Grad, Div, Curl, and Laplacian
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Figure 1: Grad, Div, Curl, Laplacian in cartesian, cylindrical, and spherical coordinates.
Here v is a scalar function and A is a vector field.



Vector Identities
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Figure 2: Vector and integral identities. Here v is a scalar function and A, a, b, c are vector
fields.
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Table 1: The Lowest Legendre Polynomials

Problem 1. A dielectric sphere in an external field with a gradient

A dielectric sphere of radius a at the origin is placed in an external field with a constant
small gradient 0, F, = E!, so that the external potential is described by

1
Yext(T) = —E,2 — éE(’) (22 = $(2* + %)) (1)
The gradient is very small since Ela < E,

(a) Determine the potential both inside and outside the sphere including the first correction
due to the field gradient. Start by expressing the external potential in r and 6.

(b) Determine the surface charge induced on the sphere including the first correction due
to the field gradient.




Problem 2. Forces on a filled solenoid

An infinitely long solenoid of radius @ with n turns per length carrying a current I(t) = I,e™*
is filled with a linear (non-conducting) magnetic material with permeability p and dielectric
constant € = 1. The axis of the solenoid is aligned with the z axis. The fields vary sinusoidally,
B(x,t) = B(x)e ™! and E(x,t) = E(x)e "

()

Determine the magnetic field and inductance B(x) and H (x) inside and outside the
solenoid to zeroth order in the quasi-static approximation, i.e. at zeroth order the
current [(t) is effectively constant in time.

Determine the surface currents on the magnetic material to zeroth order in the quasi-
static approximation.

Compute the time-averaged force per area on the sides of the solenoid in the zeroth
order approximation.

Determine the the electric field inside and outside of the solenoid in a quasi-static
approximation. Explain why E(x) is continuous across the solenoid interface.

What is the condition that the quasi-static approximation is valid, and verify that your
solution in part (d) satisfies this criterion.

Determine quasi-static correction to the magnetic field, § H (x) just outside the solenoid
at p = a + tiny. Assume that at a large radius, pmax, that dH () ~ 0. Explain why
the correction 6 H (x) is continuous across the solenoid interface.

Find the quasi-static correction to the time-averaged force per area on solenoid com-
puted in (c).



Problem 3. Transmission through a glass plane

(a)

For a plane wave in linear media, show using the Maxwell equations (and nothing else),
that if

E(r,t) =Fekriot (2)

then w = ck/n with n = ,/ue and

H(r,t) = Aekr—it (3)
with X
A = ch x & (4)

and Z = /pu/e

Consider a plane wave in a linear medium with 1, €, of wave-number k, normally in-
cident on a semi-infinite block of linear media with s, €;. Starting from the Maxwell
equations with boundary conditions, explicitly determine the transmission amplitude
t (the ratio of transmitted electric field to incident electric field) and the power trans-
mission coefficient 7,.

Now consider a plane wave in vacuum of wave-number k, normally incident on a slab of
linear material dielectric constant € and magnetic permeability p and width d. Set up
a set of linear equations which can be used to solve for transmission amplitude using
mathematica, but do not try to solve.
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(d) The transmission coefficient for the slab just described is

47 2
T = : 5
p (1 + Z)2 _ (Z _ 1)262mdk ( )

which for Z large clearly shows several distinct maxima, whenever nkd = mm. Here
n = /p€ is the index of refraction and m is an integer.

Consider a relatively narrow Gaussian wave packet of mean wave-number k and spatial
extent Az, with (Az)k > 1. Qualitatively sketch (i.e. without calculation) what the
transmission coefficient would look like as a function of nkd and relatively large Z.
For definiteness take (Ax)k ~ 12 and Z = 5. Describe the d — oo limit using the
results of part (b).



