Steady Currents in Matter - Ohm's Law

- How to calculate?

- What?? I don't calculate currents, I calculate fields. Right! You specify a constituent relation and solve for fields.

For an ohmic conductor:

\[\mathbf{j} = \sigma \mathbf{E} + \kappa \mathbf{\partial}_t \mathbf{E} + \ldots \]

for an insulating dielectric we dropped this term since by definition no current flows for a constant field.

For a conductor we keep this and drop the first gradient which vanishes for constant fields, and is anyway smaller.

\[\mathbf{j} = \sigma \mathbf{E} \]

\[
\begin{align*}
[j] &= \frac{q}{m^2 s} \\
[E] &= \frac{q}{m^2} \\
[\sigma] &= \frac{1}{s}
\end{align*}
\]
Steady Currents in Matter

Now,

$$\nabla \cdot \vec{j} = 0$$

So

$$\nabla \cdot (\sigma \vec{E}) = 0$$

$$\nabla \times \vec{E} = 0$$

Thus we find the Eqn to solve:

$$- \nabla \cdot (\sigma \nabla \psi) = 0 \implies -\sigma \nabla^2 \psi = 0$$

for σ const.

We need boundary conditions

$$\vec{n} \cdot (\vec{j}_2 - \vec{j}_1) = 0$$

or

$$\sigma_2 \vec{E}_1^\perp = \sigma_1 \vec{E}_1^\perp$$

This is most often used at an ohmic/insulator interface

$$\sigma_1 \quad \sigma_2 = 0 \quad \Rightarrow \quad \text{Find } \boxed{\vec{E}_1^\perp = 0}$$

i.e. the electric field and current are parallel to the surface
Notice that the boundary conditions are rather different from the Dirichlet boundary conditions \(\psi = 0 \) we are instead specifying the normal derivatives

\[E_1 = -\vec{n} \cdot \nabla \psi = 0 \]

This is known as Neumann boundary conditions. The solutions can be rather different, and have a strong analogy with fluid flow.

Ex: An electrode injects current \(I \) at the origin of an ohmic sheet, the electrode has radius \(a \) and the outer rim of the ohmic sheet has radius \(b \). Determine the electric field everywhere, and determine the resistance of the configuration.
Problem Solution: We use \(\dot{j} = \text{current per area} \)
perhaps we should use \(\hat{K} \)

We want to solve

\[-\sigma \nabla^2 \Phi = 0 \quad \sigma \in \Omega \]

together with b.c. \(-\sigma \partial_\nu \Phi = I \)
\[\partial_\nu \quad 2\pi a \]

"surface" a line in 2D

\[\int \dot{j} \cdot dS = \int 2\pi \sigma a \phi \quad I \]
\[\text{circle of} \quad \text{radius} a \]

So solving

So solving

\[\int \frac{1}{2} \partial_\rho \Phi = 0 \]
\[\partial_\rho \quad \partial_\phi \]

\[\Phi = A + B \ln \rho \]

With b.c. \(\Phi |_{\rho=b} = 0 \) and \(-\partial_\rho \Phi |_{\rho=a} = \frac{I}{2\pi \sigma a} \)

\[\Phi = -\frac{I}{2\pi \sigma} \ln \rho \quad |_{b} \]

\[\hat{j} = \sigma \partial_\rho \Phi \quad \hat{\rho} = \frac{I}{2\pi \rho} \]

\[\hat{j} \leftrightarrow \text{perhaps we could have guessed this} \]
From Ohms Law

\[\Delta \Phi_{ab} = I R \quad \text{and our result} \]

\[\Delta \Phi_{ab} = I \left(-\frac{1}{2\pi \sigma} \ln \frac{b}{a} \right) \]

Find \[R = \frac{1}{2\pi \sigma} \ln \left(\frac{b}{a} \right) \]
Math Discussion

Reduction of Tensor Integrals - A Useful/ Easy Technique

\[x = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \]

* Three exercises to mastery

1) \[\int \Omega x^i x^j = C S^i_j \]

\[\int \Omega x^i x_i = C \cdot 3 \]

\[\frac{4\pi}{3} = C \]

2) Consider an integral like this and reduce to scalar:

\[I^i = \int \Omega x^i = \int \Omega x^i f(x \cdot \hat{v}) \]

