4 Electric Fields in Matter

4.1 Parity and Time Reversal

(a) We discussed how fields transform under parity and time reversal. A useful table is

Quantity	Parity	Time Reversal
t	Even	Odd
\boldsymbol{r}	Odd	Even
\boldsymbol{p}	Odd	Odd
$\boldsymbol{F}=$ force	Odd	Even
Ł $=\boldsymbol{r} \times \boldsymbol{p}$	Even	Odd
$Q=$ charge	Even	Even
\boldsymbol{j}	Odd	Odd
\boldsymbol{E}	Odd	Even
\boldsymbol{B}	Even	Odd
\boldsymbol{A} vector potential	Odd	Odd

4.2 Electrostatics in Material

Basic setup

(a) In material we expand the medium currents $\boldsymbol{j}_{\text {mat }}$ in terms of a constitutive relation, fixing the currents in terms of the applied fields.

$$
\begin{equation*}
\boldsymbol{j}_{\mathrm{m} a t}=[\text { all possible combinations of the fields and their derivatives }] \tag{4.1}
\end{equation*}
$$

We have added a subscript mat to indicate that the current is a medium current. There is also an external current $\boldsymbol{j}_{\text {ext }}$ and charge density $\rho_{\text {ext }}$.
(b) When only uniform electric fields are applied, and the electric field is weak, and the medium is isotropic, the polarization current takes the form

$$
\begin{equation*}
\boldsymbol{j}_{\mathrm{m} a t}=\sigma \boldsymbol{E}+\chi \partial_{t} \boldsymbol{E}+\ldots \tag{4.2}
\end{equation*}
$$

where the ellipses denote higher time derivatives of electric fields, which are suppressed by powers of $t_{\text {micro }} / T_{\text {macro }}$ by dimensional analysis. For a conductor σ is non-zero. For a dielectric insulator σ is zero, and then the current takes the form

$$
\begin{equation*}
\boldsymbol{j}_{b}=\partial_{t} \boldsymbol{P} \tag{4.3}
\end{equation*}
$$

- \boldsymbol{P} is known as the polarization, and can be interpreted as the dipole moment per volume.
- We have worked with linear response for an isotropic medium where

$$
\begin{equation*}
\boldsymbol{P}=\chi \boldsymbol{E} \tag{4.4}
\end{equation*}
$$

This is most often what we will assume.
For an anisotropic medium, χ is replaced by a susceptibility tensor

$$
\begin{equation*}
\boldsymbol{P}_{i}=\chi_{i j} \boldsymbol{E}^{j} \tag{4.5}
\end{equation*}
$$

For a nonlinear (isotropic) medium \boldsymbol{P} one could try a non-linear vector function of \boldsymbol{E},

$$
\begin{equation*}
\boldsymbol{P}(\boldsymbol{E}) \tag{4.6}
\end{equation*}
$$

defined by the low-frequency expansion of the current at zero wavenumber.
(c) Current conservation $\partial_{t} \rho+\nabla \cdot \boldsymbol{j}=0$ determines then that

$$
\begin{equation*}
\rho_{\mathrm{m} a t}=-\nabla \cdot \boldsymbol{P} \tag{4.7}
\end{equation*}
$$

(d) The electrostatic maxwell equations read

$$
\begin{align*}
& \nabla \cdot \boldsymbol{E}=\underbrace{-\nabla \cdot \boldsymbol{P}}_{\rho_{\mathrm{mat}}}+\rho_{\mathrm{ext}} \tag{4.8}\\
& \nabla \times \boldsymbol{E}=0 \tag{4.9}
\end{align*}
$$

or

$$
\begin{align*}
\nabla \cdot \boldsymbol{D} & =\rho_{\mathrm{e} x t} \tag{4.10}\\
\nabla \times \boldsymbol{E} & =0 \tag{4.11}
\end{align*}
$$

where the electric displacement is

$$
\begin{equation*}
D \equiv E+P \tag{4.12}
\end{equation*}
$$

(e) For a linear isotropic medium

$$
\begin{equation*}
\boldsymbol{D}=(1+\chi) \boldsymbol{E} \equiv \varepsilon \boldsymbol{E} \tag{4.13}
\end{equation*}
$$

but in general \boldsymbol{D} is a function of \boldsymbol{E} which must be specified before problems can be solved.

