
3 Mathematics of the Poisson Equation

3.1 Green functions and the Poisson equation

(a) The Dirichlet Green function satisfies the Poisson equation with delta-function charge

−∇2GD(r, ro) = δ3(r − ro) (3.1)

and vanishes on the boundary. It is the potential at r due to a point charge (with unit charge) at ro
in the presence of grounded (Φ = 0) boundaries The simplest free space green function is just the point
charge solution

Go =
1

4π|r − ro|
(3.2)

In two dimensions the Green function is

Go =
−1

2π
log |r − ro| (3.3)

which is the potential from a line of charge with charge density λ = 1

(b) The Poisson equation or the boundary value problem of the Laplace equation can be solved once the
Dirichlet Green function is known.

Φ(r) =

∫
V

d3xoGD(r, ro)ρ(ro)−
∫
∂V

dSo no · ∇roGD(r, ro)Φ(ro) (3.4)

where no is the outward directed normal. The first term is a volume integral and is the contribution
of the interior charges on the potential. The second term is a surface integral, and is the contribution
of the boundary value to the interior.

(c) A useful technique to find a Green function is image charges. You should know the image charge green
functions

i) A plane in 1D and 2D (class)

ii) A sphere (homework)

iii) A cylinder (homework + recitation)

(d) The Green function can always be written in the form

G(r, ro) = Go(r, ro)︸ ︷︷ ︸
1

4π|r−ro|

+Φind(r, ro) (3.5)

where the induced potential, Φind(r, ro), is regular and satisfies the homogeneous equation −∇2Φind =
0.
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The interaction energy of a point charge q and the grounded boundaries (i.e. between the charge q and
the induced charges on the grounded surfaces) is entirely due to the induced potential 1

Uint(ro) = q(qΦind(ro, ro)) = q2 lim
r→ro

(G(r, ro)−Go(r, ro)) (3.6)

and the force

F = −∇roUint(ro) (3.7)

(e) Finding the Green function by separation of variables This is best illustrated by example. Pick two
dimensions of a surface (say θ, φ). The method is motivated by the fact that δ3(r− ro) can be written
as a sum

δ3(r − ro) =
1

r2
δ(r − ro)δ(cos θ − cos θo)δ(φ− φo) =

1

r2
δ(r − ro)

∑
`m

Y`m(θ, φ)Y ∗`m(θo, φo) (3.8)

Thus the green function is can also be written as

G(r, ro) =

∞∑
`=0

∑̀
−`

g`m(r, ro)Y`m(θ, φ)Y ∗`m(θo, φo) (3.9)

leading to an equation for g`m(r, ro)[
− 1

r2
∂

∂r
r2
∂

∂r
+
`(`+ 1)

r2

]
g`m(r, ro) =

1

r2
δ(r − ro) (3.10)

This remaining equation in 1D is then solved for the green function following the strategy outlined in
Sect. 3.2 (see Eq. (3.32)). This depends on the conditions boundary conditions. Similar expressions
can be derived in other coordinates.

(f) For free space, the two solutions to Eq. (3.10) are yout(r) = 1/r`+1 and yin(r) = r`, p(r) = r2 and
p(r)W (r) = 2`+ 1. Then the free space Green fcn can be written

1

4π|r − ro|
=

∞∑
`=0

∑̀
−`

[Y`m(θ, φ)Y ∗`m(θo, φo)]
1

2`+ 1

r`<
r`+1
>

(3.11)

Some useful identities can be derived from Eq. (3.11):

i) The generating function of Legendre Polynomials is found by setting ro = ẑ and r < 1 with
Y`0 =

√
(2`+ 1)/4πP`(cos θ)

1√
1 + r2 − 2r cos θ

=

∞∑
`=0

r`P`(cos θ) (3.12)

ii) The spherical harmonic addition theorem which we find by writing by setting ro = 1 and r < 1
and using 1/|r − ro| = 1/

√
1 + r2 − 2rr̂ · r̂o

P`(r̂ · r̂o) =
4π

2`+ 1

∑̀
m=−`

Y`m(θ, φ)Y ∗`m(θoφo) (3.13)

where r̂ · r̂o is the cosine of the angle between the two vectors.

1 We have multiply by q2 since the green function is the potential for a unit charge q = 1. The electro-static potential for
charge q is qG(r, ro), while the interaction energy is U = qΦind(ro, ro).
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iii) The shell structure relation which you find by setting r̂ = r̂o

1 =
4π

2`+ 1

∑̀
m=−`

Y`m(θ, φ)Y ∗`m(θ, φ) (3.14)

This relation is what is responsible for shell structure in the periodic table

(g) Similar expansion exists in other coordinates. e.g. in cylindrical coords yout(ρ) = Km(κρ) and yin(ρ) =
Im(κρ), leading to

1

4π|r − ro|
=

1

2π

∞∑
m=−∞

∫
dk

2π

[
eim(φ−φo)eik(z−zo)

]
Im(kρ<)Km(kρ>) (3.15)

3.2 Solving the Laplace Equation by Separation

A summary of separation of variables in different coordinate systems is given in Appendix D. The most
important case is spherical and cartesian coordinates.

