
Figure 1: Grad, Div, Curl, Laplacian in cartesian, cylindrical, and spherical coordinates.
Here ψ is a scalar function and A is a vector field.



Figure 2: Vector and integral identities. Here ψ is a scalar function and A, a,b, c are vector
fields.
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Table 1: The Lowest Legendre Polynomials

Problem 1. A dielectric sphere in an external field with a gradient

A dielectric sphere of radius a at the origin is placed in an external field with a constant
small gradient ∂zEz ≡ E ′o, so that the external potential is described by

ϕext(r) = −Eoz −
1

2
E ′o
(
z2 − 1

2
(x2 + y2)

)
(1)

The gradient is very small since E ′oa� Eo

(a) Determine the potential both inside and outside the sphere including the first correction
due to the field gradient. Start by expressing the external potential in r and θ.

(b) Determine the surface charge induced on the sphere including the first correction due
to the field gradient.
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Problem 2. Forces on a filled solenoid

An infinitely long solenoid of radius a with n turns per length carrying a current I(t) = Ioe
iωt

is filled with a linear (non-conducting) magnetic material with permeability µ and dielectric
constant ε = 1. The axis of the solenoid is aligned with the z axis. The fields vary sinusoidally,
B(x, t) = B(x)e−iωt and E(x, t) = E(x)e−iωt.

(a) Determine the magnetic field and inductance B(x) and H(x) inside and outside the
solenoid to zeroth order in the quasi-static approximation, i.e. at zeroth order the
current I(t) is effectively constant in time.

(b) Determine the surface currents on the magnetic material to zeroth order in the quasi-
static approximation.

(c) Compute the time-averaged force per area on the sides of the solenoid in the zeroth
order approximation.

(d) Determine the the electric field inside and outside of the solenoid in a quasi-static
approximation. Explain why E(x) is continuous across the solenoid interface.

(e) What is the condition that the quasi-static approximation is valid, and verify that your
solution in part (d) satisfies this criterion.

(f) Determine quasi-static correction to the magnetic field, δH(x) just outside the solenoid
at ρ = a + tiny. Assume that at a large radius, ρmax, that δH(x) ' 0. Explain why
the correction δH(x) is continuous across the solenoid interface.

(g) Find the quasi-static correction to the time-averaged force per area on solenoid com-
puted in (c).
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Problem 3. Transmission through a glass plane

(a) For a plane wave in linear media, show using the Maxwell equations (and nothing else),
that if

E(r, t) = ~E eik·r−iωt, (2)

then ω = ck/n with n =
√
µε and

H(r, t) = ~H eik·r−iωt (3)

with
~H =

1

Z
k̂ × ~E (4)

and Z =
√
µ/ε

(b) Consider a plane wave in a linear medium with µ1, ε1 of wave-number k, normally in-
cident on a semi-infinite block of linear media with µ2, ε2. Starting from the Maxwell
equations with boundary conditions, explicitly determine the transmission amplitude
t (the ratio of transmitted electric field to incident electric field) and the power trans-
mission coefficient Tp.

µ1,ǫ1

µ2, ǫ2

(c) Now consider a plane wave in vacuum of wave-number k, normally incident on a slab of
linear material dielectric constant ε and magnetic permeability µ and width d. Set up
a set of linear equations which can be used to solve for transmission amplitude using
mathematica, but do not try to solve.
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vacuum

d

µ, ǫ

(d) The transmission coefficient for the slab just described is

Tp =

∣∣∣∣ 4Z

(1 + Z)2 − (Z − 1)2e2indk

∣∣∣∣2 (5)

which for Z large clearly shows several distinct maxima, whenever nkd = mπ. Here
n =
√
µε is the index of refraction and m is an integer.

Consider a relatively narrow Gaussian wave packet of mean wave-number k̄ and spatial
extent ∆x, with (∆x)k̄ � 1. Qualitatively sketch (i.e. without calculation) what the
transmission coefficient would look like as a function of nk̄ d and relatively large Z.
For definiteness take (∆x)k̄ ' 12 and Z = 5. Describe the d → ∞ limit using the
results of part (b).
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