1 Introduction

1.1 The maxwell equations and units: lecture 1

General Intro and Expansion in 1/c

e We use Heavyside Lorentz system of units. This is discussed in a separate note

e The Maxwell force law

v
F:q(E—i—ExB) (1.1)
e The Maxwell equations are
V-E =p (1.2)
J 1
VxB==+-0F (1.3)
c ¢
V-B =0 (1.4)
1
VxE=-— EatB (1.5)

We specify the currents and solve for the fields. In media we specify a constituent relation relating the
current to the electric and magnetic fields.

e Current conservation follow by taking the divergence of the second equation

Op+V-j=0 (1.6)

e For a system of characteristic length L (say one meter) and characteristic time scale T (say one second),
we can expand the fields in 1/c¢ since (L/T)/c < 1:

E=E© +EY + E® | (1.7)
B=B® +BW 4+ B® 4 | (1.8)

where each term is smaller than the next by (L/T')/c. At zeroth order we have

v-E® =) (1.9)
VxE® =0 (1.10)
v-B® = (1.11)
V x B =0 (1.12)

These are the equations of electro statics. Note that B(®) = 0 to this order (for a field which is zero at
infinity )
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e At first order we have

vV-EY =0 (1.13)
V x EM =0 ( since ; B(®) =0 ) (1.14)
v.-BW =0 (1.15)
Vv x BM :% + %&E(O) (1.16)

This is the equation of magneto statics, with the contribution of the Maxwell term computed with
electrostatics. Note that E) =0
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Electrostatics

2.1

Elementary Electrostatics

Electrostatics:

(a)

(b)

Fundamental Equations

V-E=p (2.1)
V x E =0
F =qF

Given the divergence theorem, we may integrate over volume of V- E = p and deduce Gauss Law:

/E'dS:qtot
S

which relates the flux of electric field to the enclosed charge

For a point charge p(r) = ¢6*(r — r,) and the field of a point charge

—

qr — Ty
=1 9 2.4
Art|r — 7, |? (24)
and satisfies .
qr — 7, 3
= g5 (r -, 2.5
s = e =) (25)

The potential. Since the electric field is curl free (in a quasi-static approximation) we may write it as
gradient of a scalar

E=-Vo D(xy) — P(x,) = — /bE -de (2.6)
The potential satisfies the Poisson equation
~ V20 =p. (2.7)
The Laplace equation is just the homogeneous form of the Poisson equation
— V0 =0. (2.8)
The next section is devoted to solving the Laplace and Poisson equations
The boundary conditions of electrostatics
n-(Ey— Ep) =0 (2.9)
n x (Ey — E;) =0 (2.10)

i.e. the components perpendicular to the surface (along the normal) jump, while the parallel compo-
nents are continuous.
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(f) The Potential Energy stored in an ensemble of charges is

1
Up = 5/d?’gc p(r)®(r) (2.11)
(g) The energy density of an electrostatic field is
1
up =1 52 (2.12)

(h) Force and stress

i) The stress tensor records T% records the force per area. It is the force in the j-th direction per
area in the ¢-th. More precisely let n be the (outward directed) normal pointing from region
LEFT to region RIGHT, then

n;T% = the j-th component of the force per area, by region LEFT on region RIGHT — (2.13)

ii) The total momentum density g,,, (momentum per volume) is supposed to obey a conservation

law A - ‘ B
OhGloy +OT? =0 il = 0TV (2.14)

Thus we interpret the force per volume f7 as the (negative) divergence of the stress
fI=-0r1" (2.15)

iii) The stress tensor of a gas or fluid at rest is 7% = pd* where p is the pressure, so the force per
volume f is the negative gradient of pressure.

iv) The stress tensor of an electrostatic field is

Ty = —E'E’ + 169 E? (2.16)
Note that I will use an opposite sign convention from Jackson: T4, = *Tﬁckson' This convention

has some good features when discussing relativity.

v) The net electric force on a charged object is
Fi = /d3x p(r)E? (r) = —/dSniTij (2.17)

(i) For a metal we have the following properties

i) On the surface of the metal the electric field is normal to the surface of the metal. The charge per
area o is related to the magnitude of the electric field. Let n be pointing from inside to outside
the metal:

ii) Forces on conductors. In a conductor the force per area is

11 .
F' = iorEZ = 502 n' (2.19)
The one half arises because half of the surface electric field arises from o itself, and we should not
include the self-force. This can also be computed using the stress tensor

iii) Capacitance and the capacitance matrix and energy of system of conductors
For a single metal surface, the charge induced on the surface is proportional to the ®.

q=Cd.

When more than one conductor is involved this is replaced by the matrix equation:

qa = ZCAB(I)B .
B
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2.2

Multipole Expansion

Cartesian and Spherical Multipole Expansion

(a)

Cartesian Multipole expansion

For a set of charges in 3D arranged with characteristic size L, the potential far from the charges r > L
is expanded in cartesian multipole moments

p\r
dr, 70 2.20
/ “4r|r — 1| (2:20)
L gt , p-T P

where each terms is smaller than the next since r is large. Here monopole moment, the dipole moment,
and (traceless) quadrupole moments are respectively:

o = [ aplr) (222
p= /d3:c p(r)r (2.23)

Qij :/dgm p(r) (3rir; — r28;;) (2.24)
respectively. There are five independent components of the symmetric and traceless tensor (matrix)

Q;j. We have implicitly defined the moments with respect to an agreed upon origin r, = 0.

Forces and energy of a small charge distribution in an external field

Given an external field ®(r) we want to determine the energy of a charge distribution p(r) in this
external field. The potential energy of the charge distribution is

1 .
Ug = Qtot®(r,) —p- E(7,) — 6@”82-Ej (ro) + ... (2.25)

where 7, is a chosen point in the charge distribution and the Qo p, ¥ are the multipole moments
around that point (see below).

The multipoles are defined around the point r, on the small body:

Qtot :/d3ﬂcp(r) (2.26)
= / d*x p(r) or (2.27)
Qij Z/dBw p(r) (36r; 6r; — 6r% 5;5) (2.28)

where ér =r — r,.
The force on a charged object can be found by differentiating the energy
F=-V,Ug(r, (2.29)

For a dipole this reads
F=(p-V)E (2.30)

Spherical multipoles. To determine the potential far from the charge we we determine the potential
to be

O(r) = / d3rOM (2.31)

Am|r — 7,

m Yem(0, 6
_Z Z 2?£+1 : e+l ) (2~32)

=0 m=—¢




CHAPTER 2. ELECTROSTATICS

Now we characterize the charge distribution by spherical multipole moments:
Gtm = / @1y p(ro) [ Yy (60 60)] (2.33)

You should feel comfortable deriving this using an identity we derived in class (and will further discuss
later)

1 1t
S Yo (6, 6)Y; (6, 2.34
T = 2 g T im0 i 06 (2.31)
Here
r~ =greater of r and r, (2.35)
r< =lesser of r and r, (2.36)
(2.37)
Could also notate this as , , ,
L = o 0 — ) + ——O(ro — ) (2.38)
Té>+1 Tt Tg-f-l o : :

I find this form clearer, since I know how to differntiate the right hand side using, df(x — z,)/dz =
0(x — xp)

(d) For an azimuthally symmetric distribution only gg are non-zero, the equations can be simplified using

Yo = /(204 1) /47 Py(cos ) to

o0
Py(cos0)
3 (2:39)
r
(e) There is a one to one relation between the cartesian and spherical forms

DPxy Dy, Pz < q11,410,91—1 (240)
sza (—)l.L - nyv @Iya (—)Z.'I)? @zy < q22,421,4920,92—1,42—2 (241)

which can be found by equating Eq. (2.31) and Eq. (2.20) using

7 = (sin € cos ¢, sin @ sin ¢, cos ) (2.42)
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Mathematics of the Poisson Equation

3.1 Solving the Laplace Equation by Separation

A summary of separation of variables in different coordinate systems is given in Appendix D. The most
important case is spherical and cartesian coordinates.

Solving the Laplace equation

We use a technique of separation of variables in different coordinate systems. The technique of separation
of variables is best illustrated by example. For instance consider a potential in a square geometry. The

specified on bottom

Figure 3.1: A rectangle illustrating separation of vars

potential ®(z,y, z) is specified at z = 0 to be ®,(x,y) and zero on the remaining boundaries

(a) We look for solutions of the separated form

o= 2()  X@)Y(y) (3.1)
—_—— Y——
1 tosurf || to surf

Substituting this into the laplace equation, and separating variables gives two equations for X, Y (the
parallel directions)

[_dd; - ki] X(z) =0, (3:2)
[_j; - kfn Y(z) =0. (3.3)

and one equation for the perpendicular equation

d? N
|:_d22 + kz- Z(Z) :O, (34)
where k2 = k2 + k2. The signs of ky,ky, k. are chosen for later convenience, because it will be

impossible to satisfy the BC for k3 < 0 or k < 0.

7
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The first step is always to separate variables and write down the general solutions to the separated
equations

X(z) =Acos(knz) + Bsin(k,x) (3.5)
Y (y) =Acos(kny) + Bsin(k,,y)
Z(z) —Ae k=% | Bek-2

(b) Tt is best to analyze the parallel equations first which are all of the form of a Sturm Louiville eigen-
value equation (see below). These determine the (eigen) functions X (z),Y (y) and the eigenvalues (or
separation constants) k, and k.

The general solution for X (z) is
X(x) = Acoskzx + Bsinkgx, (3.8)

and we are specifying boundary conditions at * = 0 and x = a. In order to satisfy the boundary
condition X (0) = X (a) = 0, we must have A = 0 and k = nn/a, leading to

X(z) = Bsin(kna)  kn = % n=12,.... (3.9)
Similarly
Y (y) = Bsin(kma) km = T o= 1,2,... (3.10)
a

Thus the parallel directions determine both the functions and the separation constants. The complete
eigen functions are
(mwy )
— n
b

(c) Finally we return to the perpendicular direction, Eq. (3.4). This equation does not usually constrain
the separation constants. The general solution is

m=1...00

|
2

Ynm (2, y) = sin (@) sin
a

Z(z) = AeM* + BeF=? (3.11)

with k, = \/k2 + k2,. With Z(z) specified The general solution then is a linear combination

9]
n=1

oo

[Anme_’ynmz + Bnme+’ynmz] wnm (l‘, y) (312)
m=1
Solving the separated equations:

After separating variables, all of the equations we wil study can be written in Sturm Louiville form:

[—d d

(e g+ a0 v(o) = Arlay(o) (3.13)

where p(z) and r(z) are postive definite fcns. Here we record some general properties of these equations.

(a) Given two independent solutions to the differential equation y;(z) a and y2(x) The wronskian times
p(z) is constant.

p(x) [y1 (@)ys(x) — y2(x)y) ()] = const (3.14)

wronskian(x)

This usually amounts to a statement of Gauss Law.
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(b) If boundary conditions are specified at two endpoints, x = a and = = b, then the problem becomes an
etgenvalue equation.

In this case only certain values of A = \,, are allowed and the functions are uniquely determined up to
normalization

dx

The parallel equations will have this form (see Eq. (3.2)), and notice how the boundary conditions at
x =0 and = = a fixed the value of k,, (see Eq. (3.8) and Eq. (3.9)).

The resulting eigenfunctions are complete ! and orthogonal with respect to the weight r(x)

[;jp(x)d + q(x)} U () = Apr(2)Yn () (3.15)

b
/ do ()0 (D) om(@) =0 ntm (3.16)

where a and b are the endpoints where the boundary conditions are specified. Note that the eigenfunc-
tions are complete, only in the space of functions that satisfy the boundary conditions.
(c) Solving the separated equations with § function source terms

We will also need to know the green function of the one dimensional equation

Z0p(a) -+ ()| 9, 0) = 6z — ) (317)

The Green function for such 1D equations is based on knowing two homogeneous solutions Yo, () and
Yin (), where Yo () satisfies the boundary conditions for > x,, and y;, () satisfies the boundary
conditions for x < x,.

The Green function is continuous but has discontinuous derivatives. Since we know the solutions
outside and inside it takes the form:

G(x,70) =C [Yout (2)in (€0)0(x — o) + Yin (¥)Yout (€0)0(2o — )] (3.18)

Evaout(‘P‘C>)yin(z<) (319)

where C is a constant determined by integrating the equation, Eq. (3.17), across the delta function.
In the second line we use the common (but somewhat confusing notation)

z~ =the greater of x and z, (3.20)

Z =the smaller of z and z, 3.21)

which makes the second line mean the same as the first line.
Integrating from z = x, — € to = x, + € we find the jump condition which enters in many problems:

g g

dzx +p(@) dxr

To+e€

=1, (3.22)

To—€

—p(x)

which can be used to find C.

(d) In fact the jump condition will always involve the Wronskian of the two solutions. Substituting
Eq. (3.18) into Eq. (3.22) we see that C = 1/(p(z,)W(x,))

G(l‘, xo) _ [yout(x)yin(xo)e(m ;f;:);vy(i;o()m)yout(mo)e(mo — JJ)] (323)
Eyout(x>)yin(l‘<) (324)

(o)W (2,)

where W(z,) = Yout(o)¥,(To) — Yin(To)Ylu:(To) is the Wronskian. Note that the denominator
(o)W (x,) is constant and is independent of z,.

