacecraft will reveal it to be running at 
half speed, so the brother’s flashes will be seen at the spacecraft to arrive every two months, by 
spacecraft time.   

file://localhost/Users/derekteaney/Library/Containers/com.apple.Preview/Data/Downloads/time_dil.html
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Symmetrically, as long as the brother on earth observes his sister’s spacecraft to be moving 
away at 0.6c, he will see light from her flashes to be arriving at the earth every two months by 
earth time.   

To figure the frequency of her brother’s flashes observed as she returns towards earth, we have 
to go back to our previous example and find how the astronaut traveling at 0.6c observes time 
to be registered by the second ground clock, the one she’s approaching.   

We know that as she passes that clock, it reads 10 seconds and her own clock reads 8 seconds.  
We must figure out what she would have seen that second ground clock to read had she glanced 
at it through a telescope as she passed the first ground clock, at which point both her own clock 
and the first ground clock read zero.  But at that instant, the reading she would see on the 
second ground clock must be the same as would be seen by an observer on the ground, standing 
by the first ground clock and observing the second ground clock through a telescope.  Since the 
ground observer knows both ground clocks are synchronized, and the first ground clock reads 
zero, and the second is 6 light seconds distant, it must read -6 seconds if observed at that 
instant.   

Hence the astronaut will observe the second ground clock to progress from -6 seconds to +10 
seconds during the period that her own clock goes from 0 to 8 seconds.  In other words, she 
sees the clock she is approaching at 0.6c to be running at double speed.   

Finally, back to the twins.  During her journey back to earth, the sister will see the brother’s light 
flashing twice a month.  (Evidently, the time dilation effect does not fully compensate for the 
fact that each succeeding flash has less far to go to reach her.)  

We are now ready to do the bookkeeping, first, from the sister’s point of view.   

27.9 What does she see?  

At 0.6c, she sees the distance to alpha-centauri to be contracted by the familiar 

� �2 21 / 0.8v c�   to a distance of 3.2 light years, which at 0.6c will take her a time 5.333 

years, or, more conveniently, 64 months.  During the outward trip, then, she will see 32 flashes 
from home, she will see her brother to age by 32 months.   

Her return trip will also take 64 months, during which time she will see 128 flashes, so over the 
whole trip she will see 128 + 32 = 160 flashes, so she will have seen her brother to age by 160 
months or 13 years 4 months.   
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27.10 What does he see?  

As he watches for flashes through his telescope, the stay-at-home brother will see his sister to 
be aging at half his own rate of aging as long as he sees her to be moving away from him, then 
aging at twice his rate as he sees her coming back.  At first glance, this sounds the same as what 
she sees—but it isn’t!  The important question to ask is when does he see her turn around?  To 
him, her outward journey of 4 light years’ distance at a speed of 0.6c takes her 4/0.6 years, or 80 
months.  BUT he doesn’t see her turn around until 4 years later, because of the time light takes 
to get back to earth from alpha-centauri! In other words, he will actually see her aging at half his 
rate for 80 + 48 = 128 months, during which time he will see 64 flashes.   

When he sees his sister turn around, she is already more than half way back! Remember, in his 
frame the whole trip takes 160 months (8 light years at 0.6c) so he will only see her aging at 
twice his rate during the last 160 - 128 = 32 months, during which period he will see all 64 
flashes she sent out on her return trip.   

Therefore, by counting the flashes of light she transmitted once a month, he will conclude she 
has aged 128 months on the trip, which by his clock and calendar took 160 months.  So when 
she steps off the spacecraft 32 months younger than her twin brother, neither of them will be 
surprised!  

27.11 The Doppler Effect 

The above analysis hinges on the fact that a traveler approaching a flashing light at 0.6c will see 
it flashing at double its “natural” rate—the rate observed by someone standing still with the 
light—and a traveler receding at 0.6c from a flashing light will see it to flash at only half its 
natural rate.   

This is a particular example of the Doppler Effect, first discussed in 1842 by the German physicist 
Christian Doppler.  There is a Doppler Effect for sound waves too.  Sound is generated by a 
vibrating object sending a succession of pressure pulses through the air.  These pressure waves 
are analogous to the flashes of light.  If you are approaching a sound source you will encounter 
the pressure waves more frequently than if you stand still.  This means you will hear a higher 
frequency sound.  If the distance between you and the source of sound is increasing, you will 
hear a lower frequency.  This is why the note of a jet plane or a siren goes lower as it passes you.  
The details of the Doppler Effect for sound are a little different than those for light, because the 
speed of sound is not the same for all observers—it’s 330 meters per second relative to the air.   

An important astronomical application of the Doppler Effect is the red shift.  The light from very 
distant galaxies is redder than the light from similar galaxies nearer to us.  This is because the 
further away a galaxy is, the faster it is moving away from us, as the Universe expands.  The light 
is redder because red light is low frequency light (blue is high) and we see low frequency light 
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for the same reason that the astronaut receding from earth sees flashes less frequently.  In fact, 
the farthest away galaxies we can see are receding faster than the 0.6c of our astronaut! 

In the next lecture, we shall brush up on the pre-relativistic concepts of momentum, work and 
energy to be ready for their relativistic generalizations.   

28 Momentum, Work and Energy  

28.1 Momentum  

At this point, we introduce some further concepts that will prove useful in describing motion.  
The first of these, momentum, was actually introduced by the French scientist and philosopher 
Descartes before Newton.  Descartes’ idea is best understood by considering a simple example: 
think first about someone (weighing say 45 kg) standing motionless on high quality (frictionless) 
rollerskates on a level smooth floor.  A 5 kg medicine ball is thrown directly at her by someone 
standing in front of her, and only a short distance away, so that we can take the ball’s flight to 
be close to horizontal.  She catches and holds it, and because of its impact begins to roll 
backwards.  Notice we’ve chosen her weight so that, conveniently, she plus the ball weigh just 
ten times what the ball weighs by itself.  What is found on doing this experiment carefully is that 
after the catch, she plus the ball roll backwards at just one-tenth the speed the ball was moving 
just before she caught it, so if the ball was thrown at 5 meters per second, she will roll 
backwards at one-half meter per second after the catch.  It is tempting to conclude that the 
“total amount of motion” is the same before and after her catching the ball, since we end up 
with ten times the mass moving at one-tenth the speed.   

