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Electric Fields in Matter

4.1

Parity and Time Reversal

(a) We discussed how fields transform under parity and time reversal. A useful table is

4.2

Quantity Parity | Time Reversal
t Even Odd
T Odd Even
p 0dd Odd
F =force 0Odd Even
L=rxp Even Odd
@ = charge Even Even
J Odd Odd
E Odd Even
B Even Odd
A vector potential Odd Odd

Electrostatics in Material

Basic setup

(a)

In material we expand the medium currents jy,,¢+ in terms of a constitutive relation, fixing the currents
in terms of the applied fields.

Jmat = [ all possible combinations of the fields and their derivatives] (4.1)

We have added a subscript mat to indicate that the current is a medium current. There is also an
external current jo,: and charge density peyt.

When only uniform electric fields are applied, and the electric field is weak, and the medium is isotropic,
the polarization current takes the form

Jmat = o E + XatE +... (42)
where the ellipses denote higher time derivatives of electric fields, which are suppressed by powers of

tmicro/Tmacro by dimensional analysis. For a conductor o is non-zero. For a dielectric insulator o is
zero, and then the current takes the form

Jb = O P (4.3)
e P is known as the polarization, and can be interpreted as the dipole moment per volume.
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e We have worked with linear response for an isotropic medium where
P =xE (4.4)

This is most often what we will assume.
For an anisotropic medium, x is replaced by a susceptibility tensor

I:)i = Xij Ej (45)
For a nonlinear (isotropic) medium P one could try a non-linear vector function of E,
P(E) (4.6)
defined by the low-frequency expansion of the current at zero wavenumber.

(c) Current conservation Oyp + V - j = 0 determines then that

Pmat — -V.-P (47)
(d) The electrostatic maxwell equations read
V-E==V:P+pe 4.8
FPext (4.8)
Pmat
V x E =0 (4.9)
or
V-D =Pext (410)
V x E =0 (4.11)
where the electric displacement is
D=E+P (4.12)
(e) For a linear isotropic medium
D=(1+x)E=¢E (4.13)

but in general D is a function of E which must be specified before problems can be solved.

Working problems with Dielectrics

(a) Using Eq. (4.7) and the Eq. (4.10) we find the boundary conditions that normal components of D
jump across a surface if there is external charge, while the parallel components E are continuous

n - (Dy — D1) =0cxt Doy — D1y =0eqt (4.14)
n X (Ey — Ey) =0 Ey — Ey =0 (4.15)
Very often eyt will be absent and then D, will be continuous (but not E, ).
(b) A jump in the polarization induces bound surface charge at the jump.
—n- (P~ P) =ona (4.16)
(c) Since the curl of F is zero we can always write
E=-Vyp (4.17)

and for linear media (D(r) = e(r)E(r)) with a non-constant dielectric constant e(r), we find an
equation for D
V-e(r)Ve=0 (4.18)

(d) With the assumption of a linear medium D = ¢E and constant dielectric constant, the equations for
electrostatics in medium are essentially identical to electrostatics without medium

—eV20 = peyt (4.19)

but, the new boundary conditions lead to some (pretty minor) differences in the way the problems are
solved.
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Energy and Stress in Dielectrics: Lecture 13.5

(a)

We worked out the extra energy stored in a dielectric as an ensemble of external charges are placed
into the dielectric. As the macroscopic electric field E and displacement D(E) are changed by adding
external charge §pe.s, the change in energy stored in the capacitor material is

§U = / d*z E-6D (4.20)
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For a linear dielectric 6U can be integrated, becoming
U:%/d3:cE~D:%/d3xsE2 (4.21)
1% 1%
We worked out the stress tensor for a linear dielectric and found
T = J(D'E’ + E'DY) + %D - E§Y (4.22)
= <—EiEﬂ' + ;E25”> (4.23)
where in the first line we have written the stress in a form that can generalize to the non-linear case,

and in the second line we used the linearity to write it in a form which is proportional the vacuum
stress tensor.

As always the force per volume in the Dielectric is

fl=—aTy (4.24)
where -
T% = the force in the j-th direction per area in the i-th (4.25)

More precisely let n be the (outward directed) normal pointing from region LEFT to region RIGHT,
then

n;T% = the j-th component of the force per area, by region LEFT on region RIGHT . (4.26)

We can integrate the force/volume to find the net force on a given volume

Fi— /V d*x 1 (x) = — /d y da; T" (4.27)

This can be used to work out the force at a dielectric interface as done in lecture.
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