1See Morse and Freshbach
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Green functions and the Poisson equation

The Dirichlet Green function satisfies the Poisson equation with delta-function charge
—V2Gp(r,r,) =63 (r —r,) (3.25)

and vanishes on the boundary. It is the potential at r due to a point charge (with unit charge) at v,
in the presence of grounded (® = 0) boundaries The simplest free space green function is just the point

charge solution
1

G =—— 3.26
° Axlr — 7, (8:26)
In two dimensions the Green function is
-1
Go = —log|r —r,| (3.27)
21

which is the potential from a line of charge with charge density A =1

The Poisson equation or the boundary value problem of the Laplace equation can be solved once the
Dirichlet Green function is known. By examining the Wronskian of the Green function and the solution
of interest, we showed that

@(T) = /Vdng GD(T’TO)p(TO) - /8\/ dS,n, - VT,,GD(ra TO)CD(TO) (328)

where n, is the outward directed normal.

A useful technique to find a Green function is image charges. You should know the image charge green
functions

i) A plane in 1D and 2D (class)
ii) A sphere (homework)

iii) A cylinder (homework + recitation)
The Green function can always be written in the form
G(r,ro) = Go(r,70) +Pina(r, r0) (3.29)
———
TnTr o]

where the induced potential, ®;,q(7, 7,), is regular and satisfies the homogeneous equation —V2®;,q =
0.

The interaction energy of a point charge ¢ is entirely due to the induced potential

Uint(ro) = qq)ind(ro) = qui}H: (G(T’, ro) - GO(T, T'o)) (330)
and the force
F = _vroUint (ro) (331)

Method of direct integration: This is best illustrated by example. Pick two dimensions of a surface
(say 0, ). The method is motivated by the fact that §3(r — r,) can be written as a sum

B(r—ry) = %2(5(7" —14)0(cos — cos8,)0(p — @) = i6(r — 1) Z Yo (0, 0) Yo, (00, 00)  (3.32)
Im

r2

Thus the green function is can also be written as

oo /L

G(r,r,) = Z Z Gem (1,70)Yem (6, 0) Yo, (6o, do) (3.33)

(=0 —/¢
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leading to an equation for gg, (r,7,)

10,0 U+ !
o o Tz | 9em(nme) = 50(r =) (3.34)

This remaining equation in 1D is then solved for the green function following the strategy outlined
above in Sect. 3.1 (see Eq. (3.17)). This depends on the conditions boundary conditions. Similar
expressions can be derived in other coordinates.

(f) For free space, the two solutions to Eq. (3.34) are yous(r) = 1/t and y;,(r) = 7%, p(r) = r? and
p(r)YW(r) = 2¢ + 1. Then the free space Green fcn can be written

1t
E E [Yem (0, 0) Yo (Bos d0)] 57— 751 3.35
47rIrfrol ‘ im0, 00)] g7 T (3.35)

=0 —¢ >
Some useful identities can be derived from Eq. (3.35):

i) The generating function of Legendre Polynomials is found by setting r, = 2 and r < 1 with

Yoo = /(20 + 1) /47 Py(cos 6)

¢
\/m Zr Py(cos ) (3.36)

ii) The spherical harmonic addition theorem which we find by writing by setting r, = 1 and r < 1

and using 1/|r — r,| = 1/v/14+1r2 = 2ri - 7,

4 4
Pu(# - #0) = s D Yo (60.9)¥5, (000) (3.37)
m=—/

where 7 - 7, is the cosine of the angle between the two vectors.

iii) The shell structure relation which you find by setting 7 = 7,

% +1 Z Yim (0, 6) Y7, (0, 6) (3.38)

This relation is what is responsible for shell structure in the periodic table

(g) Similar expansion exists in other coordinates. e.g. in cylindrical coords you:(p) = K (kp) and yin (p) =
I, (kp), leading to

1 1 dk t . ,
== > / S et e | L (kp ) Ko (k) (3.39)
——00 ™

dmlr —ro|  2m






4 Electric Fields in Matter

4.1 Parity and Time Reversal: Lecture 10

(a) We discussed how fields transform under parity and time reversal. A useful table is

Quantity Parity | Time Reversal
t Even Odd
I Odd Even
p 0Odd Odd
F =force Odd Even
L=rxp Even Odd
@ = charge Even Even
J Odd Odd
E Odd Even
B Even Odd
A vector potential Odd Odd

(b) Dissipative coefficients are T-odd. For instance, the drag coeflicients changes as

d’z
m—s = —Nv 4.1
il (4.1)
since d2x/dt? is even under time reversal, and v is odd under time reversal we must have n — n=-n
in order to have the same (form-invariant) equations under time reversal, i.e.
A’z dx
m— = —n— 4.2

4.2 Electrostatics in Material: Lectures 11,12, 13, 13.5

Basic setup: Lecture 11

(a) In material we expand the medium currents j, in terms of a constitutive relation, fixing the currents
in terms of the applied fields.

J» = all possible combinations of the fields and their derivatives] (4.3)

We have added a subscript b to indicate that the current is a medium current. There is also an external
current je,+ and charge density pegt-

(b) When only uniform electric fields are applied, and the electric field is weak, and the medium is isotropic,
the polarization current takes the form

jo=0E+YOE+ ... (4.4)

13
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where the ellipses denote higher time derivatives of electric fields, which are suppressed by powers of
tmicro/Tmacro Dy dimensional analysis. For a conductor o is non-zero. For a dielectric insulator o is
zero, and then the current takes the form

Jb = 0P (4.5)

e P is known as the polarization, and can be interpreted as the dipole moment per volume.

e We have worked with linear response for an isotropic medium where

This is most often what we will assume.
For an anisotropic medium,  is replaced by a susceptibility tensor

P, =, E (4.7
For a nonlinear medium P is a non-linear vector function of E,

P(E) (4.8)
defined by the low-frequency expansion of the current at zero wavenumber.

(c) Current conservation Oyp + V - j = 0 determines then that

Pb = -V-P (4.9)
(d) The electrostatic maxwell equations read
V-E=—-V:-P+ps (4.10)
V x E =0 (4.11)
or
V -D =Pext (412)
V x E =0 (4.13)
where the electric displacement is
D=E+P (4.14)
(e) For a linear isotropic medium
D=(1+x)E=cE (4.15)

but in general D is a function of E which must be specified before problems can be solved.

A model for the polarization: Lecture 12
This is really outside of electrodynamics, but it helps to understand what is going on:

(a) Electrons are bound to atoms and have natural oscillation frequency w, . The electric field disturbs
these atoms and drives oscillations for w < w,. w, is of order a typical atomic frequency

1 K2 13.6eV
~ ~ ~ 10%1 4.1
Yo <2ma3> R 07 1/s (4.16)
We recall that in the lowest orbit of the Bohr model
1 e? K2
—_ = = 1 . 4.1
2 <47rao> 2ma? 3.6eV (417)

which you can remember by noting that (minus) coulomb potential=e?/(47a,) energy is twice the
kinetic energy=p?/2m and knowing ppon, = h/a, as expected from the uncertainty principle.
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(b) Solving for the motion of the electrons

d*r dr ;
mog + mn— +mw?r = eBe ™" (4.18)
where 7 is a 1/(typical damping timescale), which could be set by the collision time between the atoms.
Solving for the current as a function of time for w < w, shows that the current (in this model) is

ne
j(t) = —= 0 FE 4.19
i) = 250 (4.19)
so the susceptibility (in this model) is
2
ne
— 4.20
X= e (4.20)
Taking n = 1/a? we estimate that
x~1 (4.21)

Working problems with Dielectrics: Lecture 12 and 13

(a) Using Eq. (4.9) and the Eq. (4.12) we find the boundary conditions that normal components of D
jump across a surface if there is external charge, while the parallel components E are continuous

n - (Dy — D1) =0eyt Doy — D1y =0eut (4.22)
n X (EQ - El) =0 E2H - El” =0 (423)

Very often e, will be absent and then D will be continuous (but not E ).
(b) A jump in the polarization induces bound surface charge at the jump.

—-—n- (PQ —Pl) = Oy (424)

(¢) With the assumption of a linear medium D = e¢E the equations for electrostatics in medium are
essentially identical to electrostatics without medium

— V2D = peyt (4.25)

but, the new boundary conditions lead to some (pretty minor) differences in the way the problems are
solved.

Energy and Stress in Dielectrics: Lecture 13.5

(a) We worked out the extra energy stored in a dielectric as an ensemble of external charges are placed
into the dielectric. As the macroscopic electric field E and displacement D(FE) are changed by adding
external charge dpe.t, the change in energy stored in the capacitor material is

§U = / d*z E - 6D (4.26)
14

(b) For a linear dielectric 6U can be integrated, becoming

U:%/ d?’xE-D:%/ d*zeE? (4.27)
\% \%4
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(¢) We worked out the stress tensor for a linear dielectric and found

T¢ =— 3(D'E’ + E'D’) + ;D E§Y (4.28)
1 g
= <—E’EJ + 2E25”> (4.29)
where in the first line we have written the stress in a form that can generalize to the non-linear case,
and in the second line we used the linearity to write it in a form which is proportional the vacuum
stress tensor.

As always the force per volume in the Dielectric is

fi=—o,T8 (4.30)
and N
T" = the force in the j-th direction per area in the i-th (4.31)

More precisely let n be the (outward directed) normal pointing from region LEFT to region RIGHT,
then

n;T% = the j-th component of the force per area, by region LEFT on region RIGHT (4.32)

This can be used to work out the force at a dielectric interface as done in lecture.
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Ohms Law and Conduction

5.1
(a)

(b)

()

Steady current and Ohms Law: Lecture 17

For steady currents
V-3=0 (5.1)

For steady currents in ohmic matter
j=0oF (5.2)

o has units of 1/s. Note that in MKS units o5 has the uninformative unit 1/ohm m:

OMKS

oL = . (5.3)
For oprxs = 107 (ohm m)~! we find o ~ 1018571,
To find the flow of current we need to solve the electrostatics problem
-V . (cE) =0 (5.4)
V x E =0 (5.5)
or for homogeneous material (o = const)
— oV =0 (5.6)

We see that we are supposed to solve the Laplace equation. However the boundary conditions are
rather different.

A point source of current is represented by a delta function 15%(r — r,). While a sink of current is
represented by a delta function of opposite sign —I5%(r — 7).

Eq. (5.4) and Eq. (5.6) need boundary conditions. At an interface current should be conserved so
n - (j2 —J1) =0 (5.7)

o 0B,  0d
2 1
— =01 5.8
290 ~ "Von (5:8)
Most often this is used to say that the normal component of the Electric field at a metal-insulator
interface should be zero:

n-E=0 at metal-insulator interface (5.9)

In general the input current (or normal derivatives of the potential) must be specified at all the bound-
aries in order to have a well posed boundary value problem that can be solved (at least numerically.)

In general the input currents I, = I, Is,... on a set conductors will be will be specified, specifying
the normal derivatives on all of the surfaces. Then you solve for the potential. The voltages of a given
electrode relative to ground is V, , and you will find that V;, = Y, Rapls. Rap is the resistance matrix.

17






6 Magneto Statics and Magnetic Matter

6.1 Magneto-Statics

At first order in 1/c we have the magneto static equations

” ' . 1
V x B =Jtct Jtot ZJE + E@E(O) (6.1)
——
displacement current
V.-B =0 (6.2)

where jp = 1/c 9, E© is the displacement current. The formulas given below assume that jp is zero. But,
with no exceptions apply if one replaces j — j + jp.
The current is taken to be steady
V.-3=0 (6.3)
Computing Fields: Lecture 14 and 15

(a) Below we note that for a current carrying wire
jd*z = Ide (6.4)

(b) We can compute the fields using the integral form of Amperes law V x B = j/c, which says that the
loop integral of B is equal to the current piercing the area bounded by the loop

}(B.dezlp“ﬂ (6.5)
C

For the familiar case of a current carrying wire we found By, = (I/c)/2mp, where p is the distance from
the wire.

(¢) The Biot-Savat Law is seemingly similar to the coulomb law

B(r) = / gy, Jro)/ex T =1, (6.6)

4drlr — r,|?

We used this to compute the magnetic field of a ring of radius on the z-axis
(I/c)ma®
47/ 2% + a?

which you can remember by knowing magnetic moment of the ring and other facts about magnetic
dipoles (see below)

B, =2 (6.7)

(d) Using the fact that V - B = 0 we can write it as the curl of A
B=VxA A—-A+VA (6.8)

but recognize that we can always add a gradient of a scalar function A to A without changing B.

19
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(e) If we adopt the coulomb gauge V - A = 0 and use the much used identity
Vx(VxA)=-VA+V(V-A), (6.9)
we get the result
~V2A = % . (6.10)

Then in free space A satisfies

A(r) = /d?’x _dro)/e (6.11)

“dAz|r — 7|

(f) The equations must be supplemented by boundary conditions. In vacuum we have that the parallel
components of B jump according to size of the surface currents K, while the normal components of
B are continuous

n X (B2 — Bl) :g (612)

Here K is the surface current and has units charge/length/s.

Multipole expansion of magnetic fields: Lecture 16

We wish to compute the magnetic field far from a localized set of currents. We can start with Eq. (6.14)
and determine that far from the sources the vector potential is described by the magnetic dipole moment:

(a) The vector potential is
m X r

A= —— 6.14
47r2 (6.14)
where

m = %/dgl‘oro x j(ro)/c (6.15)
is the magnetic dipole moment.

