
Problem 1. Soft bremsstrahlung during a decay

In a collision or decay that happens at location ro over an infinitessimally short time scale,
τaccel, the charged particles moving with velocity, v1,v2, . . . before the collsions and the
charged particles moving with v1′ ,v2′ , . . ., after the collision each contribute to the radiation
field. (The total radiation field is just a sum of the radiation fields from each particle.)

(a) Show that for frequencies low ω � 1/τaccel the total radiation field is

Erad(ω, r) = eiω(r−n·ro)/c

( ∑
j′ ∈ final

qj′

4πrc2

n× n× vj′

1− n · βj′
−

∑
j ∈ initial

qj
4πrc2

n× n× vj
1− n · βj

)
(1)

This generalizes the result of Lecture 46.

Hint. You may encounter an integral like∫ ∞
0

n× n× v eiωT (1−n·v/c) . (2)

To give this integral definite meaning insert a convergence factor e−ε|T | and then take
the limit ε → 0 after integration. In any real experiment the velocity v(T ) would be
cut off in time, and provide this convergence factor naturally.

(b) A neutral ωo meson of mass Mωc
2 = 784 MeV has a relatively rare decay mode ωo →

π+π−, with branching fraction of 1.53%. (98.5% of the time it decays to something
else.) It has another rare decay mode ωo → e+e− with branching ratio 7.28× 10−3%.
(These are pretty rare decays for the ωo meson – most of the time it decays to π+π−π0

with a branching fraction of 89.2%). The mass of a pion is mc2 = 140 MeV, while the
electron mass is . . .

(i) Compute the frequency spectrum of the soft electromagnetic radiation per solid
angle that accompanies both of these decay modes

dI

dωdΩ
= 2

dW

dωdΩ

∣∣∣∣
ω>0

, (3)

Describe your result qualitatively.

(ii) Show that for both of these decay modes the frequency spectrum of radiated
energy at low frequencies is

dI

dω
=

e2

4π2c

[(
1 + β2

β

)
ln

1 + β

1− β
− 2

]
' e2

π2c

[
ln

(
Mω

m

)
− 1

2

]
(4)

where Mω is the mass of the ωo meson, m is the mass of one of the decay products,
and β is the velocity/c of the decay products.

(iii) Roughly evaluate the total energy radiated in each decay by integrating the spec-
trum up to a point where the photon’s momentum is half of the momentum of
the decay products. (Beyond this point the recoil of the charged decay products
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would need to be considered. This lies outside of classical electrodynamics. In
classical electrodynamics we specify the currents and solve for the fields.). You
should find in a leading log(Mω/m) approximation

Irough

Mωc2
' α

π
log

(
Mω

m

)
(5)

Using this rough evaluation, what fraction of the rest energy of the ωo is carried
away by soft radiation in the two decay modes
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Problem 2. Polarization from random kick (based on Jackson
5.6)

(a) Show that for a grazing collision with a small velocity change ∆β, the intensity of the
radiation with polarization ε is (to first order in ∆β)

dIε
dωdΩ

=
q2

16π2c

∣∣∣∣ε∗ · (∆β + n× (β ×∆β)

(1− n · β)2

)∣∣∣∣2 (6)

Below we will average over the azimuthal angle φ of ∆β.

ǫ⊥

φθ

β +∆β

β

n
ǫ‖

(b) For the coordinates illustrated in the figure show that

ε‖ · [∆β + n× (β ×∆β)] =|∆β|(β − cos θ) cosφ (7)

ε⊥ · [∆β + n× (β ×∆β)] =|∆β|(1− β cos θ) sinφ (8)

(c) Use these results in the ultra-relativistic limit to show that that the distribtuion of pho-
tons with parallel and transverse polarizations are (after averaging over the azimuthal
angle φ of the velocity change) is

dI‖
dωdΩ

=
q2γ4

8π2 c
|∆β|2 (γ2θ2 − 1)2

(1 + γ2θ2)4
(9)

dI⊥
dωdΩ

=
q2γ4

8π2c
|∆β|2 1

(1 + γ2θ2)2
(10)

(d) Thus, show that for an electron experiencing a random transverse kick of magnitude
|∆p⊥|2 (which determines the velocity change), the radiated light at angle θ is partially
polarized

P (θ) ≡
dI⊥
dωdΩ

− dI‖
dωdΩ

dI⊥
dωdΩ

+
dI‖
dωdΩ

=
2γ2θ2

1 + γ4θ4
(11)
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