Solving the Laplace equation

We use a technique of separation of variables in different coordinate systems. The technique of separation
of variables is best illustrated by example. For instance consider a potential in a square geometry. The

ϕo(x, y)

b a

y

x

z

specified on bottom

ϕ = 0 on sides

Figure 3.1: A rectangle illustrating separation of vars

potential Φ(x, y, z) is specified at z = 0 to be Φo(x, y) and zero on the remaining boundaries

(a) We look for solutions of the separated form

Φ = Z(z)︸ ︷︷ ︸
⊥ to surf

X(x)Y (y)︸ ︷︷ ︸
‖ to surf

(3.16)

Substituting this into the laplace equation, and separating variables gives two equations for X, Y (the
parallel directions) [

− d2

dx2
− k2n

]
X(x) =0 , (3.17)[

− d2

dy2
− k2m

]
Y (x) =0 . (3.18)

and one equation for the perpendicular equation[
− d2

dz2
+ k2z

]
Z(z) =0 , (3.19)
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where k2z = k2n + k2m. The signs of kx, ky, kz are chosen for later convenience, because it will be
impossible to satisfy the BC for k2x < 0 or k2y < 0.

The first step is always to separate variables and write down the general solutions to the separated
equations

X(x) =A cos(knx) +B sin(knx) (3.20)

Y (y) =A cos(kmy) +B sin(kmy) (3.21)

Z(z) =Ae−kzz +Bekzz (3.22)

(b) It is best to analyze the parallel equations first which are all of the form of a Sturm Louiville eigen-
value equation (see below). These determine the (eigen) functions X(x), Y (y) and the eigenvalues (or
separation constants) kx and ky.

The general solution for X(x) is

X(x) = A cos kxx+B sin kxx , (3.23)

and we are specifying boundary conditions at x = 0 and x = a. In order to satisfy the boundary
condition X(0) = X(a) = 0, we must have A = 0 and k = nπ/a, leading to

X(x) = B sin(kna) kn =
nπ

a
n = 1, 2, . . . . (3.24)

Similarly

Y (y) = B sin(kma) km =
mπ

a
m = 1, 2, . . . (3.25)

Thus the parallel directions determine both the functions and the separation constants. The complete
eigen functions are

ψnm(x, y) = sin
(nπx

a

)
sin
(mπy

b

)
n = 1 . . .∞ m = 1 . . .∞

(c) Finally we return to the perpendicular direction, Eq. (3.19). This equation does not usually constrain
the separation constants. The general solution is

Z(z) = Aekzz +Be−kzz (3.26)

with kz =
√
k2n + k2m. With Z(z) specified The general solution then is a linear combination

∞∑
n=1

∞∑
m=1

[
Anme

−γnmz +Bnme
+γnmz

]
ψnm(x, y) (3.27)

Solving the separated equations:

After separating variables, all of the equations we wil study can be written in Sturm Louiville form:[
−d
dx

p(x)
d

dx
+ q(x)

]
y(x) = λr(x)y(x) (3.28)

where p(x) and r(x) are postive definite fcns. Here we record some general properties of these equations.

(a) Given two independent solutions to the differential equation y1(x) a and y2(x) The wronskian times
p(x) is constant.

p(x) [y1(x)y′2(x)− y2(x)y′1(x)]︸ ︷︷ ︸
wronskian(x)

= const (3.29)

This usually amounts to a statement of Gauss Law.
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(b) If boundary conditions are specified at two endpoints, x = a and x = b, then the problem becomes an
eigenvalue equation.

In this case only certain values of λ = λn are allowed and the functions are uniquely determined up to
normalization [

−d
dx

p(x)
d

dx
+ q(x)

]
ψn(x) = λnr(x)ψn(x) (3.30)

The parallel equations will have this form (see Eq. (3.17)), and notice how the boundary conditions at
x = 0 and x = a fixed the value of kn (see Eq. (3.23) and Eq. (3.24)).

The resulting eigenfunctions are complete 2 and orthogonal with respect to the weight r(x)∫ b

a

dx r(x)ψ∗n(x)ψm(x) = 0 n 6= m (3.31)

where a and b are the endpoints where the boundary conditions are specified. Note that the eigenfunc-
tions are complete, only in the space of functions that satisfy the boundary conditions.

(c) Solving the separated equations with δ function source terms

We will also need to know the green function of the one dimensional equation[
−d
dx

p(x)
d

dx
+ q(x)

]
g(x, xo) = δ(x− xo) (3.32)

The Green function for such 1D equations is based on knowing two homogeneous solutions yout(x) and
yin(x), where yout(x) satisfies the boundary conditions for x > xo, and yin(x) satisfies the boundary
conditions for x < xo.

The Green function is continuous but has discontinuous derivatives. Since we know the solutions
outside and inside it takes the form:

G(x, xo) =C [yout(x)yin(xo)θ(x− xo) + yin(x)yout(xo)θ(xo − x)] (3.33)

≡Cyout(x>)yin(x<) (3.34)

where C is a constant determined by integrating the equation, Eq. (3.32), across the delta function.
In the second line we use the common (but somewhat confusing notation)

x> ≡the greater of x and xo (3.35)

x< ≡the smaller of x and xo (3.36)

which makes the second line mean the same as the first line.

Integrating from x = xo − ε to x = xo + ε we find the jump condition which enters in many problems:

−p(x)
dg

dx

∣∣∣∣
xo+ε

+ p(x)
dg

dx

∣∣∣∣
xo−ε

= 1 , (3.37)

which can be used to find C.

(d) In fact the jump condition will always involve the Wronskian of the two solutions. Substituting
Eq. (3.33) into Eq. (3.37) we see that C = 1/(p(xo)W (xo))

G(x, xo) =
[yout(x)yin(xo)θ(x− xo) + yin(x)yout(xo)θ(xo − x)]

p(xo)W (xo)
(3.38)

≡yout(x>)yin(x<)

p(xo)W (xo)
(3.39)

where W (xo) = yout(xo)y
′
in(xo) − yin(xo)y

′
out(xo) is the Wronskian. Note that the denominator

p(xo)W (xo) is constant and is independent of xo.

2See Morse and Freshbach
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