Problem 1. Drude Model of Metals

The Drude model describes the interactions of n electrons per volume with the electric field

by the drag model
dv  mv

m— +
dt Te
We estimated previously that plasma frequency of the metal is w, = /ne?/m ~ 10 s71

The time between collisions with impurities is of order 7. ~ 10713 s, and thus the dimension-
less parameter w,7. ~ 100. We previously found the DC conductivity:

= eE(t) (1)

0 =wir, ~10"s! (2)

(a) Show that the constituent relation for the conductivity in the Drude model is

Oo

o(w) = —— (3)

1 —wr,

(b) Determine the real and imaginary parts of the e(w). Sketch the real and imaginary
parts of €(w) as a function of w/w, for large frequencies. Also sketch the real and
imaginary parts at moderate frequency as a function wr,. Be sure that you draw your
curves approximately to scale, indicating where is one on both the x and y axes.

(c) Describe what the low and very high frequency behavior of these functions implies for
the propagation of light in the metal. What is “very high frequency” for a metal like
copper?

(d) Show that charge relaxation is governed by the equation

Op + /_00 ot —t)p)dt' =0 (4)

[e.e]

(e) Show that o(t —t,) is determined up to a constant by the retarded Green function of
the differential equation, Gg(t —t,):
d
gy 2] Galt = 1) =8t - ) )
dt T

(f) By direct integration in time of Eq. (5) show that
o(t) = 9(7‘)&)12)6_ 7/7e (6)
Estimate the time scale for charge relaxation in Hz.

(g) Finally, by taking the inverse Fourier transform of Eq. (3) show that you get the same
result.
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Problem 4. Frequency comb
Examining PRL 99, 263902 (2007), I came across the following sentence:

PRL 99, 263902 (2007) PHYSICAL RE

We use a 1 GHz mode locked Ti:sapphire laser with a
bandwidth of about 12 THz FWHM centered at 785 nm
and an average output power of about 0.5 W as a light
source [10]. The spectroscopy resonator consists of broad-

Each laser pulse has a total energy of 0.5 W/(1GHz). Treat the electric field at a fixed
location as the temporal pulse

E(t) = gaussian(t) x e~ (7)

The “bandwidth at FWHM” refers to the full frequency width Af = Aw/27 of the power
spectrum |E(w)|? of a single pulse, when the function |E(w)|? has reached half of its maxi-
mum.

(a) If there was only a single pulse, determine the power spectrum |E(w)[?. Give all
parameters (such as the width and height) numerically.

Now consider a periodic sequence of pulses with a repetition rate of f =1 GHz+ 1 Hz, where
the +1 Hz indicates the uncertainty of the GHz rep-rate.

(8)
(b) Neglecting the uncertainty of the rep-rate, determine the power spectrum |FE(w)|*.
Give all parameters numerically

(c) Draw several qualitative graphs of the power spectrum approximately to scale, which
explain the meaning of your formula in part (b). Take into account (qualitatively) the
uncertainty in the GHz clock. On each graph, be sure to give the units you are using
on both the z and y axes.

Remark: Such frequency combs are remarkably useful, producing coherent light over
a wide range of well defined frequencies. Frequency combs have been used by Tom
Allison in our department.

Problem 5. Green theorem for first and second order equations
and the initial value problem

First order: Consider a model first order equation equation for the velocity

d
md—: +mnu =20 (9)

describing how a particle slows down.



(a) (Optional-already assigned) Determine the Green function for the equation i.e. that
d
gy + ] Gn) = 500 (10)

(b) Show that the solution at time ¢ satisfying the boundary conditions specified at t = ¢,
are

v(t) = mGgr(t,t,)v(t,) (11)

This is normally how the Green function (propagator) is used in quantum mechanics. The
Green function is used slightly differently for second order equations.

Second order: In class we showed that the electric potential can be determined from
knowledge of the boundary value and the Green function. A very similar statement can be
made about an initial value problem, i.e. the solution at future times can be determined
from the initial conditions and the Green function.