(b) For a current carrying wire:

I1 I
m—gi%Toxdeo—ga (616)
(¢) The magnetic field from a dipole
3(n-m)—m
B(r)= ——F— 6.17
(=" (617)
(d) UNITS NOTE: I defined m in Eq. (6.15) with j/c. This has the “feature” that that
mygr = % (618)
In MKS units A
myks X1
A = flo———— 6.19
MKS = I A2 ( )
Setting ¢, = 1 so pi, = 1/c? and multiplying by ¢
Ay =cAyks = myks/e X f =RaL =P (6.20)

42 472

Below we will define the magnetization, and similarly My, = My ks/c.
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Forces on currents

(a) We wish to compute the force on a small current carrying object in an external magnetic field. For a
compact region of current (which is small compared to the inverse gradients of the external magnetic
field) the total magnetic force is

F(r,)=(m-V)B(r,) (6.21)

where m is measured with respect r,, i.e.

m = %/vd‘gx or x j(r)/c (6.22)
with dr =r — r,.
(b) For a fixed dipole magnitude we have F = V(m - B) or
U(r,) =—m - B(r,) (6.23)
This formula is the same as the MKS one since we have taken mpy;, = myxs/c.

(¢) The torque is
T=mxB (6.24)

(d) Finally (we will discuss this later) the magnetic force on a current carrying region is

. 1 . iy
(Fp)’ = f/ (4 xB) = —/ dSn;Ty (6.25)
cJv v
where 1
Ty = —-B'B’ + 5325”‘ (6.26)

is the magnetic stress tensor and n is an outward directed normal.

Solving for magneto-static fields
(a) One approach is to use direct integration:
_ 3 j(TO)
Alr) = M/d %477\7* — 7,

Then for any current distribution once can compute the magnetic field — see lecture for an example of
a rotating charged sphere . This is analogous to using the coulomb law.

(b) Another approach is to view
~V2A = u% (6.27)

as a differential equation and to try separation of variables. There are (at least) two cases where the
equations for A simplify.

i) If the current is azimuthally symmetric then it is reasonable to try a form Ag(r,6)
J 2 Ag Jo
VA =p" = —V2Ay + — 25— = pt 6.28
we T 2am?e Me (6.28)
Here the —V2A,, is the scalar Laplacian in spherical coordinates. For instance, this is an effective
way to find the magnetic field from a ring of current or a rotating charged sphere.

ii) If the current runs up and down then you can try A.(p, ¢) in cylindrical coordinates:
- V2 Au(p, @) = p= (6.20)

Here V2A, is the scalar Laplacian in cylindrical coordinates. See homework for an example of a
cylindrical shell.
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(¢) Finally if the current separates two (or more) distinct regions of space (such as in a rotating charged

sphere), then in each region one has
VxH=0 (6.30)

So for each region one can introduce a scalar potential v, such that
H=-Vi, (6.31)

and (using V - B = 0) show that
— V%, =0 (6.32)

assuming p is constant. Then the Laplace equation is solved in each region, and the boundary conditions
(Eq. (6.49)) are used to connect the scalar potential across regions. The boundary conditions are
markedly different from the electrostatic case, and this leads to markedly different solutions. See
lecture for an example of the magnetic moment induced by an external field.
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6.2 Magnetic Matter

Basic equations

(a) We are considering materials in the presence of a magnetic field. We write jyat (the medium (material)
currents) as an expansion in terms of the derivatives in the magnetic field. For weak fields, and an
isotropic medium , the lowest term in the derivative expansion, for a parity and time-reversal invariant
material is

Imat _ VBV x B (6.33)
C

where we have inserted a factor of ¢ for later convenience.

(b) The current takes the form

”“;at —VxM (6.34)

i) M is known as the magnetization, and can be interpreted as the magnetic dipole moment per
volume.

ii) We have worked with linear response for an isotropic medium where
M =2B (6.35)

This is most often what we will assume.

iii) Usually people work with H (see the next items (c), (d) for the definition of H) not B !

M = xnH (6.36)

iv) For not-that soft ferromagnets M (B) can be a very non-linear function of B. This will need to
be specified (usually by experiment) before any problems can be solved. Usually this is expressed

as the magnetic field as a function of H
B(H) (6.37)

where H is small (of order gauss) and B is large (of order Tesla)

(¢) After specifying the currents in matter, Maxwell equations take the form

V x B =V x M + et (6.38)
c
V-B =0 (6.39)
or
jewt
VxH= (6.40)
c

V-B =0 (6.41)

where 2
H=B-M (6.43)

IThere are a couple of reasons for this. One reason is because the parallel components of H are continuous across the
sample. But, ultimately it is B which is the curl A, and it is ultimately the average current which responds to the gauge
potential, through a retarded medium current-current correlation function that we wish to categorize.

2 In the MKS system one has Hy s = H%BMKS — Mpris so that B and H have different units. In a system of units

where e, = 1 (so 1/po = ¢?) we have Hyp, = Hyrrs/c, Mur, = Myrgs/c or since 1/c = /fio:

Hpyp = poHpKks My = ViroMyKs (6.42)
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(d) For linear materials :

1

B=pyH=—_H=(1+xm)H A4
I e (1+xm) (6.44)

Implying the definitions

1
= - = (14 xm) (6.45)

Solving magnetostatic problems with linear magnetic media:

All of the methods described in Sect. (6.1) will work with minor modifications due to the boundary conditions
described below

(a) For linear materials in the coulomb gauge we get
jewt
Vx H=y— (6.46)
c
V-B =0 (6.47)

and with B =V x A and constant p we find

which can be solved using the methods of magnetostatics.
(b) To solve magneto static equations we have boundary conditions:

Kewt

n X (HQ — Hl)
n-(By — By) =0 (6.50)

i.e. if there are no external currents then the parallel components of H are continuous and the
perpendicular components of B are continuous.

(c) At an interface the there are bound currents which are generated

Krnat

n X (MQ — Ml) = (651)



7 A Summary of Maxwell Equations

7.1 The Maxwell Equations a Summary

The maxwell equations in linear media can be written down for the gauge potentials. You should feel
comfortable deriving all of these results directly from the Maxwell equations:

(a) The fields are
B=VxA (7.1)
1
E=--0A-V® (7.2)

(b) The equations of motion for the gauge potentials are in any gauge

1 1
—0® — =9, (a@ + V- A) =p (7.3)

c c

1 J
-0A+V (05‘,@ + V- A> = (7.4)
where the d’Alembertian is o2
_ 1 2

O= 292 +V (7.5)

Note that these equations for ® and A can not be solved without specifying a gauge constraint, i.e.
given current conservation:
Op+V-3=0 (7.6)

There are actually only three equations, but four unknowns.

(¢) If the coulomb gauge is specified

V-A=0 (7.7)
the equations read:
~V20 =p (7.8)
04 :% + %at(—wp) (7.9)
(d) If the covariant gauge is specified

%8t<1>+V-A:O (7.10)

then the equations read
—0® =p (7.11)
-0A :% (7.12)
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8

Induction and Quasi-Static Fields

8.1 Induction and the energy in static Magnetic fields

(a) The Faraday law of induction says that changing magnetic flux induces an electric field

(b) Faraday’s Law is suppressed by 1/c? relative to the coulomb law

1
VXE:—*atB
c

In integral form

1
%E~d£:—28t<1>3 Op =

area

B-da:?{A-df

(8.1)

(8.2)

(c) Faraday’s law can be used to compute the energy stored in a magneto static field. As the currents are
increased and the magnetic field is changed, the increase in energy stored in the magnetic fields and

()

associated magnetization is

5U:/H~5BdV
v

For linear material B = uH

1
=— / B Bd’z
2
This can also be expressed in terms of A:
U= [ 2.54
v C
and for linear material:
1 .
U=- / J.a
2 v C

(8.3)

(8.7)

The factor 1/2 arises because we are double counting the integral over the current in much the same

way that a factor of 1/2 appears in U = %fv p®

Using the coulomb gauge result, for vector potential we show that the energy stored in a magnetic field

1S

STy PO (ETC8 31

4m|r — 7,

2

For a set of current loops I, = I, I, . . ., we have (j/c) d*z = (I/c) de.

27

(8.8)
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i)

ii)

iii)

iv)

CHAPTER 8. INDUCTION AND QUASI-STATIC FIELDS

The energy integral Eq. (8.8) can be written
1
U= 5 zb: LM, T, (8.9)
a

Here M,, = L, is the self inductance, while M, is the mutual inductance. This is the circuit
analog of Eq. (8.8).

The magnetic flux through the a — th loop is
2,

— = My, (8.10)
c

Here the magnetic flux through a given loop is

@az/ B~da:% de- A (8.11)
a—loop a—loop

and the magnetic energy can also be written

R
U=3 > e, (8.12)

a

This is the circuit analog of Eq. (8.7).

The change in the magnetic energy (for fixed geometry) is

I
U= ?“(S(ba (8.13)

The back emf in the a-th loop is (at fixed geometry) :

1 dI
Eo=—-0:D, = —My,— 8.14
c ! bt ( )

For a small change in flux §®, and a small displacement of the loops d R, (at fixed currents), the

change in the magnetic energy
6Wbatt
——

T
SU = “26®, +0Wineen (8.15)
C

where the first term is the work done by the battery (to keep the current constant inspite of the
back emf induced by the changing flux), and Wipeeh = —F,-0 R, is the mechanical work done by the
external force moving the loops, and Fj, is force on the a —th loop. Ug = fv B?/(2p) = %IaMabIb
is a property of the initial and final magnetic fields and is independent of how these fields are
achieved. This combined with Eqs. 8.9,8.10 gives

1
F,-6Ry = +51u0Mo Iy (8.16)
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8.2 Quasi-static fields

(a) We studied a prototypical problem of a charging a capacitor plates. The maxwell equations are cate-
gorized by an expansion in 1/¢, i.e. that the speed of light is fast compared to L/T the characteristic
lengths L and times T. In this approximation the fields are determined instantaneously across space.
Organizing the maxwell equations

V-E=p (8.17)
Jj 1
V.-B=0 (8.19)
1
VXxE=- EatB (8.20)
in powers of 1/¢ we have:
i) Oth order:
vV-EY =) V x B® =0 (8.21)
VxE® =0 vV -B® = (8.22)
ii) 1st order:
1
v.ED —o vxBO =14 25 RE0 (8.23)
c c
V x EW =0 v.-BW = (8.24)
iii) 2nd order:
V.-E® =0 V x B® =0 (8.25)
1
VxE®=_-9BW Vv.-B® —o (8.26)
c
iv) Third order ...
1
V- E® =0 V x B® =4 -9, E® (8.27)
c
1
VxE® =_2§,B? v -B® —p (8.28)
c
Often time this goes beyond what is needed. Often at 3rd oder and beyond we will need to
consider radiation at this order ..., since the fields do not (in general) decay faster than 1/r at
infinity.

(b) In the quasi-static approximation we find a series of the following form:

E=E" +E® + .. (8.29)
B=BW +B® ¢ . (8.30)
were E() is smaller than E(®) by a factor of (L/(cT))? . Similarly, B®) is are typically smaller than

B (the leading B) by a factor (L/(¢T))2. If the material is ferromagnetic then u can enhance the
strength of B relative to the naive estimates.
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Quasi-static approximation with gauge-potentials

(a) We often solve for the gauge potentials ® and A (instead of E and B) order by order in 1/c¢ instead
of E and B (see below). For example to second order in the Coulomb gauge we have

i) Oth order:
~ V20 =p (actually all orders) (8.31)

ii) 1s order :

;1
_v2A = % + -0~V ) (8.32)
This is sufficient to determine the electric and magnetic field to second order
1
E=—-—-0A-V?o (8.33)
c

The covariant gauge can be studied similarly:

(b) In the covariant gauge we have

i) Oth:
— v =) (8.34)

i) 1st:
~V2A = % (8.35)

Together with gauge constraint:
1

Eat@@ +V-A=0 (8.36)

iii) 2nd:

1 82(1)(0)

~V20 = - = (8.37)

2 Ot?
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8.3
(2)

Quasi-static approximation in metals and skin depth

For the metals we derived a (quasi-static) diffusion equation for B by taking the curl of Amperes law
and using Faraday’s law

op
VB = 5 O0B (8.38)

You should feel comfortable deriving this. This shows the magnetic field diffuses in metal, with diffusion

coefficient )

c
p=%. (8.39)
uo
The diffusion coefficient has units (distance)?/time and is for copper, D ~ mlzlclz’ic

Eq. (8.38) should be compared to the diffusion equation for a drop of dye in a cup of water:
DV?n = 0. (8.40)

A Gaussian drop of dye spreads out in time, and the mean squared width of the the drop increases in
time as :

(Az)* = 2DAt (8.41)
If the RHS of Eq. (8.38) (the induced current) is small compared to the LHS, then we can neglect

the induced currents and the magnetic field is unscreened by the induced currents. In this case, the
characteristic lengths L we are considering are shorter than the skin depth:

2¢2

0=y — (8.42)
o pw
On length scales larger than § the magnetic field is damped by induced currents:
L <o magnetic field unscreened (8.43)
L>6 magnetic field screened (8.44)

At fixed L this can also be expressed in term of frequency, i.e. if w is less than wing = /0 L? then the
magnetic field is not screened at length L, but if w is greater than wi,q = ¢?/oL?, then the magnetic
field is screened at length L.
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The conservation theorems: Lecture 23

9

9

.1 Energy Conservation

(a) For energy to be conserved we expect that the total energy density (energy per volume ) wuior to obey
a conservation law

Ogot, + &Sﬁot =0 (9.1)
where Siot is the total energy flux.