Considerations and experiments like this led Descartes to invent the concept of “momentum”, 
meaning “amount of motion”, and to state that for a moving body the momentum was just the 
product of the mass of the body and its speed.  Momentum is traditionally labeled by the letter 
p, so his definition was:  

momentum = p = mv  

for a body having mass m and moving at speed v.  It is then obvious that in the above scenario of 
the woman catching the medicine ball, total “momentum” is the same before and after the 
catch.  Initially, only the ball had momentum, an amount 5x5 = 25 in suitable units, since its 
mass is 5kg and its speed is 5 meters per second.  After the catch, there is a total mass of 50kg 
moving at a speed of 0.5 meters per second, so the final momentum is 0.5x50 = 25, the total 
final amount is equal to the total initial amount.  We have just invented these figures, of course, 
but they reflect what is observed experimentally.   

There is however a problem here—obviously one can imagine collisions in which the “total 
amount of motion”, as defined above, is definitely not the same before and after.  What about 
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two people on roller skates, of equal weight, coming directly towards each other at equal but 
opposite velocities—and when they meet they put their hands together and come to a complete 
halt?  Clearly in this situation there was plenty of motion before the collision and none 
afterwards, so the “total amount of motion” definitely doesn’t stay the same! In physics 
language, it is “not conserved”.  Descartes was hung up on this problem a long time, but was 
rescued by a Dutchman, Christian Huygens, who pointed out that the problem could be solved 
in a consistent fashion if one did not insist that the “quantity of motion” be positive.   

In other words, if something moving to the right was taken to have positive momentum, then 
one should consider something moving to the left to have negative momentum.  With this 
convention, two people of equal mass coming together from opposite directions at the same 
speed would have total momentum zero, so if they came to a complete halt after meeting, as 
described above, the total momentum before the collision would be the same as the total 
after—that is, zero—and momentum would be conserved.   

Of course, in the discussion above we are restricting ourselves to motions along a single line.  It 
should be apparent that to get a definition of momentum that is conserved in collisions what 
Huygens really did was to tell Descartes he should replace speed by velocity in his definition of 
momentum.  It is a natural extension of this notion to think of momentum as defined by  

momentum = mass x velocity  

in general, so, since velocity is a vector, momentum is also a vector, pointing in the same 
direction as the velocity, of course.   

It turns out experimentally that in any collision between two objects (where no interaction with 
third objects, such as surfaces, interferes), the total momentum before the collision is the same 
as the total momentum after the collision.  It doesn’t matter if the two objects stick together on 
colliding or bounce off, or what kind of forces they exert on each other, so conservation of 
momentum is a very general rule, quite independent of details of the collision.   

28.2 Momentum Conservation and Newton’s Laws  

As we have discussed above, Descartes introduced the concept of momentum, and the general 
principle of conservation of momentum in collisions, before Newton’s time.  However, it turns 
out that conservation of momentum can be deduced from Newton’s laws.  Newton’s laws in 
principle fully describe all collision-type phenomena, and therefore must contain momentum 
conservation.   

To understand how this comes about, consider first Newton’s Second Law relating the 
acceleration a of a body of mass m with an external force F acting on it:  
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F = ma, or force = mass x acceleration  

Recall that acceleration is rate of change of velocity, so we can rewrite the Second Law:  

force = mass x rate of change of velocity.   

Now, the momentum is mv, mass x velocity.  This means for an object having constant mass 
(which is almost always the case, of course!)  

rate of change of momentum = mass x rate of change of velocity.   

This means that Newton’s Second Law can be rewritten:  

force = rate of change of momentum.   

Now think of a collision, or any kind of interaction, between two objects A and B, say.  From 
Newton’s Third Law, the force A feels from B is of equal magnitude to the force B feels from A, 
but in the opposite direction.  Since (as we have just shown) force = rate of change of 
momentum, it follows that throughout the interaction process the rate of change of momentum 
of A is exactly opposite to the rate of change of momentum of B.  In other words, since these are 
vectors, they are of equal length but pointing in opposite directions.  This means that for every 
bit of momentum A gains, B gains the negative of that.  In other words, B loses momentum at 
exactly the rate A gains momentum so their total momentum remains the same.  But this is true 
throughout the interaction process, from beginning to end.  Therefore, the total momentum at 
the end must be what it was at the beginning.   

You may be thinking at this point: so what?  We already know that Newton’s laws are obeyed 
throughout, so why dwell on one special consequence of them?  The answer is that although we 
know Newton’s laws are obeyed, this may not be much use to us in an actual case of two 
complicated objects colliding, because we may not be able to figure out what the forces are.  
Nevertheless, we do know that momentum will be conserved anyway, so if, for example, the 
two objects stick together, and no bits fly off, we can find their final velocity just from 
momentum conservation, without knowing any details of the collision.   

28.3 Work  

The word “work” as used in physics has a narrower meaning than it does in everyday life.  First, 
it only refers to physical work, of course, and second, something has to be accomplished.  If you 
lift up a box of books from the floor and put it on a shelf, you’ve done work, as defined in 
physics, if the box is too heavy and you tug at it until you’re worn out but it doesn’t move, that 
doesn’t count as work.   
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Technically, work is done when a force pushes something and the object moves some distance 
in the direction it’s being pushed (pulled is ok, too).  Consider lifting the box of books to a high 
shelf.  If you lift the box at a steady speed, the force you are exerting is just balancing off gravity, 
the weight of the box, otherwise the box would be accelerating.  (Of course, initially you’d have 
to exert a little bit more force to get it going, and then at the end a little less, as the box comes 
to rest at the height of the shelf.)  It’s obvious that you will have to do twice as much work to 
raise a box of twice the weight, so the work done is proportional to the force you exert.  It’s also 
clear that the work done depends on how high the shelf is.  Putting these together, the 
definition of work is:  

work = force x distance  

where only distance traveled in the direction the force is pushing counts.  With this definition, 
carrying the box of books across the room from one shelf to another of equal height doesn’t 
count as work, because even though your arms have to exert a force upwards to keep the box 
from falling to the floor, you do not move the box in the direction of that force, that is, upwards.   

