
11 Radiation in Non-relativistic Systems

11.1 Basic equations

This first section will NOT make a non-relativistic approximation, but will examine the far field limit.

(a) We wrote down the wave equations in the covariant gauge:

−�Φ =ρ(to, ro) (11.1)

−�A =J(to, ro)/c (11.2)

The gauge condition reads
1

c
∂tΦ +∇ ·A = 0 (11.3)

(b) Then we used the green function of the wave equation

G(t, r|toro) =
1

4π|r − ro|
δ(t− to +

|r − ro|
c

) (11.4)

to determine the potentials (Φ,A)

Φ(t, r) =

∫
d3xo

1

4π|r − ro|
ρ(T, ro) (11.5)

A(t, r) =

∫
d3xo

1

4π|r − ro|
J(T, ro)/c (11.6)

Here T (t, r) is the retarded time

T (t, r) = t− |r − ro|
c

(11.7)

(c) We used the potentials to determine the electric and magnetic fields. Electric and magnetic fields in
the far field are

Arad(t, r) =
1

4πr

∫
ro

J(T, ro)

c
(11.8)

and

B(t, r) =− n

c
× ∂tArad (11.9)

E(t, r) =n× n

c
× ∂tArad = −n×B(t, r) (11.10)

In the far field (large distance limit r →∞) limit we have

T = t− r

c
+ n · ro

c
(11.11)
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And we recording the derivatives (
∂

∂t

)
ro

=

(
∂

∂T

)
ro

(11.12)(
∂

∂ro

)
t

=

(
∂

∂ro

)
T

+
n

c

(
∂

∂T

)
ro

(11.13)

(d) We see that the radiation (electric field) is proportional to the transverse piece of the ∂tJ

− n× (n× ∂tJ) = ∂tJ − n(n · ∂tJ) (11.14)

In general the transverse projection of a vector is

− n× (n× V ) = V − n(n · V ) (11.15)

(e) Power radiated per solid angle is for r →∞ is

dW

dtdΩ
=
dP (t)

dΩ
= energy per observation time per solid angle (11.16)

and

dP (t)

dΩ
=r2S · n (11.17)

=c|rE|2 (11.18)

11.2 Examples of Non-relativistic Radiation: L31

In this section we will derive several examples of radiation in non-relativistic systems. In a non-relativistic
approximation

T = t− r

c
+

n

c
· ro︸ ︷︷ ︸

small

(11.19)

The underlined terms are small: If the typical time and size scales of the source are Ttyp and Ltyp, then
t ∼ Ttyp, and ro ∼ Ltyp, and the ratio the underlined term to the leading term is:

Ltyp

cTtyp
� 1 (11.20)

This is the non-relativistic approximation. For a harmonic time dependence, 1/Ttyp ∼ ωtyp, and this says
that the wave number k = 2π

λ is small compared to the size of the source, i.e. the wave length of the emitted
light is long compared to the size of the system in non-relativistic motion:

2πLtyp

λ
� 1 (11.21)

(a) Keeping only t−r/c and dropping all powers of n·ro/c in T results in the electric dipole approximation,
and also the Larmour formula.

(b) Keeping the first order terms in
n

c
· ro (11.22)

results in the magnetic dipole and quadrupole approximations.
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The Larmour Formula

(a) For a particle moves slowly with velocity and acceleration, v(t) and a(t) along a trajectory r∗(t)

(b) We make an ultimate non-relativistic approximation for T

T ' t− r

c
≡ te (11.23)

Then we derived the radiation field by substituting the current

J(te) = ev(te)δ
3(ro − r∗(te)) (11.24)

into the Eqs. (11.8),(11.9), and (11.17) for the radiated power

(c) The electric field is

E =
e

4πrc2
n× n× a(te) (11.25)

Notice that the electric field is of order

E ∼ e

4πr

a(te)

c2
(11.26)

(d) The power per solid angle emitted by acceleration at time te is

dP (te)

dΩ
=

e2

(4π)2c3
a2(te) sin2 θ (11.27)

Notice that the power is of order

P ∼ c|rE|2 ∼ a2

c3
(11.28)

