
Problem 1. A conducting slab

A plane polarized electromagnetic wave E = EIe
ikz−ωt is incident normally on a flat uniform

sheet of an excellent conductor (σ � ω) having thickness D. Assume that in space and in
the conducting sheet µ = ε = 1, discuss the reflection an transmission of the incident wave.

(a) Show that the amplitudes of the reflected and transmitted waves, corrrect to first order
in (ω/σ)1/2, are:

ER
EI

=
−(1− e−2λ)

(1− e−2λ) + γ(1 + e−2λ)
(1)

ET
EI

=
2γe−λ

(1− e−2λ) + γ(1 + e−2λ)
(2)

where

γ =

√
2ω

σ
(1− i) =

ωδ

c
(1− i) (3)

λ =(1− i)D/δ (4)

and δ =
√

2/ωµσ is the skin depth.

(b) Verify that for zero thickness and infinite skin depth you obtain the proper limiting
results.

(c) Optional: Show that, except for sheets of very small thickness, the transmission
coefficient is

T =
8(Reγ)2e−2D/δ

1− 2e−2D/δ cos(2D/δ) + e−4D/δ
(5)

Sketch log T as a function of D/δ, assuming Reγ = 10−2. Define “very small thickness”.
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Problem 2. Exponentially Decaying Waves

Consider an exponentially decaying wave in vacuum moving in the x− z plane

E(t, x, z) =Eoe
ik·r = Eoe

ikxx−κzz−iωt (6)

where k = (kx, kz) = (kx, iκz), and Eo = (Ex, Ez) is polarized in the (x, z) plane, but is not
necessarily real.

(a) Use Maxwell equations to determine the relation between kx, κz and ω

(b) Show that the time averaged Poynting flux in the z direction S · ẑ is zero. (Hint: what
are the constraints on Eo and Bo imposed by the Maxwell equations)

2



Problem 3. Analysis of the Good-Hänchen effect

A ribbon beam of in plane polarized radiation of wavelength λ is totally internally reflected
at a plane boundary between a non-permeable (i.e. µ = 1) dielectric media with index of
refraction n and vacuum (see below). The critical angle for total internal reflection is θoI ,
where sin θoI = 1/n. First assume that the incident wave takes the form E(t, r) = EIe

ik·r−iωt

of a pure plane wave polarized in plane and study the transmitted and reflected waves.

(a) Starting from the Maxwell equations, show that for z > 0 (i.e. in vacuum) the electric
field takes the form:

E2(x, z) = E2e
−ω
c
(
√
n2 sin θ2I−1)zei

ωn sin θI
c

x (7)

(b) Starting from the Maxwell equations, show that for θI > θ0I the ratio of the reflected
amplitude to the incident amplitude is a pure phase

ER
EI

= eiφ(θI ,θ
o
I ) (8)

and determine the phase angle. Thus the reflection coefficient R = |ER/EI |2 = 1
However, phase has consequences.

(c) Show that for a monochromatic (i.e. constant ω = ck) ribbon beam of radiation in
the z direction with a transverse electric field amplitude, E(x)eikzz−iωt, where E(x) is
smooth and finite in the transverse extent (but many wavelengths broad), the lowest
order approximation in terms of plane waves is

E(x, z, t) = ε

∫
dκ

(2π)
A(κ)eiκx+ikz−iωt (9)

where k = ω/c. Thus, the finite beam consists of a sum plane waves with a small range
of angles of incidence, centered around the geometrical optics value.
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(d) Consider a reflected ribbon beam and show that for θI > θoI the electric field can be
expressed approximately as

ER = εRE(x′′ − δx)eikR·r−iωt+iφ(θI ,θ
o
I ) (10)

where εR is a polarization vector, x′′ is the coordinate perpendicular to the reflected
wave vector kR, and the displacement δx = − 1

k
dφ
dθI

is determined by phase shift.

(e) Using the phase shift you computed, show that the lateral shift of the reflected in plane
polarized beam is

D‖ =
λ

π

sin θI√
sin2 θI − sin2 θoI

sin2 θoI
sin θ2I − cos θ2I sin2 θoI

(11)
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Problem 4. Reflection of a Gaussian Wave Packet Off a Metal
Surface:

In class we showed that the amplitude reflection coefficient from a good conductor (ω � σ)
for a plane wave of wavenumber k = ω/c is

HR(k)

HI(k)
= 1−

√
2µω

σ
(1− i) '

(
1−

√
2µω

σ

)
eiφ(ω) , (12)

where the phase is for ω � σ:

φ(ω) '
√

2µω

σ
. (13)

Consider a Gaussian wave packet with average wave number ko centered at z = −L at
time t = −L/c which travels towards a metal plane located at z = 0 and reflects. Show that
the time at which the center of the packet returns to z = −L is given by

t =
L

c
+
µδo
2c

(14)

where the time delay is due to the phase shift dφ(ωo)/dω, and δo =
√

2c/σµko is the skin
depth.
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Problem 5. Jackson (7.16)

Plane waves propagate in a homogeneous, nonpermeable anisotropic dielectric. The dielectric
of the crystal is characterized by a tensor εij, i.e. Di = εijEj and ji = χij∂tEj with εij =
δij + χij. But, if the coordinate axes are chosen as the principal axes of εij, the components
of displacement along these axes are related to the electric-field components by Di = εiEi
(i = 1, 2, 3) where εi are the eigenvalues of the matrix εij.

(a) Show that plane waves in the crystal with frequency ω and wave vector k must satisfy

k × (k ×E) +
ω2

c2
D = 0 (15)

(b) (Optional) Show that for a given k = k k̂, Eq. (15) may be regarded as a general-
ized eigenvalue problem1 for the the eigen frequency ωa and corresponding eigenvector
Ea. Show that their are two non-zero eigenmodes (i.e. why not three), and by ap-
pealing to general theorems of linear algebra (discussed in the footnote) determine the
corresponding orthogonality relations between the eigenvectors.

(c) Show that for a given wave vector k = k k̂ the phase velocities v = ω/k that satisfy
the so call Fresnel equation

3∑
i=1

(k̂i)
2

v2 − v2i
= 0 (16)

where vi = c/
√
εi is a velocity of a light wave propagating along a principal axis, and

(k̂i) is the components of k̂ along the ith principal axis.

(d) Show that Da ·Db = 0, where Da and Db are the electric displacements associated
with the two modes of propagation. (Hint: use the eigenvalue equation satisfied by E
and directly calculate Da ·Db . )

1 The generalized eigenvalue problems is essentially the same as the ordinary eigenvalue problem. The
(generalized) eigenvalue problem is Av = λBv where A and B are hermitian matrices, which can only be
satisfied if det(A − λB) = 0. The matrix B is positive definite, v†Bv > 0 for all v, and serves as a kind of
measure for calculating the norms of vectors. The eigenvectors va are orthogonal with respect to a weight
set by B, i.e. v†aBvb = 0 for a 6= b. It is often useful (as in this case) to work in an eigenbasis of B. The
proofs of these statements are nearly identical to the proofs of the usual statements.
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