
Problem 1. Drude Model of Metals

The Drude model describes the interactions of n electrons per volume with the electric field
by the drag model

m
dv

dt
+
mv

τc
= eE(t) (1)

We estimated previously that plasma frequency of the metal is ωp ≡
√
ne2/m ∼ 1015 s−1.

The time between collisions with impurities is of order τc ∼ 10−13 s, and thus the dimension-
less parameter ωpτc ∼ 100. We previously found the DC conductivity:

σ = ω2
pτc ∼ 1017 s−1 (2)

(a) Show that the constituent relation for the conductivity in the Drude model is

σ(ω) =
σo

1− iωτc
(3)

(b) Determine the real and imaginary parts of the ε(ω). Sketch the real and imaginary
parts of ε(ω) as a function of ω/ωp for large frequencies. Also sketch the real and
imaginary parts at moderate frequency as a function ωτc. Be sure that you draw your
curves approximately to scale, indicating where is one on both the x and y axes.

(c) Describe what the low and very high frequency behavior of these functions implies for
the propagation of light in the metal. What is “very high frequency” for a metal like
copper?

(d) Show that charge relaxation is governed by the equation

∂tρ+

∫ ∞
−∞

σ(t− t′)ρ(t′)dt′ = 0 (4)

(e) Show that σ(t− to) is determined up to a constant by the retarded Green function of
the differential equation, GR(t− to):[

m
d

dt
+
m

τc

]
GR(t− to) = δ(t− to) (5)

(f) By direct integration in time of Eq. (5) show that

σ(τ) = θ(τ)ω2
pe
− τ/τc (6)

Estimate the time scale for charge relaxation in Hz.

(g) Finally, by taking the inverse Fourier transform of Eq. (3) show that you get the same
result.

Problem 2. Zangwill 17.22: A Photonic Band Gap Material

Problem 3. Zangwill 18.14: Energy Flow in the Lorentz Model
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Problem 4. Frequency comb

Examining PRL 99, 263902 (2007), I came across the following sentence:

We use a 1 GHz mode locked Ti:sapphire laser with a
bandwidth of about 12 THz FWHM centered at 785 nm
and an average output power of about 0.5 W as a light
source [10]. The spectroscopy resonator consists of broad-
band dielectric quarter wave stack mirrors, centered at
792 nm and arranged in a bow tie ring cavity configuration.
The FSR is about !69=68"!r. The two coupling mirrors
dominate the resonator loss with their nominal transmis-
sion of 0.1%, corresponding to a resonator finesse of F #
1000!, which we confirmed by ring-down measurements
with the laser operated in the continuous wave mode. One
of the coupling mirrors is mounted on a piezoelectric
transducer tube for scanning the resonator length. The
resonator buildup time of 1 "s sets a lower limit of about
3 ms for scanning over one FSR in order to satisfy the
steady state approximation that was used in (1). We use a
centimeter size 21 00 lines per millimeter holographic
grating in a 150 mm focal length Czerny-Turner arrange-
ment. The aperture of the grating is fully used to match the
resolution of the spectrometer to the pixel size (5 "m) of
1000$ 1200 pixel CCD camera that was used to record
the images (WinCAM-D 1M4). The resolution of the
spectrometer expected from these parameters is better
than 30 GHz at 760 nm. Raw data in the wavelength range
from 760 to 770 nm with air inside the resonator obtained
in the way described above is shown in Fig. 2. This image
was exposed for 9 ms, the time for one scan.