(b) We divide the energy density into a mechanical energy density tmech (€.9. dU =T dS — pdV) and an
electromagnetic energy density uem

Utot = Umech T Uem (92)

where
1 1
U/em:§ED+§HB (93)

(¢) The energy flux S is also divided into a mechanical energy flux and an electromagnetic energy flux
Stot = Smech + Sem (94)
where the mechanical energy flux comes from forces between the different mechanical subsystem and

Som=cEx H (9.5)

(d) In this way for a mechanically isolated system U = [udV

dUmech dUem

=— S -d 9.6
dt dt P (96)
(e) The starting point of this derivation is
O¢tmech + 82‘531%}1 =j-FE (97)
and showing that
j -E = _8tuem - aisém (98)

.2 Momentum Conservation

(a) For momentum to be conserved we expect that the total momentum per volume g, satisfies a con-
servation law

Org’ + 0T, =0 (9-9)

where T% is the total stress tensor
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(b)

9.3

()
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We divide the momentum density into a mechanical momentum density g,,..;, and an electromagnetic
momentum density g,

tot = Bmech + 8em (910)

where the electromagnetic momentum density is
£
gm=DxB="235. (9.11)
c
The last step is valid for simple matter and pe/c? = (n/c)? where n = \/ué is the index of refraction.

The stress tensor Tyo, is also divided into a mechanical stress tensor T/ , and an electromagnetic
stress T

Ttigt = Tr’;jech + Tijem (912)
where the mechanical stress comes from the forces between the different mechanical subsystem and
T4 =-YD'E'+D'E")+ 1D -E§7 + —L(H'B’ + B'H") + }H - B§" (9.13)
electric stress magnetic stress
=e(—E'E? +1E%7) + — (-B'B’ + $B*¢") (9.14)
I
electric magnetic

In this way for a mechanically isolated system the total momentum P = [ gdV

dP’ .. . dPj y
mec em __ d l.TZJ 9.15
a  dt /W an (9.15)
The starting point of this derivation is
gl o + 0T = pEI + (j/c x BY (9.16)
and showing that _ ' ' N
pEj + (J/C X B)] = _8tggm - aljjelr]n (917)

Angular momentum conservation
Given the symmetry of stress tensor 7% = T7¢ and the conservation law
Degior + 0T =0 (9-18)
Then one can prove that angular momentum density satisfies a conservation law
Oe(1 X ot )i + 3z(€ijijTt'Z€) =0 (9.19)
where the total angular momentum density is r X g,

The angular momentum is divided into its mechanical and electromagnetic pieces. The electromagnetic
piece is:

L, = / T X 8o (9.20)
1%
For a mechanically isolated system we have
d ,
7 (Dmeen + Lem); = = /a , danyg e T, (9.21)

em torque on the system



10 Waves

10.1 Plane waves and the Helmhotz Equation: Lecture 24

(a) We look for solutions which have a particular (eigen)-frequency dependence w,, E = E,(x)e” "’
This is very similar to the way that we look for particular energies in quantum mechanics, going from
the time-dependent Schrodinger equation to the time-independent Schrodinger equation.

V- -D,(x) =0 (10.1)
V x H,(z) :ﬂw”cD(m) (10.2)
V x B, (x) =0 (10.3)
V x E,(x) :“"”163 (@) (10.4)

From which we deduce the Helmholtz equation
2
<v2 + w”f) E, =0 (10.5)
c
2
<v2 n “’”55> H, = (10.6)
c

which is an equation for the eigen-frequencies w,, and the corresponding solutions H,,(x), E, (x). It is
important to emphasize that for a bounded system not all frequencies will be possible and still satisfy
the boundary conditions.

The general solution is a superposition of these eigen modes,

E(t,) =) CpEn(w)e ! (10.7)

where the (complex) coefficients are adjusted to match the initial amplitude and time derivative of the
wave. As in quantum mechanics the eigen functions, are of interest in their own right.

We will drop the n sub label on the wave-functions and eigen-frequencies below.

(b) If we restrict our wave functions to have the form E, (1) = Eg(r)

Ei(r) =& 10.8

By(r) =% (10.9
then we get a condition on the frequency
2

= o s = -k (10.10)

c2 IE
We have not assumed that & , 333, or k are real.
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(¢) Examining Eq. (10.10) we see that that the plane waves propagate with speed

(10.11)

c
vp = 2
L n

where we have defined the index of refraction

n = \/ue (10.12)

(d) For every k we find from the Maxwell equations conditions on & and %

k-% =0 (10.13)
k-&=0 (10.14)
and W -
kx&=2% (10.15)
c
This last condition can be written
1. - ~ . o -
Zk X &= or nkx & =% (10.16)
where we defined! the relative impedance Z
Z= g (10.18)

and the index of refraction n = \/u€

(e) Linear Polarization: For k real, we get two possible directions & and A. €1 and €5, where €; and
€5 are orthogonal to k and €1 X €5 = k

@5 = &1€1 + &er (10.19)

and -
H = Hes + 5 (—e€r) (10.20)
and as usual ' = &/Z or B =né&

(f) Circular Polarization: Instead of using €; and € we can define the circular polarization vectors

€+
1
€+ = — (€1 L i€ 10.21
+ \/5( 1 2) ( )

For which + describes light which has positive helicity (circular polarization according to right hand
rule), while — describes light with negative helicity (circular polarization opposite to right and rule).

(g) The general solution for the elctric field in vacuum is
3k ; ;
E(tax) = Z / I0SE éosem'rizwktﬁs (1022)
s==+ ( ﬂ—)

where wy, = ck/n

IWe call this the relative impedance because in MKS units

/e

Ty =
HL rales

v/ o/€o =~ 3760hm is called the impedance of the vacuum and has units of ohms. But setting €, to 1 one sees that the
“impedance of the vacuum” is just 1/c. [1/¢] = s/m is the unit of resistance in HL units

(10.17)
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(h) Power and Energy Transport

i) For a general wave satisfying the Helmholtz equation (i.e. sunusoidal) we have the time averaged
poynting flux
1
Sav(r) = §Re {c E(r) x H*(r)} (10.23)

ii) For a general wave satisfying the Helmholtz equation (i.e. sunusoidal) we have the time averaged
energy density :

1 [1 L1 .
Uav('r') = §Re |:28E . + @B -B :| (].024)
iii) For a plane wave we have

Uny =1e| 6] (10.25)

C oo~

w =7 |6 K 10.2

Suc =161 (10.26)

c ~

= (10.27)
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10.2 Reflection at interfaces: Lecture 25 and 26

Reflection at a Dielectric: Lecture 25

(a) We studied the reflection at a dielectric interface of in plane polarized waves (these are called TM or
transverse magnetic waves), and of out of plane polarized waves (these are called TE or transverse
electric waves).

‘ﬁ ; : .“B T
. ya AV YA
& ,,// Eé’?/ / A8

pemm— = /4

,/“‘lf‘_ - /Z‘ — = N
A o s A X 58
P B e B

&

Figure 10.1: (a) Reflection of in plane polarized waves (transverse magnetic), and (b) Reflection of out of
plane polarized waves (transverse electric)

(b) The waves in region 1 and region 2 are

E, =Ejetkrm—wt  Epetkrr—wt (10.28)
E, =Epeikrr—wt (10.29)

together with similar formulas for H; and Hy. Note that H = E/Z

(c) By demanding the electromagnetic boundary conditions at the dielectric interface:

n - (Dy — Dy) =0 (10.30)
n X (H2 — Hl) =0 (1031)
n x (Es — Ey) =0 (10.33)
we were able to conclude
i) Snell’s law
ny sin 91 = N2 sin 92 (1034)
ii) For in plane polarized (TM=transverse magnetic) waves:
% :Zl cos 01 — Z5 cos O (10.35)
Er  ZicosO + Zycosby
E 2Z 0
= - 2087 (10.36)

E;r ~ ZjcosOy + Zycos by

where Z = \/u/e, or Z =1/n when p =1, and cosfy = \/1 — (n1/n2)?sin’ 6,
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ili) For out of plane polarized (TE=transverse electric) waves:

Er  Zjcos0) — Zy cos b
E " Zycos O + Z cos by
ET o 222 COS 91

E " ZycosOy + Z1 cos by

(10.37)

(10.38)

iv) You should feel comfortable deriving these results.

The reflection coefficient of in-plane (TM) waves vanishes at the Brewster angle tan 5 = nj/ny. This
means that upon reflection the light will be partially polarized.

Reflection at Metallic interface: Lecture 26

(a)

Compare the constituent relation for a metal and a dielectric:

j=0E+ x.0E +cx, VxB Metal (10.39)
Jj= XeOiE +cx,;, V x B Dielectric, (10.40)
in Fourier space
j=— in(l—U + xg) Y2V xB  Metal (10.41)
w
j=— in(xe) Y2V x B Dielectric, (10.42)
Thus (noting that ¢ = 1 + x.) we see that the Maxwell equations in a metal merely involve the
replacement x. — X, + i0/w, or
e éw) =+ 2 (10.43)
w
Usually 0/w > ¢ and thus usually we replace:
e éw) ~ 2 (10.44)
w

By looking for solutions of the form H = H_.e®*"7“! in metal, we found k% = £(1 +)/4, so for a
wave propagating in the z direction the decaying amplitude is

H— Hceikimalz _ Hceiz/éefz/ﬁ (1045)

we also found the (much smaller) electric field

1—d) . .
E = ,/&MHce”/‘se_Z/‘; (10.46)
V)

which is suppressed by /w/o relative to H

We used these to study the reflection of light at a metal surface of high conductivity at normal incidence.
This involves writing the fields outside the metal as a superposition of an ingoing and outgoing wave,
and applying the boundary conditions as in the previous section to match the wave solutions across
the interface. You should feel comfortable deriving these results.

We analyzed the power flow in the reflection of light by the metal, and we analyzed the wave packet
dynamics (see next section).
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10.3 Waves in dielectrics and metals, dispersion

General Theory

(a)

For maxwell equations at higher frequency the gradient expansion that we used should be replaced,
as the frequency of the light is not small compared to atomic frequencies. However the wavelength A
is typically still much longer than the spacing between atoms, A > a,. Thus the expansion in spatial
derivatives is still a good expansion. In a linear response approximation we write the current as an
expansion:

jt,r) = /Oo dt' o(t —t"E(t',r) +/dt’xﬁ(t —t') eV x B(t',r) (10.47)

oo

often neglect

Often the magnetic response (which is smaller by (v/c)?) is neglected.
The functions are causal, we want them to vanish for ¢’ > ¢, yielding
o(t) =0 t<0 (10.48)
Xht) =0 t<0 (10.49)
In frequency space the consituitent relation reads

J(w,r) = o(w)B(w,r) + x5 (w) ¢V x B(w,r) (10.50)

usually neglect

Motivated by considerations described below we will write the same function o(w) in a variety of ways

o)

o(w) = —iwxe(w) and e(wW)=1+4+ xe(w)=1+1 (10.51)

For low frequencies (less than an inverse collision timescale w < 1/7..) our previous work applies. This
this places constraints on o(w) at low frequencies
i) For a conductor for w < 7., we need that j(t) = 0,E(t). This means that
o(w)~o, for w—0 (10.52)
ii) For an insulator (dielectric) we had that j(t) = 0;P(t) = x. O F so we expect that
o(w) = —iwy, for w—0 (10.53)

It is this different low frequency behavior of the conductivity that distinguishes a conductor from an
insulator.

With consituitive relation given in Eq. (10.50), and the continuity equation —iwp(w) = =V - j(w,r),
we find that the maxwell equations in matter are formally the same as at low frequenency

W)V - E(w,r) =0 (10.54)
V x B(w,r) :‘iwg(j)“(“)E(w) (10.55)
V- B(w,r) =0 (10.56)
V x E(w,r) :%UJB(w, r) (10.57)
£(w) and ju(w) are complex functions of
e(w) =1+ xe(w) (10.58)
M) =15 (10.50)

We gave two models for what e(w) might look like in dielectrics and metals (see below).
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Given the Maxwell equations we studied the propagation of transverse waves
Er(t,r) = B etk@wt (10.60)

with E, - k = 0. The helmholtz equation for transverse waves becomes:

2
K+ % E,=0. (10.61)

where e(w) = ¢'(w) + i€’ (w) and p(w) = ' (w) + " (w) are complex functions of frequency, with real
parts, € (w), i/ (w), and imaginary parts, €’ (w), "/ (w). In general Eq. (10.61) determines to a relation
between w(k) and k for any specified e(w) and p(w). Usually we will set p(w) = 1.

The real part of w(k) is known as the dispersion curve and determines the phase and group velocities of
the wave and wave packets. This is determined by the real part of the permitivity (w). The imaginary
part of the (w) dtermines the absorption of the wave.

To see this we solved Eq. (10.61) with u(w) =1 and the imaginary part of €(w) small. Defining
w(k) = wo(k) — £T(k), (10.62)

so that , '
Ep(t,x) = EyeF@eiwe(R)te= 3T (k) (10.63)

we find that w,(k) (which is known as the dispersion curve is) satisfies

2 wg /
-k + € (wo) =10 (10.64)
and the damping rate is
wo (k)€” (wo (K))
T'(k) = 10.
= =) (10:69

Sometimes it is easier to think about it as k as function of w rather than w(k). Solving Eq. (10.61) for
k
k= nw), (10.66)

with n(w) = /€(w), we find the wave form:

cwng (w)
—e

E(t, ’I“) — Eoe—iwt+ik~m — Eo e—iwt el

wna(w)
— LR,

e (10.67)

where n1(w) is the real part of n(w), and ny(w) is the imaginary part of n(w).