To get a more quantitative idea of how much work is being done, we need to have some units to 
measure work.  Defining work as force x distance, as usual we will measure distance in meters, 
but we haven’t so far talked about units for force.  The simplest way to think of a unit of force is 
in terms of Newton’s Second Law, force = mass x acceleration.  The natural “unit force” would 
be that force which, pushing a unit mass (one kilogram) with no friction of other forces present, 
accelerates the mass at one meter per second per second, so after two seconds the mass is 
moving at two meters per second, etc.  This unit of force is called one newton (as we discussed 
in an earlier lecture).  Note that a one kilogram mass, when dropped, accelerates downwards at 
ten meters per second per second.  This means that its weight, its gravitational attraction 
towards the earth, must be equal to ten newtons.  From this we can figure out that a one 
newton force equals the weight of 100 grams, just less than a quarter of a pound, a stick of 
butter.   

The downward acceleration of a freely falling object, ten meters per second per second, is often 
written g for short.  (To be precise, g = 9.8 meters per second per second, and in fact varies 
somewhat over the earth’s surface, but this adds complication without illumination, so we shall 
always take it to be 10.) If we have a mass of m kilograms, say, we know its weight will 
accelerate it at g if it’s dropped, so its weight is a force of magnitude mg, from Newton’s Second 
Law.   

Now back to work.  Since work is force x distance, the natural “unit of work” would be the work 
done be a force of one newton pushing a distance of one meter.  In other words (approximately) 
lifting a stick of butter three feet.  This unit of work is called one joule, in honor of an English 
brewer.   
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Finally, it is useful to have a unit for rate of working, also called “power”.  The natural unit of 
“rate of working” is manifestly one joule per second, and this is called one watt.  To get some 
feeling for rate of work, consider walking upstairs.  A typical step is eight inches, or one-fifth of a 
meter, so you will gain altitude at, say, two-fifths of a meter per second.  Your weight is, say (put 
in your own weight here!) 70 kg. (for me) multiplied by 10 to get it in newtons, so it’s 700 
newtons.  The rate of working then is 700 x 2/5, or 280 watts.  Most people can’t work at that 
rate for very long.  A common English unit of power is the horsepower, which is 746 watts.   

28.4 Energy  

Energy is the ability to do work.   

For example, it takes work to drive a nail into a piece of wood—a force has to push the nail a 
certain distance, against the resistance of the wood.  A moving hammer, hitting the nail, can 
drive it in.  A stationary hammer placed on the nail does nothing.  The moving hammer has 
energy—the ability to drive the nail in—because it’s moving.  This hammer energy is called 
“kinetic energy”.  Kinetic is just the Greek word for motion, it’s the root word for cinema, 
meaning movies.   

Another way to drive the nail in, if you have a good aim, might be to simply drop the hammer 
onto the nail from some suitable height.  By the time the hammer reaches the nail, it will have 
kinetic energy.  It has this energy, of course, because the force of gravity (its weight) accelerated 
it as it came down.  But this energy didn’t come from nowhere.  Work had to be done in the first 
place to lift the hammer to the height from which it was dropped onto the nail.  In fact, the work 
done in the initial lifting, force x distance, is just the weight of the hammer multiplied by the 
distance it is raised, in joules.  But this is exactly the same amount of work as gravity does on the 
hammer in speeding it up during its fall onto the nail.  Therefore, while the hammer is at the 
top, waiting to be dropped, it can be thought of as storing the work that was done in lifting it, 
which is ready to be released at any time.  This “stored work” is called potential energy, since it 
has the potential of being transformed into kinetic energy just by releasing the hammer.   

To give an example, suppose we have a hammer of mass 2 kg, and we lift it up through 5 
meters.  The hammer’s weight, the force of gravity, is 20 newtons (recall it would accelerate at 
10 meters per second per second under gravity, like anything else) so the work done in lifting it 
is force x distance = 20 x 5 = 100 joules, since lifting it at a steady speed requires a lifting force 
that just balances the weight.  This 100 joules is now stored ready for use, that is, it is potential 
energy.  Upon releasing the hammer, the potential energy becomes kinetic energy—the force of 
gravity pulls the hammer downwards through the same distance the hammer was originally 
raised upwards, so since it’s a force of the same size as the original lifting force, the work done 
on the hammer by gravity in giving it motion is the same as the work done previously in lifting it, 
so as it hits the nail it has a kinetic energy of 100 joules.  We say that the potential energy is 
transformed into kinetic energy, which is then spent driving in the nail.   
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We should emphasize that both energy and work are measured in the same units, joules.  In the 
example above, doing work by lifting just adds energy to a body, so-called potential energy, 
equal to the amount of work done.   

From the above discussion, a mass of m kilograms has a weight of mg newtons.  It follows that 
the work needed to raise it through a height h meters is force x distance, that is, weight x height, 
or mgh joules.  This is the potential energy.   

Historically, this was the way energy was stored to drive clocks.  Large weights were raised once 
a week and as they gradually fell, the released energy turned the wheels and, by a sequence of 
ingenious devices, kept the pendulum swinging.  The problem was that this necessitated rather 
large clocks to get a sufficient vertical drop to store enough energy, so spring-driven clocks 
became more popular when they were developed.  A compressed spring is just another way of 
storing energy.  It takes work to compress a spring, but (apart from small frictional effects) all 
that work is released as the spring uncoils or springs back.  The stored energy in the compressed 
spring is often called elastic potential energy, as opposed to the gravitational potential energy of 
the raised weight.   

