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12.3 Transformation of field strengths

(a) By using the lorentz transformation rule

Fµν = LµρL
ν
σF

ρσ (12.110)

We deduced the transformation rule for the change of F ρσ under a change of frame (boost). The E
and B fields in frame K, which is moving with velocity v/c = β relative to a frame K, are related to
the E and B fields in frame K via

E‖ =E‖ B‖ =B‖ (12.111)

E⊥ =γE⊥ + γβ ×B⊥ B⊥ =γB⊥ − γβ ×E⊥ (12.112)

where E‖ and B‖ are the components of the E and B fields parallel to the boost, while E⊥ and B⊥
are the components of the E and B fields perpendicular to the boost.

(b) The quadratic invariants of Fµν are

FµνF
µν =2(B2 −E2) (12.113)

FµνF
µν =− 4E ·B (12.114)

Thus, if the electric and magnetic fields are orthogonal in one frame, then they are orthogonal in all.
In particular, if the field is electrostatic in one a particular frame (B = 0), then FµνF

µν is negative in
all frames, and E will be perpendicular to B in all frames.

(c) If in the lab frame there is only an electric field E, then the transformation rule of Fµν is often used
to determine the magnetic field which is experienced by a slow moving charge of velocity v/c = β

B = −β ×E (12.115)

(d) We used the transformation rule to determine the (boosted) Coulomb fields for a fast moving charge.
For a charge moving along the x-axis crossing the origin x = 0 at time t = 0, the fields at longitidunal
coordinate x and transverse coordinates b = (y, z) we found

E‖(t, x, b) =
e

4π

γ(x− vpt)
(b2 + γ2(x− vpt)2)3/2

(12.116)

E⊥(t, x, b) =
e

4π

γb

(b2 + γ2(x− vpt)2)3/2
(12.117)

B =
vp
c
×E (12.118)

Note that in Eqs. 12.111, β is the velocity of the frame K relative to K. In this case we know the
fields of in the frame of the particle (the Coulomb field), and we want to know the fields in a frame K
(the lab) moving with speed β = −vp relative to the particle. The frame K (the lab) sees the particle
moving with velocity vp. Thus, we make a Lorentz transform as in Eq. (12.111) with β = −vp to
transform from the particle frame to the lab frame.

(e) The constituent relation specifies the current j of the sample in terms of the applied fields. In par-
ticular, for a conductor we explained that j = σE in the rest frame of the conductor. Boosting this
relationship, we found that for samples moving non-relativistically with speed v relative to the lab,
that the constituent relation takes form

j = σ(E +
v

c
×B) (12.119)

where v is the velocity of the sample.
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12.4 Covariant actions and equations of motion

(a) We discussed the simplest of all actions

I[x(t)] = Io︸︷︷︸
free

+ Iint︸︷︷︸
interaction

, (12.120)

=

∫
dt 1

2mẋ
2(t)︸ ︷︷ ︸

free

+

∫
dt Fo x(t)︸ ︷︷ ︸

interaction

(12.121)

we varied this, and derived Newton’s Law. All other actions follow this model.

(b) For a relativistic point particle interaction with the electromagnetic field we derived a Lorentz covariant
free and interation lagrangian:

i) The free part of the action is

Io = −
∫
dτ mc2 (12.122)

Using
c dτ =

√
−dXµdXµ (12.123)

we have

Io[X
µ(p)] = −

∫
dτ mc2 =

∫
dp mc

√
−dX

µ

dp

dXµ

dp
(12.124)

We derived the equations of motion by varying this action Xµ(p)→ Xµ(p) + δXµ(p)

ii) The interaction Lagrangian for a charged particle is

Iint[X
µ(p)] =

e

c

∫
dp

dXµ

dp
Aµ(X(p)) (12.125)

or in terms of proper time

Iint[X
µ(τ)] =

e

c

∫
dτ

dXµ

dτ
Aµ(X(τ)) (12.126)

A one line exercise shows that a gauge transformation (with Λ(x) that vanishes as x → ±∞),
leaves the action unchanged.

In the non-relativistic limit this reduces to

Iint[x(t)] =

∫
dt

[
−eΦ(t,x(t)) +

v

c
·A(t,x(t))

]
(12.127)

iii) Varying the free and interaction actions with respect to Xµ → Xµ + δXµ

δI[X] = δIo + δIint (12.128)

we found the equations of motion

m
d2Xµ

dτ2
= eFµν

Uν

c
(12.129)

(c) We also wrote down the action for the fields

i) The unique action, which is invariant under Lorentz transformations, gauge gauge transformations,
and parity, that involves no more than two powers of the field strength is

Io =

∫
d4x
−1

4
FµνF

µν (12.130)



12.4. COVARIANT ACTIONS AND EQUATIONS OF MOTION 63

ii) The interaction between the currents and the fields is

Iint =

∫
d4xJµ

Aµ
c

(12.131)

Indeed, for any particular gauge invariant interaction Lagrangian (such as Eq. (12.126)) the
(current)/c is defined to be the variation of the interaction Lagrangian with respect to Aµ

δIint =

∫
d4x

Jµ(x)

c︸ ︷︷ ︸
definition of current/c

δAµ(x) (12.132)

For the point particle action Eq. (12.126), this gives

Jµ

c
= e(δ3(x− xo(t)),βδ3(x− xo(t))) (12.133)

where xo(t) is the position of the particle.

iii) Varying the complete action
δItot = δIo + δIint (12.134)

Yields the Maxwell equations

− ∂µFµν =
Jν

c
(12.135)

iv) Demanding that the interaction part of the action Iint is invariant under gauge transformation
leads to a requirement of current conservation:

∂µJ
µ = 0 (12.136)

Similarly if ∂µJ
µ = 0, then a gauge transformation leaves Eq. (12.131) unchanged.
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