Problem 1. A conducting slab

A plane polarized electromagnetic wave E = E;e’**~*! is incident normally on a flat uniform
sheet of an excellent conductor (o > w) having thickness D. Assume that in space and in
the conducting sheet © = € = 1, discuss the reflection an transmission of the incident wave.
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Show that the amplitudes of the reflected and transmitted waves, corrrect to first order
in (w/o)'?, are:
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where

and § = y/2/wpo is the skin depth.

Verify that for zero thickness and infinite skin depth you obtain the proper limiting
results.

Optional: Show that, except for sheets of very small thickness, the transmission

coefficient is
8(Rey)2e~2P/0
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1 — 2e=2P/% cos(2D/§) + e=4P/0 (5)
Sketch log T as a function of D/§, assuming Rey = 1072, Define “very small thickness”.
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Problem 2. Exponentially Decaying Waves
Consider an exponentially decaying wave in vacuum moving in the x — z plane
E(t, T, Z) :Eoe“” — Eoeikzx—nzz—iwt (6)

where k = (k;, k,) = (ks,ik,), and E, = (E,, E,) is polarized in the (z, z) plane, but is not
necessarily real.

(a) Use Maxwell equations to determine the relation between k,, xk, and w

(b) Show that the time averaged Poynting flux in the z direction S - 2 is zero. (Hint: what
are the constraints on E, and B, imposed by the Maxwell equations)



Problem 3. Analysis of the Good-Hanchen effect

A ribbon beam of in plane polarized radiation of wavelength X is totally internally reflected
at a plane boundary between a non-permeable (i.e. p = 1) dielectric media with index of
refraction n and vacuum (see below). The critical angle for total internal reflection is 69,
where sin #¢ = 1/n. First assume that the incident wave takes the form E(t,r) = Ejetkr—ivt
of a pure plane wave polarized in plane and study the transmitted and reflected waves.
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(a) Starting from the Maxwell equations, show that for z > 0 (i.e. in vacuum) the electric
field takes the form:

E2<£U,Z) = EQei%(\/m)zeiwnsinell‘ (7)

(b) Starting from the Maxwell equations, show that for §; > 69 the ratio of the reflected
amplitude to the incident amplitude is a pure phase
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and determine the phase angle. Thus the reflection coefficient R = |EFr/Ef|? = 1
However, phase has consequences.

(c) Show that for a monochromatic (i.e. constant w = ck) ribbon beam of radiation in
the z direction with a transverse electric field amplitude, E(z)e®***~! where E(z) is
smooth and finite in the transverse extent (but many wavelengths broad), the lowest
order approximation in terms of plane waves is

dk
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where k = w/c. Thus, the finite beam consists of a sum plane waves with a small range
of angles of incidence, centered around the geometrical optics value.



(d) Consider a reflected ribbon beam and show that for 8; > 69 the electric field can be
expressed approximately as

ER — ERE(ZL‘H _ 5x)eikR-T—iwt+i¢(91,9?) (10)

where €p is a polarization vector, 2” is the coordinate perpendicular to the reflected

wave vector kg, and the displacement dz = —%% is determined by phase shift.

(e) Using the phase shift you computed, show that the lateral shift of the reflected in plane
polarized beam is
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Problem 4. Reflection of a Gaussian Wave Packet Off a Metal
Surface:

In class we showed that the amplitude reflection coefficient from a good conductor (w < o)
for a plane wave of wavenumber k& = w/c is
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where the phase is for w < o:
2w
P(w) =4/ —. (13)
o
Consider a Gaussian wave packet with average wave number k, centered at z = —L at
time ¢t = —L/c which travels towards a metal plane located at z = 0 and reflects. Show that
the time at which the center of the packet returns to z = —L is given by
L o,
t== 14
c * 2c (14)

where the time delay is due to the phase shift d¢(w,)/dw, and §, = /2c/ouk, is the skin
depth.



Problem 5.  Jackson (7.16)

Plane waves propagate in a homogeneous, nonpermeable anisotropic dielectric. The dielectric
of the crystal is characterized by a tensor €, i.e. D; = €;F; and j; = x;;0.F; with €; =
dij + xi;- But, if the coordinate axes are chosen as the principal axes of €;;, the components
of displacement along these axes are related to the electric-field components by D; = ¢, FE;
(i =1,2,3) where ¢; are the eigenvalues of the matrix ¢;;.

(a)

(b)

Show that plane waves in the crystal with frequency w and wave vector k must satisty
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(Optional) Show that for a given k = kk, Eq. (15) may be regarded as a general-
ized eigenvalue problem!® for the the eigen frequency w, and corresponding eigenvector
E,. Show that their are two non-zero eigenmodes (i.e. why not three), and by ap-
pealing to general theorems of linear algebra (discussed in the footnote) determine the
corresponding orthogonality relations between the eigenvectors.

Show that for a given wave vector k = k k the phase velocities v = w/k that satisfy
the so call Fresnel equation
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where v; = ¢//€; is a velocity of a light wave propagating along a principal axis, and
(k;) is the components of k along the ith principal axis.

Show that D, - D, = 0, where D, and D, are the electric displacements associated
with the two modes of propagation. (Hint: use the eigenvalue equation satisfied by E
and directly calculate D, - Dy,. )

I The generalized eigenvalue problems is essentially the same as the ordinary eigenvalue problem. The
(generalized) eigenvalue problem is Av = ABwv where A and B are hermitian matrices, which can only be
satisfied if det(A — AB) = 0. The matrix B is positive definite, v Bv > 0 for all v, and serves as a kind of
measure for calculating the norms of vectors. The eigenvectors v, are orthogonal with respect to a weight
set by B, i.e. v]Buv, = 0 for a # b. It is often useful (as in this case) to work in an eigenbasis of B. The
proofs of these statements are nearly identical to the proofs of the usual statements.