28.5 Kinetic Energy  

We’ve given above an explicit way to find the potential energy increase of a mass m when it’s 
lifted through a height h, it’s just the work done by the force that raised it, force x distance = 
weight x height = mgh.   

Kinetic energy is created when a force does work accelerating a mass and increases its speed.  
Just as for potential energy, we can find the kinetic energy created by figuring out how much 
work the force does in speeding up the body.   

Remember that a force only does work if the body the force is acting on moves in the direction 
of the force.  For example, for a satellite going in a circular orbit around the earth, the force of 
gravity is constantly accelerating the body downwards, but it never gets any closer to sea level, 
it just swings around.  Thus the body does not actually move any distance in the direction 
gravity’s pulling it, and in this case gravity does no work on the body.   

Consider, in contrast, the work the force of gravity does on a stone that is simply dropped from 
a cliff.  Let’s be specific and suppose it’s a one kilogram stone, so the force of gravity is ten 
newtons downwards.  In one second, the stone will be moving at ten meters per second, and 
will have dropped five meters.  The work done at this point by gravity is force x distance = 10 
newtons x 5 meters = 50 joules, so this is the kinetic energy of a one kilogram mass going at 10 
meters per second.  How does the kinetic energy increase with speed? Think about the situation 
after 2 seconds.  The mass has now increased in speed to twenty meters per second.  It has 
fallen a total distance of twenty meters (average speed 10 meters per second x time elapsed of 
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2 seconds).  So the work done by the force of gravity in accelerating the mass over the first two 
seconds is force x distance = 10 newtons x 20 meters = 200 joules.   

So we find that the kinetic energy of a one kilogram mass moving at 10 meters per second is 50 
joules, moving at 20 meters per second it’s 200 joules.  It’s not difficult to check that after three 
seconds, when the mass is moving at 30 meters per second, the kinetic energy is 450 joules.  The 
essential point is that the speed increases linearly with time, but the work done by the constant 
gravitational force depends on how far the stone has dropped, and that goes as the square of 
the time.  Therefore, the kinetic energy of the falling stone depends on the square of the time, 
and that’s the same as depending on the square of the velocity.  For stones of different masses, 
the kinetic energy at the same speed will be proportional to the mass (since weight is 
proportional to mass, and the work done by gravity is proportional to the weight), so using the 
figures we worked out above for a one kilogram mass, we can conclude that for a mass of m 
kilograms moving at a speed v the kinetic energy must be:  

kinetic energy = ½mv²  

Exercises for the reader:  both momentum and kinetic energy are in some sense measures of the 
amount of motion of a body.  How do they differ?  

Can a body change in momentum without changing in kinetic energy?  

Can a body change in kinetic energy without changing in momentum?  

Suppose two lumps of clay of equal mass traveling in opposite directions at the same speed 
collide head-on and stick to each other.  Is momentum conserved? Is kinetic energy conserved?  

As a stone drops off a cliff, both its potential energy and its kinetic energy continuously change.  
How are these changes related to each other?  

29 Adding Velocities: A Walk on the Train  

29.1 The Formula 

If I walk from the back to the front of a train at 3 m.p.h., and the train is traveling at 60 m.p.h., 
then common sense tells me that my speed relative to the ground is 63 m.p.h. As we have seen, 
this obvious truth, the simple addition of velocities, follows from the Galilean transformations.  
Unfortunately, it can’t be quite right for high speeds!  We know that for a flash of light going 
from the back of the train to the front, the speed of the light relative to the ground is exactly the 
same as its speed relative to the train, not 60 m.p.h. different.  Hence it is necessary to do a 
careful analysis of a fairly speedy person moving from the back of the train to the front as 
viewed from the ground, to see how velocities really add.  
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We consider our standard train of length L moving down the track at steady speed v, and 
equipped with synchronized clocks at the back and the front.  The walker sets off from the 
back of the train when that clock reads zero.  Assuming a steady walking speed of u meters 
per second (relative to the train, of course), the walker will see the front clock to read L/u 
seconds on arrival there.  

How does this look from the ground?  Let’s assume that at the instant the walker began to walk 
from the clock at the back of the train, the back of the train was passing the ground observer’s 
clock, and both these clocks (one on the train and one on the ground) read zero.  The ground 
observer sees the walker reach the clock at the front of the train at the instant that clock reads 
L/u (this is in agreement with what is observed on the train—two simultaneous events at the 
same place are simultaneous to all observers), but at this same instant, the ground observer 
says the train’s back clock, where the walker began, reads L/u + Lv/c2.  (This follows from our 
previously established result that two clocks synchronized in one frame, in which they are L 
apart, will be out of synchronization in a frame in which they are moving at v along the line 
joining them by a time Lv/c2.)  

Now, how much time elapses as measured by the ground observer’s clock during the walk? At 
the instant the walk began, the ground observer saw the clock at the back of the train (which 
was right next to him) to read zero.  At the instant the walk ended, the ground observer would 
say that clock read L/u + Lv/c2, from the paragraph above.  But the ground observer would see 
that clock to be running slow, by the usual time dilation factor: so he would measure the time of 
the walk on his own clock to be:  

� �
2

2 2

/ / .
1 /

L u Lv c

v c

�

�
 

How far does the walker move as viewed from the ground?  In the time tW, the train travels a 
distance vtW, so the walker moves this distance plus the length of the train.  Remember that the 
train is contracted as viewed from the ground!  It follows that the distance covered relative to 
the ground during the walk is:  



 187 

� �

� �
� �

� �
� �

� �
� �

2 2

2
2 2

2 2

2 2 2 2

2 2

2 2

1 /

/ / 1 /
1 /

/ / /

1 /

1 /
.

1 /

W Wd vt L v c

L u Lv cv L v c
v c

vL u Lv c L L v c

v c

L v u

v c

 � �

�
 � �

�

� � �
 

�

�
 

�

 

The walker’s speed relative to the ground is simply dW/tW, easily found from the above 
expressions:  
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This is the appropriate formula for adding velocities. Note that it gives the correct answer, u + v, 
in the low velocity limit, and also if u or v equals c, the sum of the velocities is c.  

