Problem 1. A conducting slab

A plane polarized electromagnetic wave $\mathbf{E} = \mathbf{E}_I e^{ikz-\omega t}$ is incident normally on a flat uniform sheet of an *excellent* conductor ($\sigma \gg \omega$) having thickness D. Assume that in space and in the conducting sheet $\mu = \epsilon = 1$, discuss the reflection an transmission of the incident wave.

(a) Show that the amplitudes of the reflected and transmitted waves, correct to first order in $(\omega/\sigma)^{1/2}$, are:

$$\frac{E_R}{E_I} = \frac{-(1 - e^{-2\lambda})}{(1 - e^{-2\lambda}) + \gamma(1 + e^{-2\lambda})}$$
(1)

$$\frac{E_T}{E_I} = \frac{2\gamma e^{-\lambda}}{(1 - e^{-2\lambda}) + \gamma(1 + e^{-2\lambda})} \tag{2}$$

where

$$\gamma = \sqrt{\frac{2\omega}{\sigma}} (1-i) = \frac{\omega\delta}{c} (1-i) \tag{3}$$

$$\lambda = (1 - i)D/\delta \tag{4}$$

and $\delta = \sqrt{2/\omega\mu\sigma}$ is the skin depth.

- (b) Verify that for zero thickness and infinite skin depth you obtain the proper limiting results.
- (c) **Optional:** Show that, except for sheets of very small thickness, the transmission coefficient is

$$T = \frac{8(\text{Re}\gamma)^2 e^{-2D/\delta}}{1 - 2e^{-2D/\delta}\cos(2D/\delta) + e^{-4D/\delta}}$$
(5)

Sketch log T as a function of D/δ , assuming $\text{Re}\gamma = 10^{-2}$. Define "very small thickness".

Problem 2. Exponentially Decaying Waves

Consider an exponentially decaying wave in vacuum moving in the x - z plane

$$\boldsymbol{E}(t,x,z) = \boldsymbol{E}_o e^{i\boldsymbol{k}\cdot\boldsymbol{r}} = \boldsymbol{E}_o e^{ik_x x - \kappa_z z - i\omega t}$$
(6)

where $\mathbf{k} = (k_x, k_z) = (k_x, i\kappa_z)$, and $\mathbf{E}_o = (E_x, E_z)$ is polarized in the (x, z) plane, but is not necessarily real.

- (a) Use Maxwell equations to determine the relation between k_x, κ_z and ω
- (b) Show that the time averaged Poynting flux in the z direction $S \cdot \hat{z}$ is zero. (Hint: what are the constraints on E_o and B_o imposed by the Maxwell equations)

Problem 3. Analysis of the Good-Hänchen effect

A ribbon beam of in plane polarized radiation of wavelength λ is totally internally reflected at a plane boundary between a non-permeable (i.e. $\mu = 1$) dielectric media with index of refraction n and vacuum (see below). The critical angle for total internal reflection is θ_I^o , where $\sin \theta_I^o = 1/n$. First assume that the incident wave takes the form $\mathbf{E}(t, \mathbf{r}) = \mathbf{E}_I e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}$ of a pure plane wave polarized in plane and study the transmitted and reflected waves.

(a) Starting from the Maxwell equations, show that for z > 0 (i.e. in vacuum) the electric field takes the form:

$$\boldsymbol{E}_{2}(x,z) = \boldsymbol{E}_{2} e^{-\frac{\omega}{c}(\sqrt{n^{2}\sin\theta_{I}^{2}-1})z} e^{i\frac{\omega n\sin\theta_{I}}{c}x}$$
(7)

(b) Starting from the Maxwell equations, show that for $\theta_I > \theta_I^0$ the ratio of the reflected amplitude to the incident amplitude is a pure phase

$$\frac{E_R}{E_I} = e^{i\phi(\theta_I, \theta_I^o)} \tag{8}$$

and determine the phase angle. Thus the reflection coefficient $R = |E_R/E_I|^2 = 1$ However, phase has consequences.

(c) Show that for a monochromatic (*i.e.* constant $\omega = ck$) ribbon beam of radiation in the z direction with a transverse electric field amplitude, $E(x)e^{ik_z z - i\omega t}$, where E(x) is smooth and finite in the transverse extent (but many wavelengths broad), the lowest order approximation in terms of plane waves is

$$\boldsymbol{E}(x,z,t) = \boldsymbol{\epsilon} \int \frac{d\kappa}{(2\pi)} A(\kappa) e^{i\kappa x + ikz - i\omega t}$$
(9)

where $k = \omega/c$. Thus, the finite beam consists of a sum plane waves with a small range of angles of incidence, centered around the geometrical optics value.

