Problem 1. A cylinder in a magnetic field

A very long hollow cylinder of inner radius a and outer radius b of permeability u is placed
in an initially uniform magnetic field B, at right angles to the field.

(a)

(b)

(c)

For a constant field B, in the x direction show that A* = — B,y is the vector potential.
This should give you an idea of a convenient set of coordinates to use.

Remark: See Wikipedia for a list of the vector Laplacian in all coordinates. Most often
the vector Laplacian is used if the current is azimuthal and solutions may be looked
for with Ay, # 0 and A, = Ap =0 (or A, = A, = 0 in cylindrical coordinates). This
could be used for example in Problem 3. Similarly if the current runs up and down,
with A, # 0 and A, = Ay = 0, so that B = (B,(x,v, ), By(z,v, 2),0) is independent
of z, then the vector Laplacian in cylindrical coordinates —V?A, is a good way to go.

Show that the magnetic field in the cylinder is constant p < a and determine its
magnitude.

Sketch |B|/|B,| at the center of the as function of u for a?/b* = 0.9,0.5,0.1.

Problem 2. Helmholtz coils

Consider a compact circular coil of radius a carrying current I, which lies in the x — y plane
with its center at the origin.

(a)
(b)

By elementary means compute the magnetic field along the z axis.

Show by direct analysis of the Maxwell equations V- B = 0 and V x B = 0 that
slightly off axis near z = 0 the magnetic field takes the form

B.~og+05 (2" — 1), B,~—02p, (1)

where 0y = (B?) and 05 = 3 <832zB2§ > are the field and its z derivatives evaluated at the

origin. For later use give oy and oy explictly in terms of the current and the radius of
the loop.

Remark: Upon solving this problem, it should be clear that this method of solution
does not rely on being close to z = 0. We just chose z = 0 for definiteness.

Now consider a second identical coil (co-axial with the first), having the same magni-
tude and direction of the current, at a height b above the first coil, where a is the radii
of the rings. With the coordinate origin relocated at the point midway between the
two centers of the coils, determine the magnetic field on the z-axis near the origin as
an expansion in powers of z to z*. Use mathematica if you like. You should find that
the coefficient of 22 vanishes when b = a

Remark For b = a the coils are known as Helmholtz coils. For this choice of b the 22
terms in part (c¢) are absent. (Also if the off-axis fields are computed along the lines
of part (b), they also vanish.) The field near the origin is then constant to 0.1% for
z < 0.17a.


http://en.wikipedia.org/wiki/Nabla_in_cylindrical_and_spherical_coordinates

Problem 3. The field from a shell of current.

Consider conducting ring of current radius a lying in the z — y plane, carrying current I in
the counter clockwise direction, I = I¢.

(a) Starting from the general (coulomb gauge) expression
A(r) = /d?’roM (2)

and the expansion of 1/(47|r — r,|) in spherical coordinates, show that the expansion
of A, in the z,y plane inside the ring is
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where p = /22 +y? and P} is the associated Legendre polynomial. (Check out
wikipedia entry on spherical harmonics)

(b) Compute B,(p) in the x,y plane.

(c) Show that close to the axis of the shell the magnetic field you computed in part (b) is
in agreement with the results of Eq. (1) when evaluated at z = 0.

Remark: Using the generating function of Legendre polynomials derived in class
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and the defintion of P}(cosf) = —sin Hdpfcggse)e) we show that
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establishing that
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(d) Consider a magnetic dipole of magnetic moment m = —mz in the x —y plane oriented

oppositely to the field from the ring, show that the force on the dipole is

p=p" S oz (2) )
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where the negative indicates that the force is towards the center, and B, = I /(2ca) is
the magnetic field in the center of the ring.

(e) (Optional) Plot the force |F|/[mB,/a] as a function of p/a.



Problem 4. Two electrodes in a conductor filling half of space

Two small spherical electrodes of radius a are embedded in a semi-infinite medium of con-
ductivity o, each at a distance d > a from the plane face of the medium and at a distance b
from each other. Find the resistance between the electrodes. Sketch the flow lines of current
if the two electrodes are held at a potential difference Ay.

Problem 5. Magnetic field from a hard ferromagnet

A solid right cylindrical hard ferro-magnet of radius a and height h has a constant uniform
magnetization M = Mz directed along the axis of the cylinder. For definiteness place one
end of the cylinder at z = 0 and the other end at z = —h.

This problem will determine the magnetic field B outside the magnet using the magnetic
scalar potential.

(a) For certain problems involving currents confined to surfaces (this is the case here) the
scalar magnetic potential can be a useful device. Take the maxwell equations

V x H =j/c (8)
V- B =0 (9)

In any current free region, since the curl is zero, we may write H as the gradient of a
magnetic potential
H = —Vi),,(r) (10)

and solve for v,,. The potential 1, can be matched across the interfaces using the
boundary conditions

nx (Hy— H)) = K/c (11)
n-(Bs—B)) =0 (12)

For the problem at hand, show that both inside and outside the cylinder the magnetic

potential is
-V-M
Vm(T) = /d3wv—
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(b) Use the scalar potential to determine the magnetic field on the axis (but outside the
cylinder) for z > 0. The solution was presented in class using the vector rather than
the scalar potential, and you may wish to compare the integration regions in the two
cases.

(c) For a long cylinder h > a show that for a < z < h that the magnetic potential and
thus the magnetic field outside of the cylinder are described by the magnetic field of a
magnetic monopole. Determine the magnetic charge.

Remark: the long thin cylinder in part (c) is often called the Dirac string.