Exercise: Suppose a spaceship is equipped with a series of one-shot rockets, each of which can 
accelerate the ship to c/2 from rest.  It uses one rocket to leave the solar system (ignore gravity 
here) and is then traveling at c/2 (relative to us) in deep space.  It now fires its second rocket, 
keeping the same direction.  Find how fast it is moving relative to us.  It now fires the third 
rocket, keeping the same direction.  Find its new speed.  Can you draw any general conclusions 
from your results? 

29.2 Testing the Addition of Velocities Formula  

Actually, the first test of the addition of velocities formula was carried out in the 1850s!  Two 
French physicists, Fizeau and Foucault, measured the speed of light in water, and found it to be 
c/n, where n is the refractive index of water, about 1.33. (This was the result predicted by the 
wave theory of light.)  

They then measured the speed of light (relative to the ground) in moving water, by sending light 
down a long pipe with water flowing through it at speed v.  They discovered that the speed 
relative to the ground was not just v + c/n, but had an extra term, v + c/n - v/n2.  Their (incorrect) 
explanation was that the light was a complicated combination of waves in the water and waves 
in the aether, and the moving water was only partially dragging the aether along with it, so the 
light didn’t get the full speed v of the water added to its original speed c/n.  
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The true explanation of the extra term is much simpler: velocities don’t simply add.  To add the 
velocity v to the velocity c/n, we must use the addition of velocities formula above, which gives 
the light velocity relative to the ground to be:  

(v + c/n)/(1 + v/nc) 

Now, v is much smaller than c or c/n, so 1/(1 + v/nc) can be written as (1 - v/nc), giving:  

(v + c/n)(1 - v/nc) 

Multiplying this out gives v + c/n - v/n2 -v/n×v/c, and the last term is smaller than v by a factor 
v/c, so is clearly negligible.  

Therefore, the 1850 experiment looking for “aether drag” in fact confirms the relativistic 
addition of velocities formula! Of course, there are many other confirmations.  For example, any 
velocity added to c still gives c.  Also, it indicates that the speed of light is a speed limit for all 
objects, a topic we shall examine more carefully in the next lecture.  

30 Conserving Momentum: the Relativistic Mass Increase 

30.1 Momentum has Direction  

As we discussed in the last lecture, even before Newton formulated his laws, Descartes, with a 
little help from Huygens, had discovered a deep dynamical truth: in any collision, or in fact in 
any interaction of any kind, the total amount of “momentum”—a measure of motion—always 
stayed the same. The momentum of a moving object is defined as the product of the mass and 
the velocity, and so is a vector: it has magnitude and direction.  If you’re standing on frictionless 
skates and you throw a ball, you move backwards: you have momentum equal in magnitude, 
but opposite in direction, to that of the ball, so the total momentum (yours plus the ball’s) 
remains zero.  Rockets work the same way, by throwing material out at high speed.  They do not 
work by “pushing against the air”, they work by pushing against the stuff they’re pushing out, 
just as you push against a ball you’re throwing, and it pushes you back, causing your 
acceleration.  

If you still suspect that really rockets push against the air, remember they work just as well in 
space!  In fact, it was widely believed when Goddard, an early American rocketeer (the Goddard 
Space Flight Center is named after him) talked about rockets in space, he was wasting his time.  
To quote from a New York Times editorial written in 1921: “Professor Goddard does not know 
the relation between action and reaction and the need to have something better than a vacuum 
against which to react.  He seems to lack the basic knowledge ladled out daily in our high 
schools.”  Obviously, the New York Times editorial writers of the time lacked the basic 
knowledge being ladled out in this course!  
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In fact, as we discussed, the conservation of momentum in a collision follows from Newton’s 
laws.  However, it is a more general, simpler, concept—it doesn’t depend at all on details of the 
interactions, etc. This simplicity evidently appealed to Einstein, who was convinced that when 
dynamics was reformulated to include the new ideas about time and space, conservation of 
momentum should still hold true in any inertial frame.  This led him to some surprising 
conclusions, as we shall see.  

30.2 Momentum Conservation on the Pool Table  

As a warm-up exercise, let us consider conservation of momentum for a collision of two balls on 
a pool table.  We draw a chalk line down the middle of the pool table, and shoot the balls close 
to, but on opposite sides of, the chalk line from either end, at the same speed, so they will hit in 
the middle with a glancing blow, which will turn their velocities through a small angle. In other 
words, if initially we say their (equal magnitude, opposite direction) velocities were parallel to 
the x-direction—the chalk line—then after the collision they will also have equal and opposite 
small velocities in the y-direction. (The x-direction velocities will have decreased very slightly).  

 

Balls on pool table moving towards glancing collision 

Motion of balls on table after collision 
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30.3 A Symmetrical Spaceship Collision  

Now let us repeat the exercise on a grand scale.  Suppose somewhere in space, far from any 
gravitational fields, we set out a string one million miles long.  (It could be between our two 
clocks in the time dilation experiment).  This string corresponds to the chalk line on the pool 
table.  Suppose now we have two identical spaceships approaching each other with equal and 
opposite velocities parallel to the string from the two ends of the string, aimed so that they 
suffer a slight glancing collision when they meet in the middle.  It is evident from the symmetry 
of the situation that momentum is conserved in both directions.  In particular, the rate at which 
one spaceship moves away from the string after the collision—its y-velocity—is equal and 
opposite to the rate at which the other one moves away from the string.  

But now consider this collision as observed by someone in one of the spaceships, call it A.  
Before the collision, he sees the string moving very fast by the window, say a few meters away.  
After the collision, he sees the string to be moving away, at, say, 15 meters per second.  This is 
because spaceship A has picked up a velocity perpendicular to the string of 15 meters per 
second.  Meanwhile, since this is a completely symmetrical situation, an observer on spaceship B 
would certainly deduce that her spaceship was moving away from the string at 15 meters per 
second as well.  

