


4 Electric Fields in Matter

4.1 Parity and Time Reversal: Lecture 10

(a) We discussed how fields transform under parity and time reversal. A useful table is

Quantity Parity | Time Reversal
t Even Odd
I Odd Even
p 0Odd Odd
F =force Odd Even
L=rxp Even Odd
@ = charge Even Even
J Odd Odd
E Odd Even
B Even Odd
A vector potential Odd Odd

(b) Dissipative coefficients are T-odd. For instance, the drag coeflicients changes as

d’z
m—s = —Nv 4.1
il (4.1)
since d2x/dt? is even under time reversal, and v is odd under time reversal we must have n — n=-n
in order to have the same (form-invariant) equations under time reversal, i.e.
A’z dx
m— = —n— 4.2

4.2 Electrostatics in Material: Lectures 11,12, 13, 13.5

Basic setup: Lecture 11

(a) In material we expand the medium currents j, in terms of a constitutive relation, fixing the currents
in terms of the applied fields.

J» = all possible combinations of the fields and their derivatives] (4.3)

We have added a subscript b to indicate that the current is a medium current. There is also an external
current je,+ and charge density pegt-

(b) When only uniform electric fields are applied, and the electric field is weak, and the medium is isotropic,
the polarization current takes the form

jo=0E+YOE+ ... (4.4)
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where the ellipses denote higher time derivatives of electric fields, which are suppressed by powers of
tmicro/Tmacro Dy dimensional analysis. For a conductor o is non-zero. For a dielectric insulator o is
zero, and then the current takes the form

Jb = 0P (4.5)

e P is known as the polarization, and can be interpreted as the dipole moment per volume.

e We have worked with linear response for an isotropic medium where

This is most often what we will assume.
For an anisotropic medium,  is replaced by a susceptibility tensor

P, =, E (4.7
For a nonlinear medium P is a non-linear vector function of E,

P(E) (4.8)
defined by the low-frequency expansion of the current at zero wavenumber.

(c) Current conservation Oyp + V - j = 0 determines then that

Pb = -V-P (4.9)
(d) The electrostatic maxwell equations read
V-E=—-V:-P+ps (4.10)
V x E =0 (4.11)
or
V -D =Pext (412)
V x E =0 (4.13)
where the electric displacement is
D=E+P (4.14)
(e) For a linear isotropic medium
D=(1+x)E=cE (4.15)

but in general D is a function of E which must be specified before problems can be solved.

A model for the polarization: Lecture 12
This is really outside of electrodynamics, but it helps to understand what is going on:

(a) Electrons are bound to atoms and have natural oscillation frequency w, . The electric field disturbs
these atoms and drives oscillations for w < w,. w, is of order a typical atomic frequency

1 K2 13.6eV
~ ~ ~ 10%1 4.1
Yo <2ma3> R 07 1/s (4.16)
We recall that in the lowest orbit of the Bohr model
1 e? K2
—_ = = 1 . 4.1
2 <47rao> 2ma? 3.6eV (417)

which you can remember by noting that (minus) coulomb potential=e?/(47a,) energy is twice the
kinetic energy=p?/2m and knowing ppon, = h/a, as expected from the uncertainty principle.
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(b) Solving for the motion of the electrons

d*r dr ;
mog + mn— +mw?r = eBe ™" (4.18)
where 7 is a 1/(typical damping timescale), which could be set by the collision time between the atoms.
Solving for the current as a function of time for w < w, shows that the current (in this model) is

ne
j(t) = —= 0 FE 4.19
i) = 250 (4.19)
so the susceptibility (in this model) is
2
ne
— 4.20
X= e (4.20)
Taking n = 1/a? we estimate that
x~1 (4.21)

Working problems with Dielectrics: Lecture 12 and 13

(a) Using Eq. (4.9) and the Eq. (4.12) we find the boundary conditions that normal components of D
jump across a surface if there is external charge, while the parallel components E are continuous

n - (Dy — D1) =0eyt Doy — D1y =0eut (4.22)
n X (EQ - El) =0 E2H - El” =0 (423)

Very often e, will be absent and then D will be continuous (but not E ).
(b) A jump in the polarization induces bound surface charge at the jump.

—-—n- (PQ —Pl) = Oy (424)

(¢) With the assumption of a linear medium D = e¢E the equations for electrostatics in medium are
essentially identical to electrostatics without medium

— V2D = peyt (4.25)

but, the new boundary conditions lead to some (pretty minor) differences in the way the problems are
solved.

Energy and Stress in Dielectrics: Lecture 13.5

(a) We worked out the extra energy stored in a dielectric as an ensemble of external charges are placed
into the dielectric. As the macroscopic electric field E and displacement D(FE) are changed by adding
external charge dpe.t, the change in energy stored in the capacitor material is

§U = / d*z E - 6D (4.26)
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(b) For a linear dielectric 6U can be integrated, becoming

U:%/ d?’xE-D:%/ d*zeE? (4.27)
\% \%4
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(¢) We worked out the stress tensor for a linear dielectric and found

T¢ =— 3(D'E’ + E'D’) + ;D E§Y (4.28)
1 g
= <—E’EJ + 2E25”> (4.29)
where in the first line we have written the stress in a form that can generalize to the non-linear case,
and in the second line we used the linearity to write it in a form which is proportional the vacuum
stress tensor.

As always the force per volume in the Dielectric is

fi=—o,T8 (4.30)
and N
T" = the force in the j-th direction per area in the i-th (4.31)

More precisely let n be the (outward directed) normal pointing from region LEFT to region RIGHT,
then

n;T% = the j-th component of the force per area, by region LEFT on region RIGHT (4.32)

This can be used to work out the force at a dielectric interface as done in lecture.
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