Thus the real part of n(w) determines the real wave number of the wave, (w/c)ni(w), while the
imaginary part of n(w), ns(w), determines the absorption of the wave as it propagates through media.

A model ¢(w) function for dielectrics

In general one needs to know how the medium reacts in order to determine o(w). At low frequency o(w)
is determined by a few constants which are given by the taylor expansion of o(w). At higher frequency
a detailed micro-theory is needed to compute o(w). The following model capture the qualitative features
of dielectrics as a function of frequency. Replacing the model for a dielectric, with a quantum mechanical
description of electronic oscillations in atoms, gives a realistic description of neutral gasses.

(a)

For an insulator we gave a simple model for the dielectric, where the electrons are harmonically bound
to the atoms. The equation of motion satisfied by the electrons are

d? d
m% + mnd—:: + mw?e = e By () (10.68)
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Solving for the current j(t) = j,e ™! with a sinusoidal field E(t) = E,e™* we found y.(w)

w2

=1ty W =14 — "2 10.69
c) =14 xe(w) =14 g (10.69)

where the plasma frequency is
= (10.70)

and at low frequency we recover Eq. (4.20)

w2
Xe =2 w—g for w—0 (10.71)
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10.4 Dynamics of wave packets

(a) Any real wave is a superposition of plane waves:

u(z,t) = /00 %A

k tkx—w(k)t
e (ke

(10.72)

The complex values of A(k) can be adjusted so that at time ¢ = 0 the initial conditions, u(z,0) and
Oru(z,0), can be satisfied.

A proto-typical wave packet at time ¢ = 0 is a Gaussian packet

) 1 (z—20)?
u(z,0) = etho® e 202 10.73
Y (0.7
The spatial width is
o
Ax = — 10.74
7 ( )
The Fourier transform is
A(k) = exp(—1(k — k,)?0?) (10.75)
The wavenumber width )
Ak = —— 10.76
Tae ( )
SO )
AkAx = 3 (10.77)

which saturates the uncertainty bound AxAk > %

saturates the bound.

A picture of these Fourier Transforms is

0.2 . .
015 k=10 - 1
01 | - 0.8
S 005} -
Z < 06
3 <
& 005t - 0.4
01 | 1 0
015 | 1] - '
0.2 - a4 - 0
10 5 0 5 10

The Gaussian is the unique wave form which

(¢) The uncertainty relation relates the wavenumber and spatial widths

where

(Az)? =

(Ak)? =

Ax Ak > %

S0 lu(@, 0)]P (z — 7)?

= Tulz,0)
L ARGk — )2

S JA(R)[?

-k, =10 A .
_
il '
- HI—
-
i 2Ak T
0 2 4 10 12 14
(10.78)
(10.79)
(10.80)
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(d) You should be able to derive that the center of the wave packet moves with the group velocity

_dw

= 10.81
T (10.81)

Vg
In a very similar way one derives that, if a wave experiences a frequency dependent phase shift ¢(w)
upon reflection or transmission, the wave packet will be delayed relative to a geometric optics approx-
imation by a time delay

_ do(w)
A= (10.82)




11 Radiation in Non-relativistic Systems

11.1 Basic equations

This first section will NOT make a non-relativistic approximation, but will examine the far field limit.

(a) We wrote down the wave equations in the covariant gauge:

—0® =p(to, T0) (11.1

—0A =J(t,,71,)/c (11.2)
The gauge condition reads

1

Eat<1>+v-A=0 (11.3)

(b) Then we used the green function of the wave equation

1 [P — 7,
G(t,r|t =——6(t—t 114
(t,r[toro) Anlr — 1y ( ot c ) ( )
to determine the potentials (@, A)
Bt r)*/d3x¥ (T,ry) (11.5)
’ - 047T|']" — T0|p s o .
1
Alt,r) = [ dPry———J(T 11.
(1) = [ da, e T e (116)
Here T'(t,r) is the retarded time
|r — 7o)
T(t,r)=t——2
(t,7) _

(11.7)

(¢c) We used the potentials to determine the electric and magnetic fields. Electric and magnetic fields in

the far field are

1 J(T,r,)
Araa(t,r) = Tnr /r — (11.8)
and
n
B(t,r) =~ 2 % A (11.9)
E(t,r) =n X = x 8,Arad = —n x B(t,7) (11.10)
C

In the far field (large distance limit 7 — co) limit we have

To

T=t—"4n 22 (11.11)
C

c

45
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And we recording the derivatives

(), -(3).
() (). 02(8),

(d) We see that the radiation (electric field) is proportional to the transverse piece of the 9;J

In general the transverse projection of a vector is

—mx(nxV)=V -—n(n-V) (11.15)

(e) Power radiated per solid angle is for r — oo is

aw dP(t . . .
a0 - 4 = energy per observation time per solid angle (11.16)
and
dP(t) _
o = S-n (11.17)
=c|rE|? (11.18)

11.2 Examples of Non-relativistic Radiation: L31

In this section we will derive several examples of radiation in non-relativistic systems. In a non-relativistic
approximation
r o n
T=t—-+—"-1, (11.19)
c
small

The underlined terms are small: If the typical time and size scales of the source are Tiy, and Ly, then
t ~ Tiyp, and 7, ~ Liyp, and the ratio the underlined term to the leading term is:

L
P« ] (11.20)
Cltyp

This is the non-relativistic approximation. For a harmonic time dependence, 1/Tiy, ~ wiyp, and this says

that the wave number k = 2{ is small compared to the size of the source, i.e. the wave length of the emitted

light is long compared to the size of the system in non-relativistic motion:

27TLtyp

1 11.21
3 < ( )

(a) Keeping only t—1r/c and dropping all powers of n-7,/c in T results in the electric dipole approximation,
and also the Larmour formula.

(b) Keeping the first order terms in
7 (11.22)

n
C

results in the magnetic dipole and quadrupole approximations.



11.2. EXAMPLES OF NON-RELATIVISTIC RADIATION: L31

The Larmour Formula

47

(a) For a particle moves slowly with velocity and acceleration, v(t) and a(t) along a trajectory 7. (t)

(b) We make an ultimate non-relativistic approximation for T'
r

T~t——-=t,
c

Then we derived the radiation field by substituting the current
J(te) = ev(te)83(ro — ra(te))
into the Egs. (11.8),(11.9), and (11.17) for the radiated power
(c) The electric field is

= Tl XX a(t.)

Notice that the electric field is of order
e af(te)

E~—
dr 2

(d) The power per solid angle emitted by acceleration at time ¢, is
dP(t.) e?

0 = @ ® t)sin’o

Notice that the power is of order
2

P~crEP ~ %
C

(e) The total energy that is emitted is
e? 2a?(t.)
P(te) = —=
(te) 4T3 3

The Electric Dipole approximation

(a) We make the ultimate non-relativistic approximation

room-r, r
J(t— - ~Jt— -
R T
Leading to an expression for A;,q
11
Agd = ——0ip(te
ad dnr ¢ tp( )

where the dipole moment is

p(te) = /dBl'o pte)ro
(b) The electric and magnetic fields are

1
Erad =N X n X 7875Arad
C

= XX P(te)

Brad =n X Erad

(c) The power radiated is
dP(te) 1 pP(te) . o
= 0
Q" 16w &

—iw(t—r/c)

(d) For a harmonic source p(t.) = poe

1 w?

_ 2
—E?’?\Po\

the time averaged power is

(11.23)

(11.24)

(11.25)

(11.26)

(11.27)

(11.28)

(11.29)

(11.30)

(11.31)

(11.32)

(11.33)

(11.34)
(11.35)

(11.36)

(11.37)
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The magnetic dipole and quadrupole approximation: L32
(a) In the magnetic dipole and quadrupole approximation we expand the current

n-r,

+ . O (te,m0)/c

J(T) J(te) (11.38)

electric dipole next term

The next term when substituted into Eq. (11.8) gives rise two new contributions to A,.q, the magnetic
dipole and electric quadrupole terms:

Ana=  ALL  + AML +  AZ (11.39)
~—— ——
electric dipole mag dipole electric-quad
(b) The magnetic dipole contribution gives

i LT ) (11.40)

rad 7 g e N ’

where m
1

m = 5/ ro X J(te,10)/C, (11.41)

is the magnetic dipole moment.

The structure of magnetic dipole radiation is very similar to electric dipole radiation with the duality

transformation

E-dipole — M-dipole (11.42)

p — m (11.43)

E = B (11.44)

B = -E (11.45)

(d) The power is
dPM(t,)  1n%sin® 6
ds) 16m2c3 (11.46)

The power radiated in magnetic dipole radiation is smaller t
radiation by a factor of the typical velocity, viyp squared:

PMl m2

han the power radiated in electric dipole

Viyp |2
where veyp ~ Liyp/Tiyp
Quadrupole rdiation
(a) For quadrupole radiation we have
rad,E2 — 24777;0721 ! (11.48)
where Q% is the symmetric traceless quadrupole tensor.
Qi = /d?’xop(te,ro) (3rirl —r26%) (11.49)
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(b) The electric field is

—1 T -
Eiaa = Y [ann(n : Qn)] (11.50)
where (more precisely) the first term in square brackets means n; Q" while the second term means,

(ng Q™ n,, )n?.

(c) A fair bit of algebra shows that the total power radiated from a quadrupole form is

1 b
= a 11.51
T20mes 2 Gt (11.51)
(d) For harmonic fields, Q = Q,e~™! | the time averaged power is rises as w®
c w\% 5
= — 11.52
14407 (c> <% (11.52)

(e) The total power radiated radiated in quadrupole radiation to electric-dipole radiation for a typical
source size Liyp, is smaller:

PE2 (L
pEL "~ <Cy ) (11.53)
11.3 Attenas
(a) In an antenna with sinusoidal frequency we have
J(T,7,) = e @t I (p,) (11.54)
(b) Then the radiation field for a sinusoidal current is:
efiw(tfr/c) g
Apg= 7 / e~ T () o (11.55)
4drr .

In general one will need to do this integral to determine the radiation field.

(¢) The typical radiation resistance associated with driving a current which will radiate over a wide range
of frequencies is Ryacuum = Clho = v/ lo/€o = 376 Ohm.






12

Relativity

Postulates

(a)

(b)

All inertial observers have the same equations of motion and the same physical laws. Relativity explains
how to translate the measurements and events according to one inertial observer to another.

The speed of light is constant for all inertial frames

12.1 Elementary Relativity

Mechanics of indices, four-vectors, Lorentz transformations

(a)

We desribe physics as a sequence of events labelled by their space time coordinates:
ot = (2%, 21, 22, 2%) = (ct, ) (12.1)

The space time coordinates of another inertial observer moving with velocity v relative to the first
measures the coordinates of an event to be

o' = (2%, 2", 2%2%) = (ct, z) (12.2)

The coordinates of an event according to the first observer x* determine the coordinates of an event
according to another observer z# through a linear change of coordinates known as a Lorentz transfor-
mation:

=t = LA (v)z” (12.3)
I usually think of z* as a column vector
20
1
T
22 (12.4)
23
so that without indices the transform
v—z= (L) (12.5)

Then to change frames from K to an observer K moving to the right with speed v relative to K the
transformation matrix is

Yo -8
[T (12.6)

with 8 =v/cand v =1//1— 2.
A short excercise done in class shows that a this boost contracts the * = 2%+ 2! direction (i.e. ct +x)
and expands the = = 2° — 2! direction (i.e. ¢t — z). Thus, 27 and z~ are eigenvectors of Lorentz

51
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boosts in the x direction

zt = 1 :Lg zt (12.7)
= 1 fg @ (12.8)

Instead of using v we sometimes use the rapidity y
tanhy = % or y=3In 1 i_g (12.9)

and note that y ~ 3 for small 3

With this parametrization we find that the Lorentz boost appears as a hyperbolic rotation matrix

coshy —sinhy
—sinhy  coshy

LH = . (12.10)
1
Then
a2t =e Vot z =eVz~ (12.11)
Since the spead of light is constant for all observers we demand that
—(ct)? + 2% = —(ct)® + 22 (12.12)

under Lorentz transformation. We also require that the set of Lorentz transformations satisfy the
follow (group) requirements:

L(—v)L(v) =1 (12.13)
L(vg)L(v1) =L(v3) (12.14)
here I is the identity matrix. These properties seem reasonable to me, since if I transform to frame

moving with velocity v and then transform back to a frame moving with veloicty —wv, I shuld get back
the same result. Similarly two Lorentz transformations produce another Lorentz transformation.

Since the combination
— (ct)? + x? (12.15)

is invariant under lorentz transformation, we introduced an index notation to make such invariant
forms manifest. We formalized the lowering of indices

Ty =g’ oz, =(—ct,x) (12.16)

with a metric tensor:
goo = —1 g11 =922 =933 =1 (12.17)

In this way we define a dot product
x-x=alz, = —(ct)’ +x? (12.18)

is manifestly invariant.

Similarly we raise indices
=g, (12.19)
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with

g = (12.20)

Of course the process of lowering and index and then raising it agiain does nothing:

1

g" = 9" gy, = 0%, = identity matrix = (12.21)

Generally the upper indices are “the normal thing”. We will try to leave the dimensions and name of
the four vector, corresponding to that of the spatial components. Examples: z# = (ct, x), A* = (P, A)
, JH = (cp,J), and P* = (E/c,p).

Four vectors are anything that transforms according to the lorentz transformation A* = (A% A) like
coordinates
At = LH AY (12.22)

Given two four vectors, A* and B* one can always construct a Lorentz invariant quantity.