30.4 Just How Symmetrical Is It?  

The crucial question is: how fast does an observer in spaceship A see spaceship B to be moving 
away from the string?  Let us suppose that relative to spaceship A, spaceship B is moving away 
(in the x-direction) at 0.6c.  First, recall that distances perpendicular to the direction of motion 
are not Lorentz contracted.  Therefore, when the observer in spaceship B says she has moved 15 
meters further away from the string in a one second interval, the observer watching this 
movement from spaceship A will agree on the 15 meters—but disagree on the one second!  He 
will say her clocks run slow, so as measured by his clocks 1.25 seconds will have elapsed as she 
moves 15 meters in the y-direction.  

It follows that, as a result of time dilation, this collision as viewed from spaceship A does not 
cause equal and opposite velocities for the two spaceships in the y-direction.  Initially, both 
spaceships were moving parallel to the x-axis, there was zero momentum in the y-direction.  So 
how can we argue there is zero total momentum in the y-direction after the collision, when the 
identical spaceships do not have equal and opposite velocities?  

30.5 Einstein Rescues Momentum Conservation  

Einstein was so sure that momentum conservation must always hold that he rescued it with a 
bold hypothesis: the mass of an object must depend on its speed!  In fact, the mass must 
increase with speed in just such a way as to cancel out the lower y-direction velocity resulting 
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from time dilation.  That is to say, if an object at rest has a mass M, moving at a speed v it will 

have a mass � �2 2/ 1 /M v c� . Note that this is an undetectably small effect at ordinary 

speeds, but as an object approaches the speed of light, the mass increases without limit!  

30.6 Mass Really Does Increase with Speed  

Deciding that masses of objects must depend on speed like this seems a heavy price to pay to 
rescue conservation of momentum!  However, it is a prediction that is not difficult to check by 
experiment.  The first confirmation came in 1908, measuring the mass of fast electrons in a 
vacuum tube.  In fact, the electrons in an old style color TV tube are about half a percent heavier 
than electrons at rest, and this must be allowed for in calculating the magnetic fields used to 
guide them to the screen.  

Much more dramatically, in modern particle accelerators very powerful electric fields are used 
to accelerate electrons, protons and other particles.  It is found in practice that these particles 
become heavier and heavier as the speed of light is approached, and hence need greater and 
greater forces for further acceleration.  Consequently, the speed of light is a natural absolute 
speed limit.  Particles are accelerated to speeds where their mass is thousands of times greater 
than their mass measured at rest, usually called the “rest mass”.  

30.7 Kinetic Energy and Mass for Very Fast Particles  

Let’s think about the kinetic energy of one of these particles traveling close to the speed of light.  
Recall that in an earlier lecture we found the kinetic energy of an ordinary non-relativistic (i.e. 
slow moving) mass m was ½mv².  The way we did that was by considering how much work we 
had to do to raise it through a certain height: we had to exert a force equal to its weight W to lift 
it through height h, the total work done, or energy expended, being force x distance, Wh.  As it 
fell back down, the force of gravity, W, did an exactly equal amount of work Wh on the falling 
object, but this time the work went into accelerating the object, to give it kinetic energy.  Since 
we know how fast falling objects pick up speed, we were able to conclude that the kinetic 
energy was ½mv². (For details, see the previous lecture.)  

More generally, we could have accelerated the mass with any constant force F, and found the 
work done by the force (force x distance) to get it to speed v from a standing start.  The kinetic 
energy of the mass, E = ½mv², is exactly equal to the work done by the force in bringing the 
mass up to that speed.  (It can be shown in a similar way that if a force is applied to a particle 
already moving at speed u, say, and it is accelerated to speed v, the work necessary is ½mv² - 
½mu².)  
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It is interesting to try to repeat the exercise for a particle moving very close to the speed of light, 
like the particles in the accelerators mentioned in the previous paragraph.  Newton’s Second 
Law, in the form  

Force = rate of change of momentum  

is still true, but close to the speed of light the speed changes negligibly as the force continues to 
work—instead, the mass increases!  Therefore, we can write to an excellent approximation,  

Force = (rate of change of mass) x c  

where as usual c is the speed of light.  To get more specific, suppose we have a constant force F 
pushing a particle.  At some instant, the particle has mass M, and speed extremely close to c.  
One second later, since the force is continuing to work on the particle, and thus increase its 

momentum from Newton’s Second Law, the particle will have mass M m�  say, where m is the 
increase in mass as a result of the work done by the force.  

What is the increase in the kinetic energy E of the particle during that one second period?  By 
exact analogy with the non-relativistic case reviewed above, it is just the work done by the force 
during that period.  Now, since the mass of the particle changes by m in one second, m is also 
the rate of change of mass.  Therefore, from Newton’s Second Law in the form  

Force = (rate of change of mass) x c,  

we can write  

Force = mc.  

The increase in kinetic energy E over the one second period is just the work done by the force,  

force x distance.  

Since the particle is moving essentially at the speed of light, the distance the force acts over in 
the one-second period is just c meters, c = 3×108.  

So the total work the force does in that second is force x distance = mc×c = mc².  

Hence the relationship between the increase in mass of the relativistic particle and its increase 
in kinetic energy is:  

E = mc²  
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30.8 Kinetic Energy and Mass for Slow Particles  

Recall that to get Newton’s Laws to be true in all inertial frames, we had to assume an increase 

of mass with speed by the factor � �2 21/ 1 / .v c�   This implies that even a slow-moving object 

has a tiny increase in mass when it moves!  

How does that tiny increase relate to the kinetic energy?  Consider a mass M, moving at speed v, 
much less than the speed of light. Its kinetic energy E =½Mv², as discussed above.  Its mass is 

� �2 2/ 1 /M v c� , which we can write as M + m.  What is m?   

Since we’re talking about speeds we are familiar with, like a jet plane, where v/c is really small, 
we can use some simple mathematical tricks to make things easier.  

