
Problem 1. Energy during a burst of deceleration

A particle of charge e moves at constant velocity, βc, for t < 0. During the short time
interval, 0 < t < ∆t its velocity remains in the same direction but its speed decreases
linearly in time to zero. For t > ∆t, the particle remains at rest.

(a) Show that the radiant energy emitted per unit solid angle is

dW

dΩ
=

e2β2

64π2c∆t

(2− β cos θ) [1 + (1− β cos θ)2] sin2 θ

(1− β cos θ)4
(1)

(b) In the limit γ � 1, show that the angular distribution can be expressed as

dW

dξ
' e2β2

4π c

γ4

∆t

ξ

(1 + ξ)4
(2)

where ξ = (γθ)2.

(c) Show for γ � 1 that the total energy radiated is in agreement with the relativistic
generalization of the Larmour formula.
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Problem 2. An oscillator radiating

(a) Determine the time averaged power radiated per unit sold angle for a non-relativistic
charge moving along the z-axis with instantaneous position, z(T ) = H cos(ωoT ).

(b) Now consider relativistic charge executing simple harmonic motion. Show that the
instantaneous power radiated per unit solid angle is

dP (T )

dΩ
=

dW

dT dΩ
=

e2

16π2

cβ4

H2

sin2 θ cos2(ωoT )

(1 + β cos Θ sinωoT )5
(3)

Here β = ωoH/c and γ = 1/
√

1− β2

(c) In the relativistic limit the power radiated is dominated by the energy radiated during
a short time interval around ωoT = π/2, 3π/2, 5π/2, . . .. Explain why. Where does
the outgoing radiation point at these times.

(d) Let ∆T denote the time deviation from one of this discrete times, e.g. T = 3π/(2ωo) +
∆T . Show that close to one of these time moments:

dP (∆T )

dΩ
=

dW

d∆T dΩ
' 2e2

π2

cβ4

H2
γ6

(γωo∆T )2(γθ)2

(1 + (γθ)2 + (γωo∆T )2)5
(4)

(e) By integrating the results of the previous part over the ∆T of a single pulse, show that
the time averaged power is

dP (T )

dΩ
=

e2

128π2

cβ4

H2
γ5

5(γθ)2

(1 + (γθ)2)7/2
(5)

(f) Make rough sketches of the angular distribution for non-relativistic and relativistic
motion.
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Problem 3. Periodic pulses

Consider a periodic motion that repeats itself with period To. Show that the continuous
frequency spectrum becomes a discrete spectrum containing frequencies that are integral
multiples of the fundamental, ωo = 2π/To.

Let the electric field from a single pulse (or period) be E1(t), i.e. where E1(t) is non-
zero between 0 and To and vanishes elsewhere, t < 0 and t > To. Let E1(ω) be its fourier
transform.

(a) Suppose that the wave form repeats once so that two pulses are received. E2(t) consists
of the first pulse E1(t), plus a second pulse, E2(t) = E1(t) +E1(t−To). Show that the
Fourier transform and the power spectrum is

E2(ω) = E1(ω) (1 + eiωTo) |E2(ω)|2 = |E1(ω)|2 (2 + 2 cos(ωTo)) (6)

(b) Now suppose that we have n (with n odd) arranged almost symmetrically around t = 0,
i.e.

En(t) = E1(t+(n−1)To/2)+. . .+E1(t+To)+E1(t)+E1(t−To)+. . . E1(t−(n−1)To/2) ,
(7)

so that for n = 3
E3(t) = E1(t+ To) + E1(t) + E1(t− To) . (8)

Show that

En(ω) = E1(ω)
sin(nωTo/2)

sin(ωTo/2)
(9)

and

|En(ω)|2 = |E1(ω)|2
(

sin(nωTo/2)

sin(ωTo/2)

)2

(10)

(c) By taking limits of your expressions in the previous part show that after n pulses, with
n→∞, we find

En(ω) =
∑

m

E1(ωm)
2π

To
δ(ω − ωm) (11)

and

|En(ω)|2 = nTo︸︷︷︸
total time

×
∑

m

|E1(ωm)|2 2π

T 2
o

δ(ω − ωm) (12)

where ωm = 2πm/To.
Remark We have in effect shown that if we define

∆(t) ≡
∞∑

n=−∞

δ(t− nTo) . (13)