A-B=A,B"=Alg,,B"=-A"B"+A - B=-A"B’+A-B=A"g,,B" =A,B"=A-B (12.23)

From the invariance of the inner prodcut we see that the lower (covariant) components of four vectors
transform with the inverse transformation and as a row,

z, =z, =x,(L7H. (12.24)
I usually think of z,, (with a lower index) as a row
(JJQ T Ty 333) (1225)

So the transformation rule in terms of matrices is

(g 21 Ty x3) = (20 1 X2 T3) (L_1> (12.26)
In this way the inner product
0
1
A, B" = (Ag Ay Ay A3) <L1> (L) gQ = A, B* (12.27)
BB

is invariant. If you wish to think of x, as a column, then it transforms under lorentz transformation
with the inverse transpose matrix

) Zo
Lo - <L1T> 1 (12.28)
Lo )
3 x3

As is clear from Eq. (12.23), the metric tensor is an invariant tensor, i.e.

g = LM LY g (12.29)

o
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is the same tensor diag(—1,1,1,1) in all frames (so I dont need to put an underline g"” on the LHS).
From Eq. (12.29) it follows that the inverse (transpose) Lorentz transform can be found by raising and
lowering the indices of the transform matrix, i.e.

L7 = gpuLtg” = (L7'7),° (12.30)

where we have defined L. Thus if one wishes to think of a lowered four vector A, as a column, one
has
A, =LIA, (12.31)

Thus, a short excercise (done) in class shows that if
TH = LA LY, TP (12.32)
then there is a consistency check

Th =L*,L,,T% =L T (L), (12.33)

v

Doppler shift, four velocity, and proper time.

(a)

(b)

The frequency and wave number form a four vector K* = (£, k), with |k| = w/c. This can be used to

c’
determine a relativistic dopler shift.

For a particle in motion with velocity v, and gamma factor 7, the space-time interval is
ds? = da,da* = —(cdt)? + dz? = —(cdr)?. (12.34)

ds? is associated with the clicks of the clock in the particles instantaneous rest frame, ds? = —(cdr)?,
so we have in any other frame

dr =v/—ds?/c = dt\[1 — (2”;)2 /2 (12.35)

_a

12.36
Tp ( )
The four velocity of a particle is the distance the particle travels per proper time
dz?
U* = ;—T = (u’,u) = (Ve Vpvp) (12.37)
SO
u* =LrU” (12.38)

Note U, U" = —c2,

The transformation of the four velocity under Lorentz transformation should be compared to the
transformation of velocities. For a particle moving with velocity v, in frame K, then in another frame
K moving to the right with speed v the particle moves with velocity

l

N _ Up — U

P Sl (12.39)
- vﬂv/c2
vl
" R— (12.40)

vp(1 — v,llv/cz)
where Uzl;‘ and UpL are the components of v,, parallel and perpendicular to v. These are easily derived
from the transformation rules of U* and the fact that v, = u/u’.
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Energy and Momentum Conservation

(a) Finally the energy and momentum form a four vector

Pt = <E,p) (12.41)

The invariant product of P* with itsself the rest energy
P"P, = —(mc)? (12.42)
This can be inverted giving the energy in terms of the momentum, i.e. the dispersion curve

@ = /p? + (mc)? (12.43)

(b) The relation between energy and momentum determines the velocity. At rest E = mc?. Then a boost
in the negative —v,, direction shows that a particle with velocity v, has energy and momentum

P = <f,p) = me (Yp, Wpfp) = mU* (12.44)
i.e.
=g Ep/c) = ag]()p ) (12.45)
Thus as usual the derivative of the dispersion curve is the velocity.
(¢) Energy and Momentum are conserved in collisions, e.g. for a reaction 1 +2 — 3 +4 w have
P+ Py =P+ P} (12.46)

Usually when working with collisions it makes sense to suppress ¢ or just make the association:

E E
D is short for cp (12.47)
m mc?

A starting point for analyzing the kinematics of a process is to “square” both sides with the invariant
dot product P? = P - P. For example if P, + P, = P; + P, then:

(P1 + P2)2 Z(P3 + P4)2 (12.48)

P? 4 P? 4 2P, - P, =P} + P} + 2P; - P, (12.49)

—m? - m% - 2E1E2 + 2p1 P2 = — mg - mi - 2E3E4 + 2p3 - P4 (1250)



56

CHAPTER 12.

12.2 Covariant form of electrodynamics

(a) The players are:

i)

ii)

iii)

iv)

vi)

vii)

The derivatives

0 10
=" _(_~=Z
Oz, ( c 8t’v)
The wave operator
10 9
U=09,0"=—; pre +V
The four velocity U* = (u®, w) = (v, Vpvp)
The current four vector
J" = (cp,J)
The vector potential
At =(2,A)

The field strength is a tensor
FoP = 9*AP — 9P A~

which ultimately comes from the relations
1
E=—-0A-V9o
c
B=VxA
In indices we have
FOi :Ei E’L :FOi
F =ik py, B; =L, FI*
In matrix form this anti-symmetric tensor reads

0 E* EY E*
—-E* 0 B* -BY
—-BY —-B* 0 BT
—-E* BY -—B° 0

FoP =

RELATIVITY

(12.51)

(12.52)

(12.53)

(12.54)
(12.55)

(12.56)

(12.57)
(12.58)

(12.59)
(12.60)

(12.61)

Raising and lowering indices of F*¥ can change the sign of the zero components, but does not

change the ij components, e.g.
El=FY% = i —pi = [ = [y = FO = F
The dual field tensor implements the replacement
E—+ B B — —-FE
As motivated by the maxwell equations in free space
V-E=0
—%&E +V xB=0
V-B =0

1
——0B-V xE =0
&

(12.62)
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which are the same before and after this duality transformation. The dual field stength tensor is

0O B* BY B
-B* 0 —E* FEV

af _
FW = _pv g 0 _pe (12.68)
-B* —EY —FE* 0
The dual field strength tensor
FH = %e’“jngpa (12.69)

where the totally anti-symmetric tensor e***7 is

+1 even perms 0,1,2.3
e"P? = ¢ —1 odd perms 0,1,2,3 (12.70)

0 0 otherwise

viii) The stress tensor is

O = FMFX + g (—1F,5F*F) (12.71)
Or in terms of matrices
Uem | Sem/c
MV f— ..
Gem Sem/c Tz] (1272)

Note that ©% = S /c = cgl,, and T% = (-E'EJ + 169 E?) + (—-B'BJ + 67 B?). You can
remember the stress tensor ©#” by recalling that it is quadratic in F', symmetric under interchange
of p and v, and traceless ©%, = 0. These properties fix the stress tensor up to a constant.

(b) The equations are

i) The continuity equation:

8,.J" =0 (12.73) Op+ V- J =0 (12.74)

ii) The wave equation in the covariant gauge

B B = R
This is true in the covariant gauge
0, A" =0 (12.78) %&}I) +V-A=0 (12.79)
iii) The force law is:
%‘Z—f —cE. 2 (12.81)
% = eF‘in (12.80) ‘flit’ =eE + e% x B (12.82)

If these equations are multiplied by ~ they equal
the relativistic equations to the left.
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iv)

v)

vi)

vii)
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The sourced field equations are :

Jv V-E=p (12.84)

-0, F" =— (12.83) 1 J
¢ ——OE+V XxB=— (12.85)

c c

The dual field equations are :
V-B =0 (12.87)
-0, " =0 (12.86) 1

—EatB —VXxE=0 (12.88)

as might have been inferred by the replacements E — B and B — —F. The dual field equations
can also be written in terms F),,, and this is known as the Bianchi identity:

0pFuy + 0uF,p +0,F,, =0, (12.89)

where p, i1, v are cyclic.
Or (for the mathematically inclined) the Bianchi identity reads

O, F

psps] = 0, (12.90)

M1

where the square brackets denote the fully antisymmetric combination of 1, po, 2, i.e. the order
is like a determinant

1
Opr Friops) = 31 [(8M1Fuzus = O i + Opg Fuy o)

+ (_aﬂlFﬂ3N2 + 8#2FIL3#1 - aus.FM#lﬂ (12~91)
The second line is the same as the first since F),, is antisymmetric. Eq. (12.90) is the statement
that F),, is an exact differential form.

The dual field equations are equivalent to the statement that that F),, (or E, B) can be written
in terms of the gauge potential A, (or ®, A)

B=VxA 12.93
Fl = 8,4, — 8,A, (12.92) 8 (12.93)

1

E=—-—-0A-V® (12.94)
c

The potentials are not unique as we can always make a gauge transform:

A—-A+ VA (12.96)

A, — Ay + 9, (12.95) |
P &+ ~9A (12.97)
&

The conservation of energy and momentum can be written in terms of the stress tensor:

- (18“““ +V- (Sem/c)> =E-J/c (12.99)
nd” c &

—9,01 = 1 (12.98)

ot

The energy and momentum transferred from the fields F'*¥ to the particles is

J ’ | |
_ (iasem/c n 6iT”) — pE/ + (J/ex BY  (12.100)

v

0,0  —F" 7 (12.101)
C

mech v



12.2. COVARIANT FORM OF ELECTRODYNAMICS

Or

9,0M"

mech

+9,01 =0

59

(12.102)
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12.3 Transformation of field strengths

(a)

By using the lorentz transformation rule
P = LA LY FP? (12.103)

We deduced the transformation rule for the change of F*? under a change of frame (boost). The E
and B fields in frame K, which is moving with velocity v/c = 3 relative to a frame K, are related to
the E and B fields in frame K via
Ly =E) By =B (12.104)
ELZ’YEL#*’)/,BXBL El:’yBLf’}/,@XEL (12105)

where Ej and B are the components of the £ and B fields parallel to the boost, while E; and B
are the components of the FE and B fields perpendicular to the boost.

The quadratic invariants of F),, are
F,, F" =2(B* — E?) (12.106)
F,F" =—-4E-B (12.107)

Thus, if the electric and magnetic fields are orthogonal in one frame, then they are orthogonal in all.
In particular, if the field is electrostatic in one a particular frame (B = 0), then F),, F*" is negative in
all frames, and FE will be perpendicular to B in all frames.

If in the lab frame there is only an electric field E, then the transformation rule of F),, is often used
to determine the magnetic field which is experienced by a slow moving charge of velocity v/c = 3

B=-8xE (12.108)

We used the transformation rule to determine the (boosted) Coulomb fields for a fast moving charge.
For a charge moving along the xz-axis crossing the origin x = 0 at time ¢ = 0, the fields at longitidunal
coordinate x and transverse coordinates b = (y, z) we found

e v(z — vpt)
Ey(t,xz,b) =— 12.109
1t 2, b) A (B2 + 12(x — vyt)2)3/2 ( )
e vb
E.(t,2,b) == 12.110
1(t2,b) 4 (b2 + 2 (x — vpt)2)3/2 ( )
B=""yE (12.111)
c

Note that in Eqgs. 12.104, 3 is the velocity of the frame K relative to K. In this case we know the
fields of in the frame of the particle (the Coulomb field), and we want to know the fields in a frame K
(the lab) moving with speed 8 = —wv, relative to the particle. The frame K (the lab) sees the particle
moving with velocity v,. Thus, we make a Lorentz transform as in Eq. (12.104) with 8 = —v, to
transform from the particle frame to the lab frame.

The constituent relation specifies the current j of the sample in terms of the applied fields. In par-
ticular, for a conductor we explained that 3 = o F in the rest frame of the conductor. Boosting this
relationship, we found that for samples moving non-relativistically with speed v relative to the lab,
that the constituent relation takes form

j=c(E+ 2 xB) (12.112)
C

where v is the velocity of the sample.



12.4. COVARIANT ACTIONS AND EQUATIONS OF MOTION 61

12.4 Covariant actions and equations of motion

(a) We discussed the simplest of all actions

Iz@®)] = Lo +  Ime (12.113)
free interaction
:/dt%mx’Q(t)+/thox(t) (12.114)
free interaction

we varied this, and derived Newton’s Law. All other actions follow this model.

(b) For a relativistic point particle interaction with the electromagnetic field we derived a Lorentz covariant
free and interation lagrangian:

i) The free part of the action is

I, = —/dTTTLC2 (12.115)
Using
cdr = /—dX+rdX, (12.116)
we have

L[X"(p)] = /dTmc —/dpmcﬂ d;;M d;; (12.117)

We derived the equations of motion by varying this action X*(p) — X*(p) + §X*(p)

ii) The interaction Lagrangian for a charged particle is

e dXxX*H
L [X" (p)] = /dp TpA”(X(p)) (12.118)
or in terms of proper time
e dX*
I [XH(7)] = - /dr ?AM(X(T)) (12.119)

A one line exercise shows that a gauge transformation (with A(x) that vanishes as x — +00),
leaves the action unchanged.

In the non-relativistic limit this reduces to
L2 ()] = / dt [—ecb(t,w(t)) + E~A(t7w(t))] (12.120)
C

iii) Varying the free and interaction actions with respect to X* — X* 4 §X#

OI[X] =61, + 6lint (12.121)
we found the equations of motion
G uv

(c) We also wrote down the action for the fields

i) The unique action, which is invariant under Lorentz transformations, gauge gauge transformations,
and parity, that involves no more than two powers of the field strength is

I, —/d% —F,, F" (12.123)
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ii)

iii)

iv)
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The interaction between the currents and the fields is
A
Tt = / dx g (12.124)
c

Indeed, for any particular gauge invariant interaction Lagrangian (such as Eq. (12.119)) the
(current)/c is defined to be the variation of the interaction Lagrangian with respect to A,

173
Ot = / dz () 5A,(x) (12.125)
HE—/

definition of current/c

For the point particle action Eq. (12.119), this gives

o
J? = e(8(x — xo(t)), B (x — x0(t))) (12.126)
where x,(t) is the position of the particle.