The first one is a good approximation for the square root of 1 – x when x is a lot less than one: 

1
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and writing this as M + m, we see the mass increase m equals ½ Mv²/c².   

This means that—again—the mass increase m is related to the kinetic energy E by 2.E mc   

In fact, it is not difficult to show, using a little calculus, that over the whole range of speed from 
zero to as close as you like to the speed of light, a moving particle experiences a mass increase 
related to its kinetic energy by E = mc².  To understand why this isn’t noticed in everyday life, try 
an example, such as a jet airplane weighing 100 tons moving at 2,000mph.  100 tons is 100,000 
kilograms, 2,000mph is about 1,000 meters per second.  That’s a kinetic energy ½Mv² of 
½×1011joules, but the corresponding mass change of the airplane down by the factor c², 9×1016, 
giving an actual mass increase of about half a milligram, not too easy to detect!  

30.9 E = mc²  

We have seen above that when a force does work accelerating a body to give it kinetic energy, 
the mass of the body increases by an amount equal to the total work done by the force, the 
energy E transferred, divided by c².  What about when a force does work on a body that is not 
speeding it up, so there is no increase in kinetic energy?  For example, what if I just lift 
something at a steady rate, giving it potential energy?  It turns out that in this case, too, there is 
a mass increase given by E = mc², of course unmeasurably small for everyday objects.  

However, this is a measurable and important effect in nuclear physics.  For example, the helium 
atom has a nucleus which has two protons and two neutrons bound together very tightly by a 
strong nuclear attraction force.  If sufficient outside force is applied, this can be separated into 
two “heavy hydrogen” nuclei, each of which has one proton and one neutron.  A lot of outside 
energy has to be spent to achieve this separation, and it is found that the total mass of the two 
heavy hydrogen nuclei is measurably (about half a percent) heavier than the original helium 
nucleus.  This extra mass, multiplied by c², is just equal to the energy needed to split the helium 
nucleus into two.  Even more important, this energy can be recovered by letting the two heavy 
hydrogen nuclei collide and join to form a helium nucleus again.  (They are both electrically 
charged positive, so they repel each other, and must come together fairly fast to overcome this 
repulsion and get to the closeness where the much stronger nuclear attraction kicks in.)  This is 
the basic power source of the hydrogen bomb, and of the sun.  

It turns out that all forms of energy, kinetic and different kinds of potential energy, have 
associated mass given by E = mc².  For nuclear reactions, the mass change is typically of order 
one thousandth of the total mass, and readily measurable.  For chemical reactions, the change is 
of order a billionth of the total mass, and not currently measurable.  
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31 General Relativity 

31.1 Einstein’s Parable 

In Einstein’s little book Relativity: the Special and the General Theory, he introduces general 
relativity with a parable.  He imagines going into deep space, far away from gravitational fields, 
where any body moving at steady speed in a straight line will continue in that state for a very 
long time.  He imagines building a space station out there - in his words, “a spacious chest 
resembling a room with an observer inside who is equipped with apparatus.”  Einstein points 
out that there will be no gravity, the observer will tend to float around inside the room.  

But now a rope is attached to a hook in the middle of the lid of this “chest” and an unspecified 
“being” pulls on the rope with a constant force.  The chest and its contents, including the 
observer, accelerate “upwards” at a constant rate.  How does all this look to the man in the 
room?  He finds himself moving towards what is now the “floor” and needs to use his leg 
muscles to stand.  If he releases anything, it accelerates towards the floor, and in fact all bodies 
accelerate at the same rate.  If he were a normal human being, he would assume the room to be 
in a gravitational field, and might wonder why the room itself didn’t fall.  Just then he would 
discover the hook and rope, and conclude that the room was suspended by the rope.  

Einstein asks: should we just smile at this misguided soul?  His answer is no - the observer in the 
chest’s point of view is just as valid as an outsider’s.  In other words, being inside the (from an 
outside perspective) uniformly accelerating room is physically equivalent to being in a uniform 
gravitational field.  This is the basic postulate of general relativity.  Special relativity said that all 
inertial frames were equivalent.  General relativity extends this to accelerating frames, and 
states their equivalence to frames in which there is a gravitational field.  This is called the 
Equivalence Principle. 

The acceleration could also be used to cancel an existing gravitational field—for example, inside 
a freely falling elevator passengers are weightless, conditions are equivalent to those in the 
unaccelerated space station in outer space.  

It is important to realize that this equivalence between a gravitational field and acceleration is 
only possible because the gravitational mass is exactly equal to the inertial mass.  There is no 
way to cancel out electric fields, for example, by going to an accelerated frame, since many 
different charge to mass ratios are possible.  

As physics has developed, the concept of fields has been very valuable in understanding how 
bodies interact with each other.  We visualize the electric field lines coming out from a charge, 
and know that something is there in the space around the charge which exerts a force on 
another charge coming into the neighborhood.  We can even compute the energy density stored 
in the electric field, locally proportional to the square of the electric field intensity.  It is 
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tempting to think that the gravitational field is quite similar—after all, it’s another inverse 
square field.  Evidently, though, this is not the case. If by going to an accelerated frame the 
gravitational field can be made to vanish, at least locally, it cannot be that it stores energy in a 
simply defined local way like the electric field.  

We should emphasize that going to an accelerating frame can only cancel a constant 
gravitational field, of course, so there is no accelerating frame in which the whole gravitational 
field of, say, a massive body is zero, since the field necessarily points in different directions in 
different regions of the space surrounding the body.  

