Problem 1. Energy during a burst of deceleration

A particle of charge e moves at constant velocity, fc¢, for ¢ < 0. During the short time
interval, 0 < t < At its velocity remains in the same direction but its speed decreases
linearly in time to zero. For ¢ > At, the particle remains at rest.

(a) Show that the radiant energy emitted per unit solid angle is

dw  e?p* (2—fcosh)[1+ (1 — Bcosh)?sin*f
dQ  64m2cAt (1 — B cosh)?

(b) In the limit 7 > 1, show that the angular distribution can be expressed as

L e

dé ~ Amce At(1+&)* 2)

where £ = (76)%.

(c¢) Show for v > 1 that the total energy radiated is in agreement with the relativistic
generalization of the Larmour formula.



Problem 2. An oscillator radiating

(a) Determine the time averaged power radiated per unit sold angle for a non-relativistic
charge moving along the z-axis with instantaneous position, z(7") = H cos(w,T).

(b) Now consider relativistic charge executing simple harmonic motion. Show that the
instantaneous power radiated per unit solid angle is

dP(T)  dwW & ' sin*@cos’(woT)
dQ  dTdQ 1672 H2 (14 Bcos O sinw,T)?

Here = w,H/c and v = 1/,/1 — 32

(c) In the relativistic limit the power radiated is dominated by the energy radiated during
a short time interval around w,T" = 7/2, 37/2, 57 /2, .... Explain why. Where does
the outgoing radiation point at these times.

(3)

(d) Let AT denote the time deviation from one of this discrete times, e.g. T = 37 /(2w,) +
AT. Show that close to one of these time moments:

dP(AT) aw 2% cft (Yw, AT)?(~6)?

dQ dATAQ w2 H2 | (1+ (70)2 + (Yw,AT)2)

(4)

(e) By integrating the results of the previous part over the AT of a single pulse, show that
the time averaged power is

dP(T) ¢ cB' 500
Q12872 H2 ' (1 + (76)2)7/2

(5)

(f) Make rough sketches of the angular distribution for non-relativistic and relativistic
motion.



Problem 3. Periodic pulses

Consider a periodic motion that repeats itself with period 7,. Show that the continuous
frequency spectrum becomes a discrete spectrum containing frequencies that are integral
multiples of the fundamental, w, = 27 /7.

Let the electric field from a single pulse (or period) be Fi(t), i.e. where F;(t) is non-
zero between 0 and 7, and vanishes elsewhere, ¢ < 0 and ¢ > 7,. Let E;(w) be its fourier
transform.

(a)

Suppose that the wave form repeats once so that two pulses are received. Fy(t) consists
of the first pulse Fi(t), plus a second pulse, Fs(t) = Ey(t) + E1(t —T,). Show that the
Fourier transform and the power spectrum is

By(w) = Ei(w) (L+e*7)  |By(w)]” = |Ey(w)]* (2 + 2 cos(wTy)) (6)

Now suppose that we have n (with n odd) arranged almost symmetrically around ¢ = 0,
1.€.

E,(t) = Ei(t+(n—1)T,/2)+.. +Ei(t+T,)+Ei(t)+ B (t—To)+. .. E1(t—(n—1)T,/2) ,

(7)

so that for n = 3

Es(t) = E\(t+T,) + Ev(t) + Ev(t —T,) . (8)
Show that n(nwTo/2)
En(w) = By (w) T2 (9)
and
Bl = B (=) (10

By taking limits of your expressions in the previous part show that after n pulses, with
n — oo, we find

ZEl wmg W — W) (11)

and

| En(w)]* = o7, x> 1B (wm)l? —5(w Win) (12)

total time ™

where w,,, = 2mm/7T,.

Remark We have in effect shown that if we define

= i": St —nT,). (13)

Aw) = Z e~ iwnTo — 2—7T5(w — W) - (14)
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(d) Show that a general expression for the time averaged power radiated per unit solid

angle into each multipole w,, = mw, is:

dP,  |rE(wm)|

s

» 2, 4,2
dP,, e‘w,m

dQ 32743

/0 K v(T) X mexp [z‘wm(T -

T2

o

2

C

L*(T))}

ar,

(15)

(16)

Here dP,, /dS) is defined so that over along time period AT, the energy per solid angle

AW > dP,
A m
Q) Tmzzl dQ)

Also note that we are summing only over the positive values of m which is different

1S

from how we had it in class:

dpP,,

dP_,,

aQ

ds?

(17)

(18)



Problem 4. Radiation spectrum of a SHO

(a) Show that for the simple harmonic motion of a charge discussed in Problem 2 the
average power radiated per unit solid angle in the m-th harmonic is

dP,, _eep?

BRT=N T m? tan? 6 [J,,(mf3 cos 0)]? (19)

(b) Show that in the non-relativistic limit the total power radiated is all in the fundamental
and has the value

P=_—"wii? (20)
™

where H? is the mean squared amplitude of the oscillation.



Problem 5. Physics of the relativistic stress tensor

Consider a capacitor at rest. The area of each plate is A, and the electric field between the
plates is E. The plates are orthogonal to the z—axis (see figure). The rest mass of each plate
is M. The plates are kept a distance d apart by four thin columns (not shown). We assume
that each of these columns have mass M.,, and there is a stress tensor in the columns due
to the electric attraction of the plates. (There is also a surface stress tensor in the plates
due to the electric repulsion of the charges on the plates, but you won’t need this.)

()

Write down the expression for the energy-momentum tensor of the electromagnetic
field ©£ in terms of the Maxwell field strength F*”. Show that the total rest mass
Mc* = [ &3 0% of the capacitor setup is:

1
Mioi€® = 2Mpc* + 4Meqic® + 5E2Ad (21)

Remark. In practice the field term is very small compared to the first two terms,
but we will include its effect in this problem.

Determine the non-vanishing components of the electromagnetic stress tensor inte-
grated over space:

/ d*re°s, (22)

(Hints: [©Z2, [0, [0z, [0 are non-zero. )

em?’ em’ em?

Show that for a stationary configuration that
JEZCHORY (23)

(Hints: Explain why 8,0, = 0, and then study the expression 8 (z‘0!7,) )

Determine fcol Oz . in the columns, and interpret your result physically by showing

the forces involved with a free body diagram.

Consider now an observer in frame K who is moving in the positive z—direction with
velocity v relative to the rest frame of the capacitor. According to special relativity
the energy of the capacitor in frame K is yMc? where v = (1 — (v/c)?)Y/2.

7



(i) Show that the integrated electromagnetic stress tensor in frame K, % | is

/ ProW(r) = L B Ad /T~ (0o (24)

Here r are the boosted coordinates.

(ii) Show that the integrated mechanical stress tensor including the plates and the
columns

1 2
/d?’[@g?ech([) =7 (2Mplc2 + 4Mc0102) + —E%Ad (v/c) (25)

2 = (0/0p

(iii) Use these results to compute
[ et =2

in frame K and comment on the simple result.



