
Figure 1: Grad, Div, Curl, Laplacian in cartesian, cylindrical, and spherical coordinates.
Here ψ is a scalar function and A is a vector field.



Problem 1. Radiation from a pair of oscillators

Consider two non-relativistic charged particles of charge q separated by a distance 2` moving
in the x-y plane (see below). A stationary negative charge of magnitude −2q remains at the
origin neutralizing the system.

The trajectory of the first charged particle is harmonic with amplitude d, moving parallel
to the y-axis and located at x = `

(x1(t), y1(t)) =(`, de−iωt) . (1)

The trajectory of the second charged particle is also harmonic but is located at x = −`.

(x2(t), y2(t)) =(−`, de−iωt) . (2)

You may assume `� d and that (ωd)/c� 1 throughout this problem.

(a) First assume that ω`/c � 1 is small. Determine the time averaged power that is
radiated per solid angle as measured by a detector placed at an angle θ in the z-x
plane as shown below.

(b) Determine the instantaneous real electric field measured by a detector at time t and
distance R along the z-axis and y-axes in the far field. (Your answer should be real
and should be a vector.) Explain physically the origin of the different field strengths
on the z and y axes.

Now assume that k` is not small, so that a multipole expansion is not appropriate.

(c) Determine the Lorentz gauge potential Arad in the far field for a detector placed at an
angle θ in the z-x plane.

(d) Determine the power radiated per solid angle for a detector at an angle θ in the z-x
plane.

(e) How would your result change if

(x2(t), y2(t)) = (−`,−de−iωt) . (3)

What is the leading multipole at small separation ` in this case, and how does the
radiated power depend on frequency in this small ` limit.
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Problem 2. A small sphere and a wire

(a) Write down the covariant action of the electric and magnetic fields coupled to a current
Jµ. Determine the equations of motion by varying the action. Does one obtain all of
the Maxwell equations in this way? Explain.

(b) What are the two Lorentz invariants quadratic in the field strength? Evaluate them in
terms of E(t,x) and B(t,x).

(c) Consider a frame which has a non-zero magnetic field B(t,x), but no electric field.
Using the covariant form the transformation laws of F µν derive the electric field E(t,x)
and B(t,x) measured by an observer moving with velocity v along the x-axis.

(d) In part (b) you should find that E is perpendicular to B. Explain why this must be
the case.

Now consider a very small neutral metal sphere of radius a moving non-relativistically with
velocity vo parallel to a wire at radius R (see above). The wire carries a steady current Io.

(e) Determine the force (magnitude and direction) between the sphere and the wire. (Hint:
analyze the situation in the rest frame of the sphere. Express the force in terms of the
induced dipole moment p = αEE in this frame.)
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Problem 3. Radiation from a harmonic kick

An ultra-relativistic relativistic charged particle (of charge q and mass m) travels in the
z direction with initial energy Eo = γomc

2 (γo � 1). The particle experiences a small
sinusoidal force in the x direction between −L/2 and L/2:

F x(z) = Fo sin(koz) , −L
2
< z <

L

2
, (4)

where L ≡ 2π/ko.

(a) Determine the acceleration of the ultra-relativistic particle to first order in Fo.

(b) Determine the energy per solid angle radiated in the z direction (i.e. directly forward).
How does your result scale with γo? Work to lowest non-trivial order in Fo.

(c) Determine the total energy radiated during the process. How does your result scale
with γo? Work to lowest non-trivial order in Fo.

(d) Determine the frequency spectrum per solid angle radiated in the z direction, i.e.
determine (2π) dW/dωdΩ in the forward direction. Work to lowest non-trivial order in
Fo.

(e) How does the typical frequency in part (d) scale with γo. Can you give an interpretation
of this typical frequency scale? (Note: it is not necessary to do part (d) to answer this
question.)
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