Use rotational symmetry to claim:

\[I^i = A(v) \hat{v}^i \]

Now dot both sides with \(\hat{v} \):

\[I^i \hat{v}_i = A(v) = \int d\Omega x^i \hat{v}_i f(x \cdot \hat{v}) \]
So now we are free to take \(v \) along \(z \)-axis

\[
A(v) = \int \cos \theta \ f(v \cos \theta) \\
= 2\pi \int_{-1}^{1} d(\cos \theta) \ \frac{\cos \theta}{1 + v \cos \theta}
\]

So, \(J^i = A(v) \ \hat{v}^i \)

3. Consider an integral - Exercise #3

\[
I_{ij}^i = \int d\Omega \ \hat{x}_{i} \hat{x}_{j} \ f(\hat{x} \cdot \hat{v})
\]

Reduce this integral to two scalars:

\[
I_1 = \int d\Omega \ \cos^2 \theta \ f(v \cos \theta) \quad \text{or better use } I_1 + \\
I_2 = \int d\Omega \ f(v \cos \theta) \quad I_3 = \int d\Omega \ \left(\frac{3}{2} \cos^2 \theta - \frac{1}{2} \right) f(v \cos \theta)
\]

Solution

\[
I_{ij}^i = C(v) \ S_{ij}^i + D(v) \ \hat{v}^i \hat{v}^j
\]

Better

\[
I_{ij}^i = \frac{1}{3} A(v) \ S_{ij}^i + B(v) \left(\hat{v}^i \hat{v}^j - \frac{1}{3} \delta_{ij} \right)
\]

Symmetric traceless
Solution

\[I^i = \frac{1}{3} A(v) \delta^i + B(v) [\hat{v} \cdot \hat{v} - \frac{1}{3} \delta^i] \]

Taking trace

\[I^i = A(v) \]

\[= \int d\Omega \, x \cdot x \, f(x \cdot \hat{v}) \]

\[I_1 = A(v) = \int d\Omega \, f(v \cos \theta) \]

Dotting both sides \(\Omega \) \(\hat{v} \)

\[\hat{v} \cdot I^i \cdot v = \frac{1}{3} A(v) + 2B(v) \]

\[\int d\Omega \, \hat{x} \cdot \hat{v} \cdot \hat{x} \cdot \hat{v} \cdot f(v \cos \theta) = \frac{1}{3} A + 2B(v) \]

\[\frac{1}{3} I_1 \]

\[I_2 = \frac{1}{3} A + 2B \]

\[\frac{3}{2} I_2 - I_1 = B \]

So

\[I^i = \frac{1}{3} \frac{1}{3} A(v) \delta^i + \left(\frac{3}{2} I_2 - I_1 \right) \left(\frac{\hat{v} \cdot \hat{v} - }{3} \right) \]

\[= I_3 \]
\[T_{ij} = \int \frac{d^3 p \, f(p) \, p_i p_j p^k p^m}{V} \times \delta_{lm} \]

Show that: traceless tensor

\[T_{ij} = t \chi_{ij} \]

And determine \(t \): Solution start by saying

\[I_{ij} = \int d^3 p \, f(p) \, p_i p_j p^k p^m = C \left[\delta_{ik} \delta_{jm} + \delta_{ij} \delta_{km} + \delta_{im} \delta_{jk} \right] \]

Contracting all indices:

\[I_{ij} = C \left[3 \cdot 3 + 3 + 3 \right] \]

\[\frac{1}{15} I_{ij} = C \]

So we have

\[\frac{1}{15} \int d^3 p \, f(p) \, (p^2)^2 \]

\[C = \frac{1}{15} \int d^3 p \, f(p) \, (p^2)^2 \]

\[C = \frac{4}{15} \int_0^\infty dp \, f(p) \, p^6 \]
So

\[T^{ij} = C \left[\delta^i_j \delta^m_n + \delta^i_m \delta^j_n + \delta^i_n \delta^j_m \right] x^m \]

\[= C \left[0 + x^i \delta^j_n + x^i \delta^j_m \right] \]

\[T^{ij} = 2C x^i x^j \]

So

\[T^{ij} = \left(\frac{8 \pi}{15} \right) \int_0^\infty dp f(p) p^6 x^{i \delta} \]