After acquisition, the period of an observed absorption
pattern was used to confirm the detuning ratio of the
resonator to be 69=68. To obtain brightness values for
each spot, a two-dimensional Gaussian was fit to the spot
and its integral was used as a brightness value. This is a
good approximation to the model (1), as explained above.
Because this is the case, the integral was related to the Airy
(1) area to obtain an intracavity absorption value.
Figure 3(a) shows an absorption spectrum obtained like
this after applying a linear filter to the data (see below). A
comparison with the high resolution transmission molecu-
lar spectroscopic database (HITRAN, [11]) reveals that the
absorption feature is caused by the X3!%g ! b1!&g mag-
netic dipole intercombination transition in molecular oxy-
gen [12]. We used this identification to calibrate the offset
frequency !CE, which was not measured independently in
this demonstration. Note that our measurement perfectly
agrees in frequency scale, amplitude, and linewidth with
the database values (Fig. 3).

FIG. 2 (color online). Raw data image as seen by the CCD;
white corresponds to no light. The horizontal axis is the disper-
sion axis of the grating and the vertical axis is the scan axis.
Weak spots caused by absorption lines in the A bands of O2 are
clearly observed. The period in the pattern in vertical direction
indicates the vernier ratio of 69=68 (solid boxes mark exemplary
one pattern that was identified). The dashed box marks a unique
data set. The varying spot spacing and brightness common to all
spot columns originates from a nonlinearity of the scan and is
corrected for in the data analysis.

FIG. 3 (color online). (a) Spectrum extracted from the raw data
(solid line) and HITRAN [11] database values (dashed red line).
The phase shows a global positive second-order dispersion of the
resonator and spikes at the resonances. (b) Zoom of the data set,
highlighting the excellent agreement between our data (circles)
and the HITRAN database (red line).

PRL 99, 263902 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2007

263902-3

Each laser pulse has a total energy of 0.5 W/(1GHz). Treat the electric field at a fixed
location as the temporal pulse

E(t) = gaussian(t)× e−iωot (7)

The “bandwidth at FWHM” refers to the full frequency width ∆f = ∆ω/2π of the power
spectrum |E(ω)|2 of a single pulse, when the function |E(ω)|2 has reached half of its maxi-
mum.

(a) If there was only a single pulse, determine the power spectrum |E(ω)|2. Give all
parameters (such as the width and height) numerically.

Now consider a periodic sequence of pulses with a repetition rate of f = 1 GHz±1 Hz, where
the ±1 Hz indicates the uncertainty of the GHz rep-rate.

(8)

(b) Neglecting the uncertainty of the rep-rate, determine the power spectrum |E(ω)|2.
Give all parameters numerically

(c) Draw several qualitative graphs of the power spectrum approximately to scale, which
explain the meaning of your formula in part (b). Take into account (qualitatively) the
uncertainty in the GHz clock. On each graph, be sure to give the units you are using
on both the x and y axes.

Remark: Such frequency combs are remarkably useful, producing coherent light over
a wide range of well defined frequencies. Frequency combs have been used by Tom
Allison in our department.

Problem 5. Green theorem for first and second order equations
and the initial value problem

First order: Consider a model first order equation equation for the velocity

m
dv

dt
+mηv = 0 (9)

describing how a particle slows down.
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(a) (Optional-already assigned) Determine the Green function for the equation i.e. that[
m
d

dt
+mη

]
GR(t) = δ(t) (10)

(b) Show that the solution at time t satisfying the boundary conditions specified at t = to
are

v(t) = mGR(t, to)v(to) (11)

This is normally how the Green function (propagator) is used in quantum mechanics. The
Green function is used slightly differently for second order equations.

Second order: In class we showed that the electric potential can be determined from
knowledge of the boundary value and the Green function. A very similar statement can be
made about an initial value problem, i.e. the solution at future times can be determined
from the initial conditions and the Green function.

For definiteness we will take a harmonic oscillator with mass m and resonant frequency
ωo:

m
d2x

dt2
+mω2

ox = 0

The retarded Green function G(t|to) is the position x(t) of the harmonic oscillator at time t
from an impulsive force at time to. It is causal, meaning that it vanishes whenever t < to,
i.e. (

m
d2

dt2
+mω2

o

)
GR(t|to) = δ(t− to) and GR(t, to) = 0 for t < to (12)

(a) Given the initial conditions for the oscillator, x(to) and ∂tox(to), at time to show that
the future value of the oscillator is given by the Wronskian of the Green function and
the initial conditions

x(t) = m [GR(t, to)∂toxo − x(to)∂toGR(t, to)] t > to (13)

(Hint: closely examine the proof of the Green theorem given in class for the electrostatic
case).

