11 Radiation in Non-relativistic Systems

11.1 Basic equations

This first section will NOT make a non-relativistic approximation, but will examine the far field limit.

(a) We wrote down the wave equations in the covariant gauge:

—0® =p(to, T0) (11.1

—0A =J(t,,71,)/c (11.2)
The gauge condition reads

1

Eat<1>+v-A=0 (11.3)

(b) Then we used the green function of the wave equation

1 [P — 7,
G(t,r|t =——6(t—t 114
(t,r[toro) Anlr — 1y ( ot c ) ( )
to determine the potentials (@, A)
Bt r)*/d3x¥ (T,ry) (11.5)
’ - 047T|']" — T0|p s o .
1
Alt,r) = [ dPry———J(T 11.
(1) = [ da, e T e (116)
Here T'(t,r) is the retarded time
|r — 7o)
T(t,r)=t——2
(t,7) _

(11.7)

(¢c) We used the potentials to determine the electric and magnetic fields. Electric and magnetic fields in

the far field are

1 J(T,r,)
Araa(t,r) = Tnr /r — (11.8)
and
n
B(t,r) =~ 2 % A (11.9)
E(t,r) =n X = x 8,Arad = —n x B(t,7) (11.10)
C

In the far field (large distance limit 7 — co) limit we have

To

T=t—"4n 22 (11.11)
C

c
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And we recording the derivatives

(), -(3).
() (). 02(8),

(d) We see that the radiation (electric field) is proportional to the transverse piece of the 9;J

In general the transverse projection of a vector is

—mx(nxV)=V -—n(n-V) (11.15)

(e) Power radiated per solid angle is for r — oo is

aw dP(t . . .
a0 - 4 = energy per observation time per solid angle (11.16)
and
dP(t) _
o = S-n (11.17)
=c|rE|? (11.18)

11.2 Examples of Non-relativistic Radiation: L31

In this section we will derive several examples of radiation in non-relativistic systems. In a non-relativistic
approximation
r o n
T=t—-+—"-1, (11.19)
c
small

The underlined terms are small: If the typical time and size scales of the source are Tiy, and Ly, then
t ~ Tiyp, and 7, ~ Liyp, and the ratio the underlined term to the leading term is:

L
P« ] (11.20)
Cltyp

This is the non-relativistic approximation. For a harmonic time dependence, 1/Tiy, ~ wiyp, and this says

that the wave number k = 2{ is small compared to the size of the source, i.e. the wave length of the emitted

light is long compared to the size of the system in non-relativistic motion:

27TLtyp

1 11.21
3 < ( )

(a) Keeping only t—1r/c and dropping all powers of n-7,/c in T results in the electric dipole approximation,
and also the Larmour formula.

(b) Keeping the first order terms in
7 (11.22)

n
C

results in the magnetic dipole and quadrupole approximations.
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The Larmour Formula

47

(a) For a particle moves slowly with velocity and acceleration, v(t) and a(t) along a trajectory 7. (t)

(b) We make an ultimate non-relativistic approximation for T'
r

T~t——-=t,
c

Then we derived the radiation field by substituting the current
J(te) = ev(te)83(ro — ra(te))
into the Egs. (11.8),(11.9), and (11.17) for the radiated power
(c) The electric field is

= Tl XX a(t.)

Notice that the electric field is of order
e af(te)

E~—
dr 2

(d) The power per solid angle emitted by acceleration at time ¢, is
dP(t.) e?

0 = @ ® t)sin’o

Notice that the power is of order
2

P~crEP ~ %
C

(e) The total energy that is emitted is
e? 2a?(t.)
P(te) = —=
(te) 4T3 3

The Electric Dipole approximation

(a) We make the ultimate non-relativistic approximation

room-r, r
J(t— - ~Jt— -
R T
Leading to an expression for A;,q
11
Agd = ——0ip(te
ad dnr ¢ tp( )

where the dipole moment is

p(te) = /dBl'o pte)ro
(b) The electric and magnetic fields are

1
Erad =N X n X 7875Arad
C

= XX P(te)

Brad =n X Erad

(c) The power radiated is
dP(te) 1 pP(te) . o
= 0
Q" 16w &

—iw(t—r/c)

(d) For a harmonic source p(t.) = poe

1 w?

_ 2
—E?’?\Po\

the time averaged power is

(11.23)

(11.24)

(11.25)

(11.26)

(11.27)

(11.28)

(11.29)

(11.30)

(11.31)

(11.32)

(11.33)

(11.34)
(11.35)

(11.36)

(11.37)
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The magnetic dipole and quadrupole approximation: L32
(a) In the magnetic dipole and quadrupole approximation we expand the current

n-r,

+ . O (te,m0)/c

J(T) J(te) (11.38)

electric dipole next term

The next term when substituted into Eq. (11.8) gives rise two new contributions to A,.q, the magnetic
dipole and electric quadrupole terms:

Ana=  ALL  + AML +  AZ (11.39)
~—— ——
electric dipole mag dipole electric-quad
(b) The magnetic dipole contribution gives

i LT ) (11.40)

rad 7 g e N ’

where m
1

m = 5/ ro X J(te,10)/C, (11.41)

is the magnetic dipole moment.

The structure of magnetic dipole radiation is very similar to electric dipole radiation with the duality

transformation

E-dipole — M-dipole (11.42)

p — m (11.43)

E = B (11.44)

B = -E (11.45)

(d) The power is
dPM(t,)  1n%sin® 6
ds) 16m2c3 (11.46)

The power radiated in magnetic dipole radiation is smaller t
radiation by a factor of the typical velocity, viyp squared:

PMl m2

han the power radiated in electric dipole

Viyp |2
where veyp ~ Liyp/Tiyp
Quadrupole rdiation
(a) For quadrupole radiation we have
rad,E2 — 24777;0721 ! (11.48)
where Q% is the symmetric traceless quadrupole tensor.
Qi = /d?’xop(te,ro) (3rirl —r26%) (11.49)
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(b) The electric field is

—1 T -
Eiaa = Y [ann(n : Qn)] (11.50)
where (more precisely) the first term in square brackets means n; Q" while the second term means,

(ng Q™ n,, )n?.

(c) A fair bit of algebra shows that the total power radiated from a quadrupole form is

1 b
= a 11.51
T20mes 2 Gt (11.51)
(d) For harmonic fields, Q = Q,e~™! | the time averaged power is rises as w®
c w\% 5
= — 11.52
14407 (c> <% (11.52)

(e) The total power radiated radiated in quadrupole radiation to electric-dipole radiation for a typical
source size Liyp, is smaller:

PE2 (L
pEL "~ <Cy ) (11.53)
11.3 Attenas
(a) In an antenna with sinusoidal frequency we have
J(T,7,) = e @t I (p,) (11.54)
(b) Then the radiation field for a sinusoidal current is:
efiw(tfr/c) g
Apg= 7 / e~ T () o (11.55)
4drr .

In general one will need to do this integral to determine the radiation field.

(¢) The typical radiation resistance associated with driving a current which will radiate over a wide range
of frequencies is Ryacuum = Clho = v/ lo/€o = 376 Ohm.
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