
Problem 1. A cylinder in a magnetic field

A very long hollow cylinder of inner radius a and outer radius b of permeability µ is placed
in an initially uniform magnetic field Bo at right angles to the field.

(a) For a constant field Bo in the x direction show that Az = −Boy is the vector potential.
This should give you an idea of a convenient set of coordinates to use.

Remark: See Wikipedia for a list of the vector Laplacian in all coordinates. Most often
the vector Laplacian is used if the current is azimuthal and solutions may be looked
for with Aφ 6= 0 and Ar = Aθ = 0 (or Aρ = Az = 0 in cylindrical coordinates). This
could be used for example in Problem 3. Similarly if the current runs up and down,
with Az 6= 0 and Aρ = Aφ = 0, so that B = (Bx(x, y, z), By(x, y, z), 0) is independent
of z, then the vector Laplacian in cylindrical coordinates −∇2Az is a good way to go.

(b) Show that the magnetic field in the cylinder is constant ρ < a and determine its
magnitude.

(c) Sketch |B|/|Bo| at the center of the as function of µ for a2/b2 = 0.9, 0.5, 0.1.

Problem 2. Helmholtz coils

Consider a compact circular coil of radius a carrying current I, which lies in the x− y plane
with its center at the origin.

(a) By elementary means compute the magnetic field along the z axis.

(b) Show by direct analysis of the Maxwell equations ∇ · B = 0 and ∇ × B = 0 that
slightly off axis near z = 0 the magnetic field takes the form

Bz ' σ0 + σ2
(
z2 − 1

2
ρ2
)
, Bρ ' −σ2zρ , (1)

where σ0 = (Bo
z) and σ2 = 1

2

(
∂2Bo

z

∂z2

)
are the field and its z derivatives evaluated at the

origin. For later use give σ0 and σ2 explictly in terms of the current and the radius of
the loop.

Remark: Upon solving this problem, it should be clear that this method of solution
does not rely on being close to z = 0. We just chose z = 0 for definiteness.

(c) Now consider a second identical coil (co-axial with the first), having the same magni-
tude and direction of the current, at a height b above the first coil, where a is the radii
of the rings. With the coordinate origin relocated at the point midway between the
two centers of the coils, determine the magnetic field on the z-axis near the origin as
an expansion in powers of z to z4. Use mathematica if you like. You should find that
the coefficient of z2 vanishes when b = a

Remark For b = a the coils are known as Helmholtz coils. For this choice of b the z2

terms in part (c) are absent. (Also if the off-axis fields are computed along the lines
of part (b), they also vanish.) The field near the origin is then constant to 0.1% for
z < 0.17 a.
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Problem 3. The field from a shell of current.

Consider conducting ring of current radius a lying in the x− y plane, carrying current I in
the counter clockwise direction, I = Iφ̂.

(a) Starting from the general (coulomb gauge) expression

A(r) =

∫
d3ro

j(ro)/c

4π|r − ro|
(2)

and the expansion of 1/(4π|r − ro|) in spherical coordinates, show that the expansion
of Aφ in the x, y plane inside the ring is

Aφ(ρ)|z=0 =
I

2c

∞∑
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` (0))2

`(`+ 1)

(ρ
a

)`
(3)

where ρ =
√
x2 + y2 and P 1

` is the associated Legendre polynomial. (Check out
wikipedia entry on spherical harmonics)

(b) Compute Bz(ρ) in the x, y plane.

(c) Show that close to the axis of the shell the magnetic field you computed in part (b) is
in agreement with the results of Eq. (1) when evaluated at z = 0.

Remark: Using the generating function of Legendre polynomials derived in class

1√
1 + r2 − 2r cos θ

=
∞∑
`=0

r`P`(cos θ) (4)

and the defintion of P 1
` (cos θ) = − sin θ dP`(cos θ)

d(cos θ)
, we show that
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establishing that

P 1
1 (0) = −1 P 1

3 (0) =
3

2
P 1
5 (0) = −15

8
P 1
` (0) = 0 for ` even. (6)

(d) Consider a magnetic dipole of magnetic moment m = −mẑ in the x−y plane oriented
oppositely to the field from the ring, show that the force on the dipole is

F = −ρ̂mBo

a
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(7)

where the negative indicates that the force is towards the center, and Bo = I/(2ca) is
the magnetic field in the center of the ring.

(e) (Optional) Plot the force |F| / [mBo/a] as a function of ρ/a.

2



Problem 4. Two electrodes in a conductor filling half of space

Two small spherical electrodes of radius a are embedded in a semi-infinite medium of con-
ductivity σ, each at a distance d > a from the plane face of the medium and at a distance b
from each other. Find the resistance between the electrodes. Sketch the flow lines of current
if the two electrodes are held at a potential difference ∆ϕ.

Problem 5. Magnetic field from a hard ferromagnet

A solid right cylindrical hard ferro-magnet of radius a and height h has a constant uniform
magnetization M = M ẑ directed along the axis of the cylinder. For definiteness place one
end of the cylinder at z = 0 and the other end at z = −h.

This problem will determine the magnetic field B outside the magnet using the magnetic
scalar potential.

(a) For certain problems involving currents confined to surfaces (this is the case here) the
scalar magnetic potential can be a useful device. Take the maxwell equations

∇×H =j/c (8)

∇ ·B =0 (9)

In any current free region, since the curl is zero, we may write H as the gradient of a
magnetic potential

H = −∇ψm(r) (10)

and solve for ψm. The potential ψm can be matched across the interfaces using the
boundary conditions

n× (H2 −H1) = K/c (11)

n · (B2 −B1) = 0 (12)

For the problem at hand, show that both inside and outside the cylinder the magnetic
potential is

ψm(r) =

∫
d3x
−∇ ·M
4π|r − x|

(13)

(b) Use the scalar potential to determine the magnetic field on the axis (but outside the
cylinder) for z > 0. The solution was presented in class using the vector rather than
the scalar potential, and you may wish to compare the integration regions in the two
cases.

(c) For a long cylinder h � a show that for a � z � h that the magnetic potential and
thus the magnetic field outside of the cylinder are described by the magnetic field of a
magnetic monopole. Determine the magnetic charge.

Remark: the long thin cylinder in part (c) is often called the Dirac string.
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