Varying the complete action

5Itot = 510 + 5Iint (12127)
Yields the Maxwell equations
— 0, F" = I (12.128)
c

Demanding that the interaction part of the action Iy is invariant under gauge transformation
leads to a requirement of current conservation:

O J" =0 (12.129)

Similarly if 9, J# = 0, then a gauge transformation leaves Eq. (12.124) unchanged.



13 Radiation from Relativistic Charged Particles

13.1 Basic equations

(a) We wrote down the wave equations in the covariant gauge:
—0® =p(t,, T0)
—0A =J(to,70)/c
(b) Then we used the green function of the wave equation

1 — 1o
5t —t, + T =Tel

CYV(t7 7‘|t07‘0) = m

to determine the potentials (®, A) with the current

% = (pa %) = (q(sS("'o - T*(to)) ) 4 v(zO)

This yields the Lienard-Wiechert potentials

_ q 1 a1
= = (D) 1=m BT Trr1-n-B0)
q v(T)/c qg v()/c

A= _t
drlr —r (T)| 1 —n - B(T) drr 1 —n - B(T)
where the retarded time is
[ —r(T)]
c

n-7r.(T)

T(t =t—
(t.7) -

= T(tr)=t— -+
&

The terms after the Longrightarrow indicate the far field limit

(¢) The Lienard Wiechert potential can also be obtained by integrating over r, in Eq. (11.8).

(d) The factor “collinear facor” (my name), or d7'/dt

a1
dt  (1-n-B)
dT 1 —MN;

dri (1—-m-B) c

(13.4)

(13.5)

(13.6)

(13.7)

(13.8)

(13.9)

is quite important. We gave a physical interpretation of it in class. If a wave form is observed to have

a time scale of At, then the formation time of the wave, AT, is

dT At
AT = —At= ———
dt t 1-n-8

(13.10)

In particular, a fourier component with frequency w in the observed wave was formed over the time

1

ATNo.;(l—n~ﬁ)

63

(13.11)
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(e) The magnetic and electric fields can be determined from E = —%&Amd — V®. As discussed in a
separate note (“retarded_time.pdf”), In the far field limit this is the same as computing

E(t,r) =n xn x %&:Arad(T) (13.12a)
=n xn x ﬁ %%Amd(T) (13.12b)
1o 1; B a% [473@2 n1xfnnx. 2/1 - (13.12¢)
ot [rre

The []et indicates that the velocity and acceleration are to be evaluated at the retarded time T'(¢, 7).

The magnetic field is
B=nxE (13.13)

(f) We will often be interested in the frequency distribution of the radation. Computing the fourier
transfrom of E yields straightforwardly with Eq. (13.12) and the collinear factor, Eq. (13.8)

E(w,7) :/ e E(t,r) (13.14)
q (_Zw eiwr/c) > iw(T—n-r.(T)/c)
:W dTl e * n XxXnx 'U(T)/C (1315)

This final form is often the most convenient, but sometimes it is just easier to use

qei“”'/c/OO io(T—mer(T) /) X (N = B) X a
E(w,r) = dT e™(T—mr(T)/c) 13.16
(w,r) drre? J_ o (1-n-p3)2 ( )

which shows explicity the dependence on acceleration

Observables in the far field

(a) The energy per time per solid angle received at the detector is

aw  dP(t)

=c|rE|? (13.18)
This is what you want to know if you want to find out if the detector will burn up.

(b) We often wan’t to know how much energy was radiated over a given period of acceleration, Tj ... T5.
For example how much energy was lost by the particle as it moved through one complete circle. Then
we want to evaluate the energy radiated per retarded time from 77 up to the time it completes the

circle Ty
dw  dP(T) . _dt
TTd0 o S.ndT (13.19)
=clrE]*(1 —n-B) (13.20)

(c) We are also interested in the frequency distribution of the emitted radiation. The energy per dw/(27)
per solid angle is

= c|rE(w,7)|? (13.21)

W
(2m) Jmda
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Since the sign of the w is without significance (for real fields such as the electromagnetic fields), we
sometimes use

dIl crE(w,r)]?  crE(—w,r)*  crE(w,r)?
_ - 13.22
dwd) 27 + 27 T (13.22)

So that oW S
avv 13.23
ds) 0 dwdQ ( )
(d) The energy spectrum can be interperted as the average number of photons per frequency per solid
angle o
dI dN

= hw

dwd? dwd$?

(13.24)

13.2 Relativistic Larmour

(a) For a particle undergoing arbitrary relativistic motion, we evaluated the energy per retarded time per

solid angle
dP(T) ¢ |nx(n—pB)xal’

= 13.2
aQ 1672¢3 (1—m-B)°5 (13.25)
(b) Integrating over angles we get
dwW ¢ 2 4[4 a2

where a) is the projection of a = d*x/dt? along the direction of motion, and a is the component of
a perpendicular to the direction of motion, i.e. for v in the z direction

a = (af,a,q)) (13.27)
(¢) The acceleration four vector is
d?zt

For a paraticle moving along in the z-direction, the acceleration in the particle’s locally inertial frame
(i.e. the frame that is instantaneously moving with the particle) is

(0, ", %, %)) ost frame = (02, 0, o) (13.29)

While in the lab frame o/* is found by boosting this result. The acceleration a = ‘fi—’t’ is found from
this result and the definition of propper time dr = dt/~,

a=(a’,a%,q)) = (Val, ¥4, o) (13.30)

You should be able to prove this. The relativistic Larmour fourmula can then be written

P 2

P(T):E@ f

P (13.31)

(d) For straight line acceleration at very large -, we found that that the radiation is emitted within a cone

of order
AO ~1/y. (13.32)

For 0 very small 6 ~ 1/~ we found,

dP(T) _2%a® 4 (46)’
Qw23 1+ (10)2)75

(13.33)

You should feel comfortable deriving this result.
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13.3 Synchrotron Radiation

(a)

(b)

()

For a relativistic particle moving in a circle. The particle emmits light beamed in its direction of
motion. Thus, an observer a large distance aweay from the rotational source will see pulses of light,
when the strobe light of the particle points in his direction.

The pulses have width

R,/c
3

You should be able to explain this result. Specifically, the light is formed at the source over a time,

AT ~ R"T/C, since the angular velocity of the source is R, /c and the angular width of the particles radi-

At ~

(13.34)

ation cone is 1/v. Then using the relation between formation time and observation time, Eq. (13.10),
we find At.

The frequency width Aw ~ 1/At
3
Y
A ~
n R,/c

The frequency spectrum for circular motion is derived by evaluating the integrals in Eq. (13.14) for
circular motion. This is done in we evaluated this in the limit where the pulses are very narrow. The
fourier spectrum of a single pulse is expressed in the following form

dwW @ 5 w
2 = —~*F| —, ~0 13.
T dwd$) ¢! Wi Y (13.35)
where 5
3cy
. = 13.36
o= (13.36)

where F(z,y) is a dimensionless order one function of z,y. You should understand the qualitative
features of the spectrum, and how these qualitative features are encoded in a formula like Eq. (13.35)

We record the result of integrating Eq. (13.14) for a single pulse

d 2 2/3 f 2 4/3 2
=3 (2 e+ (2)” (o]
where "
&= ;(1 + (70)?)3/? (13.38)

This specific formula might help you understand with the previous item.

We Fourier analyzed a sequence of pulses in different contexts (e.g. a sequence of laser pulses or a
sequence of synchrotron pulses). You should be able to show that the Fourier transform of n-pulses

En(w) = B1(w) <W>

where E;(w) is the Fourier transfrom of one pulse. This is used to show that the time average power
radiatied into the m-th harmonic is

(13.39)

dP,,

1
0 = ﬁ|7~El(wm)|2 (13.40)

Finally you should be able to prove the following identities, if

At) = i 3t —nT,) (13.41)

n=—oo
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Then this function has a Fourier series representation:

1 - —iwmt
A(t) = T _Z e (13.42)
m=—0oo
with w,, = Qg——m The Fourier transform of A(t) is
. 2
Aw) =Y e s = % 36w — wm) (13.43)

13.4 Bremsstrahlung

(a) During a collsion of charged particles, the scattered charged particles is rapidly accelerated over a short
time period Tuccel, from w1 to vo. This causes radiation

final state radiation
3”3
)
(VDA
V1

Y

DEDEDIDED)

initial state radiation
Taccel

(b) Evaluating the integrals in Eq. (13.14) or Eq. (13.16), we find that the radiated energy spectrum is:

2
NXNXvy NXNXuv

1—-n-08s 1-n-p6;

5 aw ¢
dedQ T 16723

(13.44)

The n x n X v gives you the electric field, and the result is squared. One could also use the magnetic
field
dW q>

9 B 7 X Vo n X v
TdwdQ ~ 16723

l-n-Bs 1-n-p

(13.45)

(¢) Much can be said about this important result:

i) It is independent of frequency. Thus it would seem that fooo dw% — 00. In practice the energy
(photon) spectrum will agree with Eq. (13.44), until the photon energy is comparable to the energy
of the particles. Or until the formation time of the radiation AT ~ m becomes comparable
to the time scale of acceleration, T,cce]. For ultra-relativistic particles this means that:

_r
Taccel (]- + (’70)2)

Wmax ™~

ii) Since the energy spectrum is independent of frequency the number of soft photons is divergent

dN 1 dI o
_ldl «a 13.4
do  hwdw - w (13.46)

where a ~ ¢?/(4mhe) ~ 1/137 for an electron.
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iii) For very relativistic particles the radiation is strongly peaked in either the direction of v, or va,
see figure. For very relativistic particles, v — oo, you should be able to show that the number of
photons per frequency interval, per angle (measured with respect to vy or vy) is approximately

AN ~ = 2= 2 (13.47)

Here 6 is measured with respect either the v, or ve axes and is assumed to be small but large
compared to 1/7: % < 6 < 1. The fine structure constant is a = ¢*/(4nhc) ~ 1/137 for an
electron. Thus we see that soft photons are logarithmically distributed in angle and in frequency.
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Scattering

We formulated the scattering problem. In this case incoming light induces currents in the object, which
in turn create a radiation field. We will work with small objects and weak scattering where the effect of
the induced radiation fields can be neglected in determining the currents. The external incoming field will
induce acceleration in the case of light-electron scattering, or induce time-dependent dipole moments (i.e.
currents) in the case of light scattering off a sphere.

(a)

(d)

The Electric field can be written

E = Einc + Escat (14.1)
where
Eine(t,1) = Ey€oe™ 7" (14.2)
while the scattered field falls of as 1/r
pikr—iwt

E.oi(t,7) = C(k) (14.3)

E;..; (in the far field) might as well be called E;,q. The constant is proportional for FE, for linear
response and so the far field of the scattered field is written in terms of the scattering amplitude, f(k)
ikr—iwt

Escat(ta r) — Eof(k) ‘

- (14.4)

We will follow the following notation for harmonic fields. We write E, to notate the thing in front of
efiwt

E(t) = E e ™t (14.5)

Since writing E,, scat (") gets old fast, we will just write Egcat(r) or simply Fgcaty without anything to
mean E,, scat(7) when clear from context

The radiation field Eg.,; can be decomposed into polarizations

Escat = E1€1 + E2€2 (146)
Using the orthogonality of the polarization vectors
6:; €y = 5ab s (147)
we have, e.g.
Ey = GT * Escat Ey = E;  Egcat - (148)
The time averaged power radiated per solid angle with polarization €; is
dP ¢, .
m(eﬁ 60) = §|T € Escat|2 (149)

and similarly for €5. This will in general depend on the incoming polarization, €,, of the light.

The cross section is the time averaged radiated power divided by the (time-averaged) input flux

do(€;€,) a&(e1i€0)
QB

—|e; - £(k) (14.10)
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Long Wavelength Scattering

(a) We studied Thomson scattering (light-electron scatering) and found that the cross section was propor-
tional to the classical electron radius squared

8w q° 2
2 2
= — = 14.11
or =gt e (47rm02 ) ( )

You should feel comfortable deriving this result and estimating the answer without looking up numbers.
To derive the result compute the acceleration, and then compute the radiated electric field using
Larmour type results (see Sect. (11.2) and Eq. (11.25) in particular). With the radiated field you can
compute the power-radiated per solid angle with a given frequency.

(b) We also studied dipole scattering were we found that the cross section increases as w?. You should
feel comfortable deriving this result. To derive the result you determine the induced dipole moment
(electric, or magnetic, or both) in the applied field, and then use this induced dipole moment (which
is oscillating) to compute the radiated field (see Eq. (11.33) and Eq. (11.42))

(¢) The cross section for polarized scattering is found by considering the following picture:

€

€]

€|

So there are four cases depending on whether the incoming and outgoing polarizations are parallel or
perpendicular to the scattering plane. For example, the cross section to produce light of polarization
€1 by un-polarized light (50% €,1 and 50% €, ) is

a0 2

(14.12)

doy 1 [do(er;eon) . do(eL;e,))
dQ) dQ

Born Approximation

(a) We showed that the scattering amplitude and current can be expressed in terms of the induced current.
The cross section to produce light of any polarization is the square of the scattering amplitude

do k2 2

= SR = s | x [ dr, AT e

. (14.13)

This is just a rewriting of Eq. (11.55) using the definitions used in scattering. In the scattering problem
we must also determine the current.