Working problems with Dielectrics

(a) Using Eq. (4.7) and the Eq. (4.10) we find the boundary conditions that normal components of \boldsymbol{D} jump across a surface if there is external charge, while the parallel components \boldsymbol{E} are continuous

$$
\begin{align*}
\boldsymbol{n} \cdot\left(\boldsymbol{D}_{2}-\boldsymbol{D}_{1}\right) & =\sigma_{\mathrm{e} x t} & D_{2 \perp}-D_{1 \perp} & =\sigma_{\mathrm{e} x t} \tag{4.14}\\
\boldsymbol{n} \times\left(\boldsymbol{E}_{2}-\boldsymbol{E}_{1}\right) & =0 & E_{2 \|}-E_{1 \|} & =0
\end{align*}
$$

Very often $\sigma_{\text {ext }}$ will be absent and then D_{\perp} will be continuous (but not E_{\perp}).
(b) A jump in the polarization induces bound surface charge at the jump.

$$
\begin{equation*}
-\boldsymbol{n} \cdot\left(\boldsymbol{P}_{2}-\boldsymbol{P}_{1}\right)=\sigma_{\mathrm{mat}} \tag{4.16}
\end{equation*}
$$

(c) Since the curl of \boldsymbol{E} is zero we can always write

$$
\begin{equation*}
\boldsymbol{E}=-\nabla \varphi \tag{4.17}
\end{equation*}
$$

and for linear media $(\boldsymbol{D}(\boldsymbol{r})=\varepsilon(\boldsymbol{r}) \boldsymbol{E}(\boldsymbol{r}))$ with a non-constant dielectric constant $\varepsilon(\boldsymbol{r})$, we find an equation for \boldsymbol{D}

$$
\begin{equation*}
\nabla \cdot \varepsilon(\boldsymbol{r}) \nabla \varphi=0 \tag{4.18}
\end{equation*}
$$

(d) With the assumption of a linear medium $\boldsymbol{D}=\varepsilon \boldsymbol{E}$ and constant dielectric constant, the equations for electrostatics in medium are essentially identical to electrostatics without medium

$$
\begin{equation*}
-\varepsilon \nabla^{2} \Phi=\rho_{\mathrm{e} x t} \tag{4.19}
\end{equation*}
$$

but, the new boundary conditions lead to some (pretty minor) differences in the way the problems are solved.

Energy and Stress in Dielectrics: Lecture 13.5

(a) We worked out the extra energy stored in a dielectric as an ensemble of external charges are placed into the dielectric. As the macroscopic electric field \boldsymbol{E} and displacement $\boldsymbol{D}(\boldsymbol{E})$ are changed by adding external charge $\delta \rho_{\mathrm{e} x t}$, the change in energy stored in the capacitor material is

$$
\begin{equation*}
\delta U=\int_{V} \mathrm{~d}^{3} x \boldsymbol{E} \cdot \delta \boldsymbol{D} \tag{4.20}
\end{equation*}
$$

(b) For a linear dielectric δU can be integrated, becoming

$$
\begin{equation*}
U=\frac{1}{2} \int_{V} \mathrm{~d}^{3} x \boldsymbol{E} \cdot \boldsymbol{D}=\frac{1}{2} \int_{V} \mathrm{~d}^{3} x \varepsilon \boldsymbol{E}^{2} \tag{4.21}
\end{equation*}
$$

(c) We worked out the stress tensor for a linear dielectric and found

$$
\begin{align*}
T_{E}^{i j} & =-\frac{1}{2}\left(D^{i} E^{j}+E^{i} D^{j}\right)+\frac{1}{2} \boldsymbol{D} \cdot \boldsymbol{E} \delta^{i j} \tag{4.22}\\
& =\varepsilon\left(-E^{i} E^{j}+\frac{1}{2} \boldsymbol{E}^{2} \delta^{i j}\right) \tag{4.23}
\end{align*}
$$

where in the first line we have written the stress in a form that can generalize to the non-linear case, and in the second line we used the linearity to write it in a form which is proportional the vacuum stress tensor.
(d) As always the force per volume in the Dielectric is

$$
\begin{equation*}
f^{j}=-\partial_{i} T_{E}^{i j} \tag{4.24}
\end{equation*}
$$

where

$$
\begin{equation*}
T^{i j}=\text { the force in the } j \text {-th direction per area in the } i \text {-th } \tag{4.25}
\end{equation*}
$$

More precisely let \boldsymbol{n} be the (outward directed) normal pointing from region LEFT to region RIGHT, then

$$
\begin{equation*}
n_{i} T^{i j}=\text { the } j \text {-th component of the force per area, by region } L E F T \text { on region } R I G H T . \tag{4.26}
\end{equation*}
$$

We can integrate the force/volume to find the net force on a given volume

$$
\begin{equation*}
F^{j}=\int_{V} d^{3} x f^{j}(\boldsymbol{x})=-\int_{\partial V} d a_{i} T^{i j} \tag{4.27}
\end{equation*}
$$

This can be used to work out the force at a dielectric interface as done in lecture.