Then the Fourier transform of ∆(t) is

∆̂(ω) =
∑

n

e−iωnTo =
∑

m

2π

To
δ(ω − ωm) . (14)
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(d) Show that a general expression for the time averaged power radiated per unit solid
angle into each multipole ωm ≡ mωo is:

dPm
dΩ

=
|rE(ωm)|2
T 2
o

(15)

Or
dP̂m
dΩ

=
e2ω4

om
2

32π4c3

∣∣∣∣
∫ To
0

v(T )× n exp

[
iωm(T − n · r∗(T )

c
)

]∣∣∣∣
2

dT , (16)

Here dP̂m/dΩ is defined so that over along time period ∆T , the energy per solid angle
is

dW

dΩ
= ∆T

∞∑

m=1

dP̂m
dΩ

(17)

Also note that we are summing only over the positive values of m which is different
from how we had it in class:

dP̂m
dΩ
≡ dPm

dΩ
+
dP−m
dΩ

(18)
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Problem 4. Radiation spectrum of a SHO

(a) Show that for the simple harmonic motion of a charge discussed in Problem 2 the
average power radiated per unit solid angle in the m-th harmonic is

dP̂m
dΩ

=
e2cβ2

8π2H2
m2 tan2 θ [Jm(mβ cos θ)]2 (19)

(b) Show that in the non-relativistic limit the total power radiated is all in the fundamental
and has the value

P =
e2

4π

2

3
ω4
oH

2 (20)

where H2 is the mean squared amplitude of the oscillation.
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Problem 5. Physics of the relativistic stress tensor

Consider a capacitor at rest. The area of each plate is A, and the electric field between the
plates is E. The plates are orthogonal to the x−axis (see figure). The rest mass of each plate
is Mpl. The plates are kept a distance d apart by four thin columns (not shown). We assume
that each of these columns have mass Mcol, and there is a stress tensor in the columns due
to the electric attraction of the plates. (There is also a surface stress tensor in the plates
due to the electric repulsion of the charges on the plates, but you won’t need this.)

(a) Write down the expression for the energy-momentum tensor of the electromagnetic
field Θµν

em in terms of the Maxwell field strength F µν . Show that the total rest mass
Mc2 =

∫
d3rΘ00

tot of the capacitor setup is:

Mtotc
2 = 2Mplc

2 + 4Mcolc
2 +

1

2
E2Ad (21)

Remark. In practice the field term is very small compared to the first two terms,
but we will include its effect in this problem.

(b) Determine the non-vanishing components of the electromagnetic stress tensor inte-
grated over space: ∫

d3rΘαβ
em. (22)

(Hints:
∫

Θxx
em,
∫

Θyy
em,
∫

Θzz
em,
∫

Θ00
em are non-zero. )

(c) Show that for a stationary configuration that
∫

d3rΘij
tot(r) = 0 (23)

(Hints: Explain why ∂kΘ
kj
tot = 0, and then study the expression ∂k(x

iΘkj
tot) )

(d) Determine
∫
col

Θzz
mech in the columns, and interpret your result physically by showing

the forces involved with a free body diagram.

(e) Consider now an observer in frame K who is moving in the positive z−direction with
velocity v relative to the rest frame of the capacitor. According to special relativity
the energy of the capacitor in frame K is γMc2 where γ = (1− (v/c)2)1/2.
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(i) Show that the integrated electromagnetic stress tensor in frame K, Θ00
em, is

∫
d3rΘ00

em(r) =
1

2
E2Ad

√
1− (v/c)2 (24)

Here r are the boosted coordinates.

(ii) Show that the integrated mechanical stress tensor including the plates and the
columns

∫
d3rΘ00

mech(r) = γ (2Mplc
2 + 4Mcolc

2) +
1

2
E2Ad

(v/c)2√
1− (v/c)2

(25)

(iii) Use these results to compute ∫
d3rΘ00

tot(r) (26)

in frame K and comment on the simple result.
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