(b) In a Born approximation, the current in a dielectric medium is determined only by the incoming electric
field, since the scattered field is small

Ju.) (’I”) = _in(W7 ”') Ew,inc("") ) (1414)

where _
E,inc(r) = Epepe™ ™ with  k, = kz. (14.15)
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So the cross section in this approximation is

do (k) ) 2
diQ = E |n X €O|

/d?’rox(w,ro)ei(k_k”“ . (14.16)
\%







A Heavside Lorenz (HL) Units

A.1 MKS to HL Units

e The HL Maxwell Equations follow from the MKS maxwell equations by defining

Byks
Epr =vVeoFuks By =
f v/ Ho
PMKS JHL .
PHL 27 T =V HoIMKS

and using ¢ = 1/, /€, 1o
e To convert from MKS to HL set ¢, = 1 (and thus p, = 1/c?, \/li, = 1/¢) and use this table

Quantity €, = 1 relation

B-field CBMKS = BHL

A-field CAMKS = AHL

magnetic dipole moment TMES = mpr

magnetization % = Mpygy,

induction % = Hyy,
permeability UMEKS/ o = BHL
permitivity GjuKs/EO = €qr,

Example: the magnetic potential energy

1 B3 1 1
Up = - —MKS = ~(¢B *= 2B}
B=3 Lo 2(0 MKS) 9 PHL

Example: The poynting vector

1
S=—FEuks X Buks = cEyis X (cByks) = cEnr x Bur

(e}

Example: The force law
v v
F=quks(Eykgs +vx Byks)=quxs(Enuks + e c¢Buks) = qur(Enr + Pl Byr)

Example: The magnetic energy of a dipole

My Ks
U=-myxrs Buks = — (cBuks) =—mpur - Bur
Example: The magnetic energy of a dipole
mpyKs
U=-muyks Buks = ———(cBuks) = —mpur - Bar
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(A.3)

(A.5)

(A.6)
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Example: The Magnetic energy in matter

1 1 H 1
U:*B'Hé*CBMKS MKS :*BHL'HHL
2 2 c 2
Example: Consistency of definition of H
1
H = ;B ~ M = Hyks = ?Bugs — Myks = Hup = Bap — Muyg
The last step follows by dividing both sides by c.

A.2 HL to MKS

e The relation between charges and and currents in the HL and MKS units are

QuKs 1
— 1uC) =0.336 VN - m?2
Qur NG — \/a( uC) VN -m?
I I
HE _ I\V;{(S =l — VHo(1amp) =0.00112 VN - m?2
C €c

e The relation between Field strengths and is

EHL :\/aEMKS — \/a (1kV/CIH) =0.2975 \ N/m2

By =v/€ (¢Buks) =

Byks —

1 1
VHo VHo

(1 Tesla) =892.062 v/ N/m?

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
(A.13)



B

Scalars, Vectors, Tensors

(a)

‘We will use the Einstein summation convention
V = Vlel + V262 + V363 = Viei (Bl)

Here repeated indices are implicitly summed from i = 1...3, where 1,2,3 = z,y, 2z and e, es, e3 are
the unit vectors in the x,y, z directions.

Under a rotation of coordinates the coordinates change in the following way
o' =R (B.2)
where R we think of as a rotation matrix, where 4 labels the rows of R and j labels the columns of R.

Scalars, vectors and tensors are defined by how there components transform

S—=-5=5, (B.3)

ViV =RV, (B.4)

TY - T% = RYRI T'™ . (B.5)

We think of upper indices (contravariant indices) as row labels, and lower indices (covariant indicies)

as column labels. Thus V* is thought of as column vector
Vl
Vie [ v? (B.6)
V3

labelled by V!, V2 V3 — the first row entry, the second row entry, the third row entry. Contravariant
means “opposite to coordinate vectors” e; (see next item)

Under a rotation of coordinates the basis vectors also transform with
e; — & (R} (B.7)

This transformation rule is how the lower (or covariant) vectors transform. The covariant components
of a vector V; transform as

V1 VoVy) = (V1V2V3)(R_1) . (B.8)
covariant means “the same as coordinate vectors”, i.e. with R~! but as a row.

Since R~ = R” there is no need to distinguish covariant and contravariant indices for rotations. This
is not the case for more general groups.

With this notation the vectors and tensors (which are physical objects)
V=Ve = Vie=V (B.9)
T=Tee; = TVee;=T (B.10)

are invariant under rotations, but the components and basis vectors change.
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(2)

APPENDIX B. SCALARS, VECTORS, TENSORS

Vector and tensor components can be raised and lowered with 6% which forms the identity matrix,

- 1 0 0
=10 1 0 (B.11)
0 0 1
ie. ) .
Vi=g§iV, (B.12)
We note various trivia _ . _
5 =3 5,69 =3 5ij5jk - 57{@ (B.13)

The epsilon tensor €% is

cidk _ - {:I:l for z}j,'k an even/odd permutation of 1,2,3 (B.14)
0  otherwise
For example, €!23 = 312 = €231 = 1 = €193 = 1 while €213 = —¢!23 = —1.

i) The epsilon tensor is useful for simplifying cross products

(a x b) = eFaby, (B.15)
ii) A useful identity is
ghikelmk — gitgim — 5im st (B.16)
which can be used to deduce the “b(ac) - (ab)c” rule for cross products

ax(bxec)=bla-c)—(a-b)c (B.17)

iii) The “b(ac) - (ab)c” rule arises a lot in this course and is essential to deriving the wave equation
V x(VxB)=V(V-B)-V’B (B.18)

and to identifying the transverse pieces of a vector. For instance the component of a vector v,
transverse to a unit vector n, is

—nx(nxv)=vr=—-(n-v)n+v (B.19)

Derivatives work the same way. 0; = %. With this notation we have
V-E =0,E (B.20)

(V x E)! =€7%9,Fy, (B.21)

(Vo)i =0; (B.22)

(V29) =0,0"¢ (B.23)

(B.24)

and expressions like

il =8 dxt=d=3 (B.25)
A general second rank tensor 7% is decomposed into its irreducible components as

T9 = T3 4 7%V, 4 L7457 (B.26)
where T4 = L(T 4 9" — 2746) is a symmetric-traceless component of T% and Vj, is a vector

associated with the antisymmetric part of T%, Vi, = Lepen, T .

We will discussed how to reduce a tensor integral into a set of scalar integrals later in this course, e.g.

/d?’w ialzla™ f(z) = [17;/ dx fo(:c)] (6795t + §H5Tm 4 5P it (B.27)
0
Here x = |x| denotes the norm of the vector . Thus, f(z) denotes a function of the radius,

F(/x3 + 23 + 23).



C  Fourier Series and other eigenfunction expansions

We will often expand a function in a complete set of eigen-functions. Many of these eigen-functions are
traditionally not normalized. Using the quantum mechanics notation we have

1
|F) = Z F, ol [n) where F, = (n|F) and (n1|n2) = Cnydnyn, (C.1)

or more prosaically:

F2) =Y Fo— [n(@)] (C.2)

> g,
Fn— / dz % (z) F(z), (C.3)
/ dz [17,(2)] [ns ()] =Cos iy - (C.4)

We require that the functions are complete (in the space of functions which satisfy the same boundary
conditions as F') and orthogonal

3 in Wy l=1, o 3 Cinwn(xw;;(x') — oz —a). (C.5)

In what follows we show the eigen-function in square brackets

(a) A periodic function F(x) with period L is expandable in a Fourier series. Defining k,, = 27n/L with
n integer:

Fa)=1 3 [ B (C.6)
L
o /O dz [e=**] F(x) )
/L dx [e=Hn®] [ ®) =L 5 (C.8)
0

% Z thn(o—a") = Z §(x — 2’ +nl) (C.9)

n=—oo m
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(b) A square integrable function in one dimension has a Fourier transform

e =[5 ) P (c.10)
F(k) = /O; dz [e**] F(2) (C.11)
/ Z dz e =) —975(k — k) (C.12)
/_ Z % =) =5z - 2) (C.13)

(¢) A regular function on the sphere (6, ¢) can be expanded in spherical harmonics

F(6,9) =§% izmmw,@] Fom (c.14)

Fon = [ 490 Y3,(6.0) F(6,0) (C.15)

[ 492 5, (0.0 (oo (0.)) =005 (C.16)
S5 i 0.6)] Vi (0] =b(cos0 — cos )66 — ) (€.17)

=0 m=—¢

(d) When expanding a function on the sphere with azimuthal symmetry, the full set of Y, is not needed.
Only Yy is needed. Yy is related to the Legendre Polynomials. We note that

2 1
Yio = 1/ 22 By (cos ) (C.18)
T
A function F'(cos ) between cosf = —1 and cosf = 1 can be expanded in Legendre Polynomials.
— . 20+1
Fleos) =3 Fy =2 [Py(cos 0) (C.19)
£=0
-1
Fy :/ d(cos @) [Py(cosb)] F(cosh) (C.20)
~1
! 2
/_1 d(cos 8) [Py(cos 0)] [Py (cos0)) :méw (C.21)

? [Py(cos 8)] [Py(cos0")] =(cosf — cos @) (C.22)

£=0



D  Separation of Variables

D.1 Cartesian coordinates

specified on bottom

(a) Laplacian
02 o? o?
(3x2 + oy? + 322> ®=0 (D-1)

(b) Eigen fucntions along boundary vanishing at t =0 and z =a and y =0 and y =b

wnm(sc,y):sin<@)sin<%) n=1...00 m=1...00
a

/Oa da /Ob 0y Vrm Yy = (g) (2) St Srrom

oo

(¢) Orthogonality

(d) Solution
n=1

where Y = \/(n7/a)? + (mm/b)?

[Anme_'YHmZ + Bnme"l")'nmz] Q/J’I’Lm (x7 y) (D'2)
1

m=
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D.2 Spherical coordinates

- © = o0, )

Boundary 6, ¢

N—

(a) Laplacian

— sinf— +

10 ,0 1 0 0 1 92
i A e e 2 o= D.
[7"2 or or " rZsind o0 00 r2gin? 0 0¢? 0 (D.3)

(b) Eigen fucntions along boundary 6, ¢, regular at § = 0 and 7, 27 periodic in ¢
Ve (0, 0) = Yo (0, 0) {=0...00 m=—L...4

(¢) Orthogonality:
/dQ }/;;n(ov ¢) }/@'m'(ev ¢) = 5@['57nm’

(d) Solution

[e%S) 14
B
. Vi m
(=0 m=—4

(e) When there is no azimuthal dependence things simplify to

- B
— L L
o= Z [Agr + rZH] Py(cosb) (D.5)
£=0
where Py(cosf) is the legendre polynomial, which up to a normalization if Yyo(0, ¢), satisfying the
orthogonality
1
2
/_1 d(cos 0)Py(cos )Py (cos ) = méuf



D.3. CYLINDRICAL BOUNDARY: z,¢ ARE THE BOUNDARY.

D.3 Cylindrical Boundary: z,¢ are the boundary.

T — [ @lp =R, 2) = p.(2)

(a) Laplacian:

12 2+ii2+82 d =0
pop"op " pPog? T 02|

(b) Eigenfunctions along boundary z, ¢ vanishing at z = 0 and z = L and 27 periodic in ¢

Vnm (2, ¢) = sin (kz) ™? kn = n=1...00 m=—-00...00

nm
L
(¢) Orthogonality:

L 27 L
/ dz Tﬁnm(% d)) wnm(z7 ¢) = 5 (277)6nn’6mm’
0 0

(d) Solution:

NE

[Avm I (knp) + Bpm K (knp)] Ynm (2, ¢)

n=1lm

— 00

81

(D.7)

Here I,,(z) and K, (x) is the modified bessel function of the first and second kinds. Note that K_,,(z) =

K, (z) and I_,,(x)
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D.4 2D cylindrical coordinates

Boundary:
p = const
¢ changing

(a) Laplacian:

100 12,
pop’op " 2 oe?] "

(b) Eigenfunctions along boundary ¢: 27 periodic in ¢

wm(¢):€im¢ m= —0o0...00

(¢) Orthogonality
2m

Vi () (¢) = 20y

(d) Solution

oo Bm
® = Ao+ Bolnp+ Z (Ampml + —

m=—0o0

(D.9)



D.5. CYLINDRICAL BOUNDARY: p,¢ ARE THE BOUNDARY

D.5 Cylindrical Boundary: p, ¢ are the boundary

©(p, ¢,z = L) = po(p, ¢)

z=1L
/
/// Boundary specified on

p, ¢ surface

@ =0 on sides

(a) Laplacian:
1o o 107 0?

Z - — — | P =
pop’op 2052 T 822 0

(b) Eigenfunctions along boundary p, ¢ vanishing at p = R and regular at p = 0, 27 periodic in ¢:

wmn(p,¢)=Jm(kmnp)eim¢ n=1...00 m=—-00...00

Here:

Tmn
kmn =

R

where Z,,,, is the n-th zero of the m-th Bessel function, e.g. the zeros of Jy(z) are

($01,$02,IC03) = 240483, 552008, 8.65373

These are given by z,,, = BesselZeroJ[m, n] in Mathematica. Note also that J_,,(x) = J,(x)
(¢) Orthogonality:

2

R 27 R

5 [Jm+1(k:mnR)]2) (270) Syt oy

(d) Solution:

oo oo

=33 [Apne™ + Bune™*] (0, 0)

n=1m=-—oo
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(D.10)

(D.11)

(D.12)

(D.13)
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