For definiteness we will take a harmonic oscillator with mass m and resonant frequency
Wo:

d2
mW +mwir =0

The retarded Green function G(t|t,) is the position z(t) of the harmonic oscillator at time ¢
from an impulsive force at time t,. It is causal, meaning that it vanishes whenever t < ¢,
i.e.

2
(m% + muw ) Gr(tlto) = 3(t —1,)  and Gg(t,1,) =0 for t <t, (12)

(a) Given the initial conditions for the oscillator, x(t,) and 0, z(t,), at time ¢, show that
the future value of the oscillator is given by the Wronskian of the Green function and
the initial conditions

z(t) = m|[Ggr(t,t,)0, 10 — ()0, Gr(t,t,)] t>t, (13)

(Hint: closely examine the proof of the Green theorem given in class for the electrostatic
case).

(b) Use the Green function for the undamped oscillator given in class to verify that you
get the correct result for z(¢) in terms of the initial conditions.

(c) Show that for the wave equation, —OGg(tx|t,x,) = §(t—t,)03(x—=x,), the appropriate
generalization is

u(t,x) = Clz/d?’mo[ (tx|tox,)0 ults, ©,) — ults, )0, G(tx|t,x,)] (14)

Remark: The results of this problem show that the general solution to the driven
damped harmonic oscillator starting from some initial time moment ¢, is

A (t) = F(t) (15)
az T @
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x(t) = m[Gr(t,t,)0,x0 — x(t)0, Gr(t, t,)] + /t dt' Gr(t,t")F(t').

to

(16)

At late times (in the presence of any infinitessimal damping) the initial conditions can

be ignored.

Similarly for the first order equation:

[m% + mn} v(t) = F(t);

the general solution is
t
u(t) = mGr(t, to)v(t,) + / dt’' Gr(t, 1 F(t) .
to

Problem 6. Green function of the Diffusion equation

Consider the homogeneous diffusion equation:
om — DV*n(t,r) =0.
The retarded Green function of the equation satisfies
[0, — DV?] G(tr|tors) = 0(t — t,)8°(r — 7,) .

with retarded boundary conditions.

(a) Write Eq. (20) in time and k by introducing the spatial Fourier transform

G(t, k) = /d3r e kTGt r),

(18)

(21)

and then determine the retarded Green function of the diffusion equation in k and

time.

(b) Determine the retarded Green function in w and k, Gg(w, k), by Fourier transforming
Eq. (20) in time and space. Verify that if you perform the Fourier integral over w that

you get the result of part (a).

(c) By taking the spatial Fourier transform verify that

where 02(t) = 2D1 where 7 =t — 1,

(22)



Problem 7. Decay of magnetic fields in a sphere

An insulated coil is wound on the surface of a sphere of radius a in such a way to produce a
uniform magnetic induction B, in the z direction inside the sphere and a dipole field outside
the sphere. The medium inside and outside the sphere has a uniform conductivity ¢ and
permeability pu.

(a) Find the necessary surface current density K, and show that in the vector potential
has only an azimuthal component, given by
B Bya®r.

A, = — sind (23)

2
2 rg

where - (rs) is the smaller (larger) of r and a.

(b) At ¢t = 0 the current in the coil is cut off (the coil’s presence may be ignored from now
on). Show that, with the neglect of Maxwell’s displacement current, the decay of the
magnetic field is described by the diffusion equation:

_pooA

2A=020 24
v ¢z ot (24)

(c) Using the (t, k) green function of the previous problem, show that the vector potential
at times ¢ > 0 is given by

3B.a . e ok

Ay =22 sing [ e (1)) (25)
T 0 a

where v = ¢?/uca® is a characteristic decay rate and j;(z) = sin(z)/x? — cos(z)/x is

the spherical Bessel function of order one.

(d) Show that the magnetic field at the center of the sphere can be written explicitly in
terms of the error function

B.(0,t) = B, @(\/17)—\/%@@ (;—Vtﬂ (26)