(b) Use the Green function for the undamped oscillator given in class to verify that you
get the correct result for x(t) in terms of the initial conditions.

(c) Show that for the wave equation, −�GR(tx|toxo) = δ(t−to)δ3(x−xo), the appropriate
generalization is

u(t,x) =
1

c2

∫
d3xo [G(tx|toxo)∂tou(to,xo)− u(to,xo)∂toG(tx|toxo)] (14)

Remark: The results of this problem show that the general solution to the driven
damped harmonic oscillator starting from some initial time moment to is

d2x

dt2
+mη

dx

dt
+mω2

ox(t) = F (t) (15)
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is

x(t) = m [GR(t, to)∂toxo − x(to)∂toGR(t, to)] +

∫ t

to

dt′GR(t, t′)F (t′) . (16)

At late times (in the presence of any infinitessimal damping) the initial conditions can
be ignored.

Similarly for the first order equation:[
m
d

dt
+mη

]
v(t) = F (t) ; (17)

the general solution is

v(t) = mGR(t, to)v(to) +

∫ t

to

dt′GR(t, t′)F (t′) . (18)

Problem 6. Green function of the Diffusion equation

Consider the homogeneous diffusion equation:

∂tn−D∇2n(t, r) = 0 . (19)

The retarded Green function of the equation satisfies[
∂t −D∇2

]
G(tr|toro) = δ(t− to)δ3(r − ro) . (20)

with retarded boundary conditions.

(a) Write Eq. (20) in time and k by introducing the spatial Fourier transform

G(t,k) ≡
∫
d3r e−ik·rG(t, r) , (21)

and then determine the retarded Green function of the diffusion equation in k and
time.

(b) Determine the retarded Green function in ω and k, GR(ω,k), by Fourier transforming
Eq. (20) in time and space. Verify that if you perform the Fourier integral over ω that
you get the result of part (a).

(c) By taking the spatial Fourier transform verify that

GR(τ, r) = θ(τ)
1

3
√

2πσ2(τ)
exp

(
−(r − ro)

2

2σ2(τ)

)
(22)

where σ2(t) = 2Dτ where τ = t− to
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Problem 7. Decay of magnetic fields in a sphere

An insulated coil is wound on the surface of a sphere of radius a in such a way to produce a
uniform magnetic induction Bo in the z direction inside the sphere and a dipole field outside
the sphere. The medium inside and outside the sphere has a uniform conductivity σ and
permeability µ.

(a) Find the necessary surface current density K, and show that in the vector potential
has only an azimuthal component, given by

Aφ =
Boa

2

2

r<
r2>

sin θ (23)

where r< (r>) is the smaller (larger) of r and a.

(b) At t = 0 the current in the coil is cut off (the coil’s presence may be ignored from now
on). Show that, with the neglect of Maxwell’s displacement current, the decay of the
magnetic field is described by the diffusion equation:

∇2A =
µσ

c2
∂A

∂t
. (24)

(c) Using the (t,k) green function of the previous problem, show that the vector potential
at times t > 0 is given by

Aφ =
3Boa

π
sin θ

∫ ∞
0

e−νtk
2

j1(k)j1(
kr

a
) dk (25)

where ν = c2/µσa2 is a characteristic decay rate and j1(x) = sin(x)/x2 − cos(x)/x is
the spherical Bessel function of order one.

(d) Show that the magnetic field at the center of the sphere can be written explicitly in
terms of the error function

Bz(0, t) = Bo

[
Φ(

1√
4νt

)− 1√
πvt

exp

(
−1

4νt

)]
(26)
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