(d) Consider a reflected ribbon beam and show that for $\theta_I > \theta_I^o$ the electric field can be expressed approximately as

$$\boldsymbol{E}_{R} = \boldsymbol{\epsilon}_{R} E(x'' - \delta x) e^{i\boldsymbol{k}_{R}\cdot\boldsymbol{r} - i\omega t + i\phi(\theta_{I},\theta_{I}^{o})}$$
(10)

where $\boldsymbol{\epsilon}_R$ is a polarization vector, x'' is the coordinate perpendicular to the reflected wave vector \boldsymbol{k}_R , and the displacement $\delta x = -\frac{1}{k} \frac{d\phi}{d\theta_I}$ is determined by phase shift.

(e) Using the phase shift you computed, show that the lateral shift of the reflected in plane polarized beam is

$$D_{\parallel} = \frac{\lambda}{\pi} \frac{\sin \theta_I}{\sqrt{\sin^2 \theta_I - \sin^2 \theta_I^o}} \frac{\sin^2 \theta_I^o}{\sin \theta_I^2 - \cos \theta_I^2 \sin^2 \theta_I^o}$$
(11)

Problem 4. Reflection of a Gaussian Wave Packet Off a Metal Surface:

In class we showed that the amplitude reflection coefficient from a good conductor ($\omega \ll \sigma$) for a plane wave of wavenumber $k = \omega/c$ is

$$\frac{H_R(k)}{H_I(k)} = 1 - \sqrt{\frac{2\mu\omega}{\sigma}} (1-i) \simeq \left(1 - \sqrt{\frac{2\mu\omega}{\sigma}}\right) e^{i\phi(\omega)}, \qquad (12)$$

where the phase is for $\omega \ll \sigma$:

$$\phi(\omega) \simeq \sqrt{\frac{2\mu\omega}{\sigma}} \,. \tag{13}$$

Consider a Gaussian wave packet with average wave number k_o centered at z = -L at time t = -L/c which travels towards a metal plane located at z = 0 and reflects. Show that the time at which the center of the packet returns to z = -L is given by

$$t = \frac{L}{c} + \frac{\mu\delta_o}{2c} \tag{14}$$

where the time delay is due to the phase shift $d\phi(\omega_o)/d\omega$, and $\delta_o = \sqrt{2c/\sigma\mu k_o}$ is the skin depth.

Problem 5. Jackson (7.16)

Plane waves propagate in a homogeneous, nonpermeable anisotropic dielectric. The dielectric of the crystal is characterized by a tensor ϵ_{ij} , *i.e.* $D_i = \epsilon_{ij}E_j$ and $j_i = \chi_{ij}\partial_t E_j$ with $\epsilon_{ij} = \delta_{ij} + \chi_{ij}$. But, if the coordinate axes are chosen as the principal axes of ϵ_{ij} , the components of displacement along these axes are related to the electric-field components by $D_i = \epsilon_i E_i$ (i = 1, 2, 3) where ϵ_i are the eigenvalues of the matrix ϵ_{ij} .

(a) Show that plane waves in the crystal with frequency ω and wave vector k must satisfy

$$\boldsymbol{k} \times (\boldsymbol{k} \times \boldsymbol{E}) + \frac{\omega^2}{c^2} \boldsymbol{D} = 0$$
 (15)

- (b) (**Optional**) Show that for a given $\mathbf{k} = k \, \mathbf{k}$, Eq. (15) may be regarded as a generalized eigenvalue problem¹ for the the eigen frequency ω_a and corresponding eigenvector \mathbf{E}_a . Show that their are two non-zero eigenmodes (i.e. why not three), and by appealing to general theorems of linear algebra (discussed in the footnote) determine the corresponding orthogonality relations between the eigenvectors.
- (c) Show that for a given wave vector $\mathbf{k} = k \mathbf{k}$ the phase velocities $v = \omega/k$ that satisfy the so call Fresnel equation

$$\sum_{i=1}^{3} \frac{(\hat{k}_i)^2}{v^2 - v_i^2} = 0 \tag{16}$$

where $v_i = c/\sqrt{\epsilon_i}$ is a velocity of a light wave propagating along a principal axis, and (\hat{k}_i) is the components of \hat{k} along the *i*th principal axis.

(d) Show that $D_a \cdot D_b = 0$, where D_a and D_b are the electric displacements associated with the two modes of propagation. (Hint: use the eigenvalue equation satisfied by E and directly calculate $D_a \cdot D_b$.)

¹ The generalized eigenvalue problems is essentially the same as the ordinary eigenvalue problem. The (generalized) eigenvalue problem is $A\boldsymbol{v} = \lambda B\boldsymbol{v}$ where A and B are hermitian matrices, which can only be satisfied if $\det(A - \lambda B) = 0$. The matrix B is positive definite, $\boldsymbol{v}^{\dagger} B \boldsymbol{v} > 0$ for all v, and serves as a kind of measure for calculating the norms of vectors. The eigenvectors \boldsymbol{v}_a are orthogonal with respect to a weight set by B, *i.e.* $\boldsymbol{v}_a^{\dagger} B \boldsymbol{v}_b = 0$ for $a \neq b$. It is often useful (as in this case) to work in an eigenbasis of B. The proofs of these statements are nearly identical to the proofs of the usual statements.