


3 Electric Fields in Matter

3.1 Parity and Time Reversal: Lecture 10

(a) We discussed how tensor and vectors transform under rotations. See Appendix A.1

(b) We discussed how fields transform under parity and time reversal. A useful table is

Quantity Parity Time Reversal

t Even Odd

r Odd Even

p Odd Odd

F =force Odd Even

 L = r × p Even Odd

Q = charge Even Even

j Odd Odd

E Odd Even

B Even Odd

A vector potential Odd Odd

(c) Dissipative coefficients are T-odd. For instance, the drag coefficients changes as

m
d2x

dt2
= −ηv (3.1)

since d2x/dt2 is even under time reversal, and v is odd under time reversal we must have η → η = −η
in order to have the same (form-invariant) equations under time reversal, i.e.

m
d2x

dt2
= −η dx

dt
(3.2)

3.2 Electrostatics in Material: Lectures 11,12, 13, 13.5

Basic setup: Lecture 11

(a) In material we expand the medium currents jb in terms of a constitutive relation, fixing the currents
in terms of the applied fields.

jb = [ all possible combinations of the fields and their derivatives] (3.3)

We have added a subscript b to indicate that the current is a medium current. There is also an external
current jext and charge density ρext.

13



14 CHAPTER 3. ELECTRIC FIELDS IN MATTER

(b) When only uniform electric fields are applied, and the electric field is weak, and the medium is isotropic,
the polarization current takes the form

jb = σE + χ∂tE + . . . (3.4)

where the ellipses denote higher time derivatives of electric fields, which are suppressed by powers of
tmicro/Tmacro by dimensional analysis. For a conductor σ is non-zero. For a dielectric insulator σ is
zero, and then the current takes the form

jb = ∂tP (3.5)

• P is known as the polarization, and can be interpreted as the dipole moment per volume.

• We have worked with linear response for an isotropic medium where

P = χE (3.6)

This is most often what we will assume.

For an anisotropic medium, χ is replaced by a susceptibility tensor

Pi = χijE
j (3.7)

For a nonlinear medium P is a non-linear vector function of E,

P (E) (3.8)

defined by the low-frequency expansion of the current at zero wavenumber.

(c) Current conservation ∂tρ+∇ · j = 0 determines then that

ρb = −∇ · P (3.9)

(d) The electrostatic maxwell equations read

∇ ·E =−∇ · P + ρf (3.10)

∇×E =0 (3.11)

or

∇ ·D =ρext (3.12)

∇×E =0 (3.13)

where the electric displacement is
D ≡ E + P (3.14)

(e) For a linear isotropic medium
D = (1 + χ)E ≡ εE (3.15)

but in general D is a function of E which must be specified before problems can be solved.

A model for the polarization: Lecture 12

This is really outside of electrodynamics, but it helps to understand what is going on:

(a) Electrons are bound to atoms and have natural oscillation frequency ωo . The electric field disturbs
these atoms and drives oscillations for ω � ωo. ωo is of order a typical atomic frequency

ωo ∼
1

~

(
~2

2ma2o

)
∼ 13.6 eV

~
∼ 1016 1/s (3.16)
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We recall that in the lowest orbit of the Bohr model

1

2

(
e2

4πao

)
=

~2

2ma2o
= 13.6 eV (3.17)

which you can remember by noting that (minus) coulomb potential=e2/(4πao) energy is twice the
kinetic energy=p2/2m and knowing pbohr = ~/ao as expected from the uncertainty principle.

(b) Solving for the motion of the electrons

m
d2r

dt2
+mη

dr

dt
+mω2

or = eEe−iωt (3.18)

where η is a 1/(typical damping timescale), which could be set by the collision time between the atoms.
Solving for the current as a function of time for ω � ωo shows that the current (in this model) is

j(t) =
ne2

mω2
o

∂tE (3.19)

so the susceptibility (in this model) is

χ =
ne2

mω2
o

(3.20)

Taking n = 1/a3o we estimate that

χ ∼ 1 (3.21)

Working problems with Dielectrics: Lecture 12 and 13

(a) Using Eq. (3.9) and the Eq. (3.12) we find the boundary conditions that normal components of D
jump across a surface if there is external charge, while the parallel components E are continuous

n · (D2 −D1) =σext D2⊥ −D1⊥ =σext (3.22)

n× (E2 −E1) =0 E2‖ − E1‖ =0 (3.23)

Very often σext will be absent and then D⊥ will be continuous (but not E⊥).

(b) A jump in the polarization induces bound surface charge at the jump.

− n · (P2 − P1) = σb (3.24)

(c) With the assumption of a linear medium D = εE the equations for electrostatics in medium are
essentially identical to electrostatics without medium

− ε∇2ϕ = ρext , (3.25)

but, the new boundary conditions lead to some (pretty minor) differences in the way the problems are
solved.

Energy and Stress in Dielectrics: Lecture 13.5

(a) We worked out the extra energy stored in a dielectric as an ensemble of external charges are placed
into the dielectric. As the macroscopic electric field E and displacement D(E) are changed by adding
external charge δρext, the change in energy stored in the capacitor material is

δU =

∫
V

d3rE · δD (3.26)
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(b) For a linear dielectric δU can be integrated, becoming

U = 1
2

∫
V

d3rE ·D = 1
2

∫
V

d3r εE2 (3.27)

(c) We worked out the stress tensor for a linear dielectric and found

T ij
E =− 1

2 (DiEj + EiDj) +
1

2
D ·Eδij (3.28)

=ε

(
−EiEj +

1

2
E2δij

)
(3.29)

where in the first line we have written the stress in a form that can generalize to the non-linear case,
and in the second line we used the linearity to write it in a form which is proportional the vacuum
stress tensor.

(d) As always the force per volume in the Dielectric is

f j = −∂iT ij
E (3.30)

and
T ij = the force in the j-th direction per area in the i-th (3.31)

More precisely let n be the (outward directed) normal pointing from region LEFT to region RIGHT,
then

niT
ij = the j-th component of the force per area, by region LEFT on region RIGHT (3.32)

This can be used to work out the force at a dielectric interface as done in lecture.
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