(e) The total energy that is emitted is

P (te) =
e2

4π

2

3

a2(te)

c3
(11.29)

The Electric Dipole approximation

(a) We make the ultimate non-relativistic approximation

J(t− r

c
+

n · ro
c

) ' J(t− r

c
) (11.30)

Leading to an expression for Arad

Arad =
1

4πr

1

c
∂tp(te) (11.31)

where the dipole moment is

p(te) =

∫
d3xo ρ(te)ro (11.32)

(b) The electric and magnetic fields are

Erad =n× n× 1

c
∂tArad (11.33)

=
1

4πrc2
n× n× p̈(te) (11.34)

Brad =n×Erad (11.35)

(c) The power radiated is
dP (te)

dΩ
=

1

16π2

p̈2(te)

c3
sin2 θ (11.36)

(d) For a harmonic source p(te) = poe
−iω(t−r/c) the time averaged power is

P =
1

4π

ω4

3c3
|po|2 (11.37)
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The magnetic dipole and quadrupole approximation: L32

(a) In the magnetic dipole and quadrupole approximation we expand the current

J(T ) ' J(te)︸ ︷︷ ︸
electric dipole

+
n · ro
c

∂tJ(te, ro)/c︸ ︷︷ ︸
next term

(11.38)

The next term when substituted into Eq. (11.8) gives rise two new contributions to Arad, the magnetic
dipole and electric quadrupole terms:

Arad = AE1
rad︸ ︷︷ ︸

electric dipole

+ AM1
rad︸ ︷︷ ︸

mag dipole

+ AE2
rad︸ ︷︷ ︸

electric-quad

(11.39)

(b) The magnetic dipole contribution gives

AM1
rad =

−1

4πr

n

c
× ṁ(te) (11.40)

where m

m ≡ 1

2

∫
ro

ro × J(te, ro)/c , (11.41)

is the magnetic dipole moment.

(c) The structure of magnetic dipole radiation is very similar to electric dipole radiation with the duality
transformation

E-dipole → M-dipole (11.42)

p → m (11.43)

E → B (11.44)

B → −E (11.45)

(d) The power is

dPM1(te)

dΩ
=
m̈2 sin2 θ

16π2c3
(11.46)

(e) The power radiated in magnetic dipole radiation is smaller than the power radiated in electric dipole
radiation by a factor of the typical velocity, vtyp squared:

PM1

PE1
∝ m2

p2
∼
(vtyp

c

)2
(11.47)

where vtyp ∼ Ltyp/Ttyp

Quadrupole rdiation

(a) For quadrupole radiation we have

Aj
rad,E2 =

1

24πr

ni
c2
Q̈ij (11.48)

where Qij is the symmetric traceless quadrupole tensor.

Qij =

∫
d3xoρ(te, ro)

(
3rior

j
o − r2oδ

ij
)

(11.49)
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(b) The electric field is

Erad =
−1

24πrc3
[ ...
Q · n− n(n> ·

...
Q · n)

]
(11.50)

where (more precisely) the first term in square brackets means ni
...
Qij , while the second term means,

(n`
...
Q`mnm)nj .

(c) A fair bit of algebra shows that the total power radiated from a quadrupole form is

P =
1

720πc5
...
Qab

...
Qab (11.51)

(d) For harmonic fields, Q = Qoe−iωt , the time averaged power is rises as ω6

P =
c

1440π

(ω
c

)6
Q2
o (11.52)

(e) The total power radiated radiated in quadrupole radiation to electric-dipole radiation for a typical
source size Ltyp is smaller:

PE2

PE1
∼
(
ωLtyp

c

)2

(11.53)

11.3 Attenas

(a) In an antenna with sinusoidal frequency we have

J(T, ro) = e−iω(t−
r
c+

n·ro
c )J(ro) (11.54)

(b) Then the radiation field for a sinusoidal current is:

Arad =
e−iω(t−r/c)

4πr

∫
ro

e−iω
n·ro

c J(ro)/c (11.55)

In general one will need to do this integral to determine the radiation field.

(c) The typical radiation resistance associated with driving a current which will radiate over a wide range
of frequencies is Rvacuum = cµo =

√
µo/εo = 376 Ohm.
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