31.2 Some Consequences of the Equivalence Principle 

Consider a freely falling elevator near the surface of the earth, and suppose a laser fixed in one 
wall of the elevator sends a pulse of light horizontally across to the corresponding point on the 
opposite wall of the elevator.  Inside the elevator, where there are no fields present, the 
environment is that of an inertial frame, and the light will certainly be observed to proceed 
directly across the elevator.  Imagine now that the elevator has windows, and an outsider at rest 
relative to the earth observes the light.  As the light crosses the elevator, the elevator is of 
course accelerating downwards at g, so since the flash of light will hit the opposite elevator wall 
at precisely the height relative to the elevator at which it began, the outside observer will 
conclude that the flash of light also accelerates downwards at g.  In fact, the light could have 
been emitted at the instant the elevator was released from rest, so we must conclude that light 
falls in an initially parabolic path in a constant gravitational field.  Of course, the light is traveling 
very fast, so the curvature of the path is small!  Nevertheless, the Equivalence Principle forces us 
to the conclusion that the path of a light beam is bent by a gravitational field. 

The curvature of the path of light in a gravitational field was first detected in 1919, by observing 
stars very near to the sun during a solar eclipse.  The deflection for stars observed very close to 
the sun was 1.7 seconds of arc, which meant measuring image positions on a photograph to an 
accuracy of hundredths of a millimeter, quite an achievement at the time. 

One might conclude from the brief discussion above that a light beam in a gravitational field 
follows the same path a Newtonian particle would if it moved at the speed of light.  This is true 
in the limit of small deviations from a straight line in a constant field, but is not true even for 
small deviations for a spatially varying field, such as the field near the sun the starlight travels 
through in the eclipse experiment mentioned above.  We could try to construct the path by 
having the light pass through a series of freely falling (fireproof!) elevators, all falling towards 
the center of the sun, but then the elevators are accelerating relative to each other (since they 
are all falling along radii), and matching up the path of the light beam through the series is 
tricky.  If it is done correctly (as Einstein did) it turns out that the angle the light beam is bent 
through is twice that predicted by a naïve Newtonian theory.  
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What happens if we shine the pulse of light vertically down inside a freely falling elevator, from 
a laser in the center of the ceiling to a point in the center of the floor?  Let us suppose the flash 
of light leaves the ceiling at the instant the elevator is released into free fall.  If the elevator has 
height h, it takes time h/c to reach the floor.  This means the floor is moving downwards at 
speed gh/c when the light hits.  

Question: Will an observer on the floor of the elevator see the light as Doppler shifted? 

The answer has to be no, because inside the elevator, by the Equivalence Principle, conditions 
are identical to those in an inertial frame with no fields present.  There is nothing to change the 
frequency of the light.  This implies, however, that to an outside observer, stationary in the 
earth's gravitational field, the frequency of the light will change.  This is because he will agree 
with the elevator observer on what was the initial frequency f of the light as it left the laser in 
the ceiling (the elevator was at rest relative to the earth at that moment) so if the elevator 
operator maintains the light had the same frequency f as it hit the elevator floor, which is 
moving at gh/c relative to the earth at that instant, the earth observer will say the light has 
frequency f(1 + v/c) = f(1+gh/c2), using the Doppler formula for very low speeds.  

We conclude from this that light shining downwards in a gravitational field is shifted to a higher 
frequency.  Putting the laser in the elevator floor, it is clear that light shining upwards in a 
gravitational field is red-shifted to lower frequency.  Einstein suggested that this prediction 
could be checked by looking at characteristic spectral lines of atoms near the surfaces of very 
dense stars, which should be red-shifted compared with the same atoms observed on earth, and 
this was confirmed.  This has since been observed much more accurately.  An amusing 
consequence, since the atomic oscillations which emit the radiation are after all just accurate 
clocks, is that time passes at different rates at different altitudes.  The US atomic standard clock, 
kept at 5400 feet in Boulder, gains 5 microseconds per year over an identical clock almost at sea 
level in the Royal Observatory at Greenwich, England.  Both clocks are accurate to one 
microsecond per year.  This means you would age more slowly if you lived on the surface of a 
planet with a large gravitational field.  Of course, it might not be very comfortable.  

31.3  General Relativity and the Global Positioning System 
Despite what you might suspect, the fact that time passes at different rates at different altitudes 
has significant practical consequences.  An important everyday application of general relativity is 
the Global Positioning System.  A GPS unit finds out where it is by detecting signals sent from 
orbiting satellites at precisely timed intervals. If all the satellites emit signals simultaneously, and 
the GPS unit detects signals from four different satellites, there will be three relative time delays 
between the signals it detects.  The signals themselves are encoded to give the GPS unit the 
precise position of the satellite they came from at the time of transmission.  With this 
information, the GPS unit can use the speed of light to translate the detected time delays into 
distances, and therefore compute its own position on earth by triangulation.  
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But this has to be done very precisely!  Bearing in mind that the speed of light is about one foot 
per nanosecond, an error of 100 nanoseconds or so could, for example, put an airplane off the 
runway in a blind landing.  This means the clocks in the satellites timing when the signals are 
sent out must certainly be accurate to 100 nanoseconds a day.  That is one part in 1012.  It is 
easy to check that both the special relativistic time dilation correction from the speed of the 
satellite, and the general relativistic gravitational potential correction are much greater than 
that, so the clocks in the satellites must be corrected appropriately.  (The satellites go around 
the earth once every twelve hours, which puts them at a distance of about four earth radii.  The 
calculations of time dilation from the speed of the satellite, and the clock rate change from the 
gravitational potential, are left as exercises for the student.)  For more details, see the lecture by 
Neil Ashby here.  

In fact, Ashby reports that when the first Cesium clock was put in orbit in 1977, those involved 
were sufficiently skeptical of general relativity that the clock was not corrected for the 
gravitational redshift effect.  But—just in case Einstein turned out to be right—the satellite was 
equipped with a synthesizer that could be switched on if necessary to add the appropriate 
relativistic corrections.  After letting the clock run for three weeks with the synthesizer turned 
off, it was found to differ from an identical clock at ground level by precisely the amount 
predicted by special plus general relativity, limited only by the accuracy of the clock.  This simple 
experiment verified the predicted gravitational redshift to about one percent accuracy!  The 
synthesizer was turned on and left on.  

 

 

http://www.phys.lsu.edu/mog/mog9/node9.html
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