
2 Electrostatics

2.1 Elementary Electrostatics

Electrostatics:

(a) Fundamental Equations

∇ ·E =ρ (2.1)

∇×E =0 (2.2)

F =qE (2.3)

(b) Given the divergence theorem, we may integrate over volume of ∇ ·E = ρ and deduce Gauss Law:∫
S

E · dS = qtot

which relates the flux of electric field to the enclosed charge

(c) For a point charge ρ(r) = qδ3(r − ro) and the field of a point charge

E =
q r̂ − ro

4π|r − ro|2
(2.4)

and satisfies

∇ · q r̂ − ro
4π|r − ro|2

= qδ3(r − ro) (2.5)

(d) The potential. Since the electric field is curl free (in a quasi-static approximation) we may write it as
gradient of a scalar

E = −∇Φ Φ(xb)− Φ(xa) = −
∫ b

a

E · d` (2.6)

The potential satisfies the Poisson equation

−∇2Φ = ρ . (2.7)

The Laplace equation is just the homogeneous form of the Poisson equation

−∇2Φ = 0. (2.8)

The next section is devoted to solving the Laplace and Poisson equations

(e) The boundary conditions of electrostatics

n · (E2 −E1) =σ (2.9)

n× (E2 −E1) =0 (2.10)

i.e. the components perpendicular to the surface (along the normal) jump, while the parallel compo-
nents are continuous.
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(f) The Potential Energy stored in an ensemble of charges is

UE =
1

2

∫
d3x ρ(r)Φ(r) (2.11)

(g) The energy density of an electrostatic field is

uE =
1

2
E2 (2.12)

(h) Force and stress

i) The stress tensor records T ij records the force per area. It is the force in the j-th direction per
area in the i-th. More precisely let n be the (outward directed) normal pointing from region
LEFT to region RIGHT, then

niT
ij = the j-th component of the force per area, by region LEFT on region RIGHT (2.13)

ii) The total momentum density gtot (momentum per volume) is supposed to obey a conservation
law

∂tg
j
tot + ∂iT

ij = 0 ∂tg
j
tot = −∂iT ij (2.14)

Thus we interpret the force per volume f j as the (negative) divergence of the stress

f j = −∂iT ij (2.15)

iii) The stress tensor of a gas or fluid at rest is T ij = pδij where p is the pressure, so the force per
volume f is the negative gradient of pressure.

iv) The stress tensor of an electrostatic field is

T ij
E = −EiEj + 1

2δ
ijE2 (2.16)

Note that I will use an opposite sign convention from Jackson: T ij
me = −T ij

Jackson. This convention
has some good features when discussing relativity.

v) The net electric force on a charged object is

F j =

∫
d3x ρ(r)Ej(r) = −

∫
dS niT

ij (2.17)

(i) For a metal we have the following properties

i) On the surface of the metal the electric field is normal to the surface of the metal. The charge per
area σ is related to the magnitude of the electric field. Let n be pointing from inside to outside
the metal:

E = Enn σ = En (2.18)

ii) Forces on conductors. In a conductor the force per area is

F i =
1

2
σEi =

1

2
σ2
n n

i (2.19)

The one half arises because half of the surface electric field arises from σ itself, and we should not
include the self-force. This can also be computed using the stress tensor

iii) Capacitance and the capacitance matrix and energy of system of conductors

For a single metal surface, the charge induced on the surface is proportional to the Φ.

q = CΦ .

When more than one conductor is involved this is replaced by the matrix equation:

qA =
∑
B

CABΦB .
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2.2 Multipole Expansion

Cartesian and Spherical Multipole Expansion

(a) Cartesian Multipole expansion

For a set of charges in 3D arranged with characteristic size L, the potential far from the charges r � L
is expanded in cartesian multipole moments

Φ(r) =

∫
d3ro

ρ(ro)

4π|r − ro|
(2.20)

Φ(r) ' 1

4π

[
qtot
r

+
p · r̂
r2

+ 1
2Qij

r̂ir̂j

r3
+ . . .

]
(2.21)

where each terms is smaller than the next since r is large. Here monopole moment, the dipole moment,
and (traceless) quadrupole moments are respectively:

qtot =

∫
d3x ρ(r) (2.22)

p =

∫
d3x ρ(r)r (2.23)

Qij =

∫
d3x ρ(r)

(
3rirj − r2δij

)
(2.24)

respectively. There are five independent components of the symmetric and traceless tensor (matrix)
Qij . We have implicitly defined the moments with respect to an agreed upon origin ro = 0.

(b) Forces and energy of a small charge distribution in an external field

Given an external field Φ(r) we want to determine the energy of a charge distribution ρ(r) in this
external field. The potential energy of the charge distribution is

UE = QtotΦ(ro)− p ·E(ro)− 1

6
Θij∂iEj(ro) + . . . (2.25)

where ro is a chosen point in the charge distribution and the Qtot,p,Θ
ij are the multipole moments

around that point (see below).

The multipoles are defined around the point ro on the small body:

Qtot =

∫
d3x ρ(r) (2.26)

p =

∫
d3x ρ(r) δr (2.27)

Qij =

∫
d3x ρ(r)

(
3 δri δrj − δr2 δij

)
(2.28)

where δr = r − ro.

The force on a charged object can be found by differentiating the energy

F = −∇roUE(ro) (2.29)

For a dipole this reads
F = (p · ∇)E (2.30)

(c) Spherical multipoles. To determine the potential far from the charge we we determine the potential
to be

Φ(r) =

∫
d3ro

ρ(ro)

4π|r − ro|
(2.31)

=

∞∑
`=0

∑̀
m=−`

q`m
2`+ 1

Y`m(θ, φ)

r`+1
(2.32)



6 CHAPTER 2. ELECTROSTATICS

Now we characterize the charge distribution by spherical multipole moments:

q`m =

∫
d3ro ρ(ro)

[
r`o Y

∗
`m(θo, φo)

]
(2.33)

You should feel comfortable deriving this using an identity we derived in class (and will further discuss
later)

1

4π|r − ro|
=
∑
`m

1

2`+ 1

r`<
r`+1
>

Y`m(θ, φ)Y ∗`m(θo, φo) (2.34)

Here

r> =greater of r and ro (2.35)

r< =lesser of r and ro (2.36)

(2.37)

Could also notate this as
r`<
r`+1
>

=
r`o
r`+1

θ(r − ro) +
r`

r`+1
o

θ(ro − r) . (2.38)

I find this form clearer, since I know how to differntiate the right hand side using, dθ(x − xo)/dx =
δ(x− xo)

(d) For an azimuthally symmetric distribution only q`0 are non-zero, the equations can be simplified using
Y`0 =

√
(2`+ 1)/4πP`(cos θ) to

Φ(r, θ) =

∞∑
`=0

a`
P`(cos θ)

r`+1
(2.39)

(e) There is a one to one relation between the cartesian and spherical forms

px, py, pz ↔ q11, q10, q1−1 (2.40)

Qzz,Θxx −Θyy,Θxy,Θzx,Θzy ↔ q22, q21, q20, q2−1, q2−2 (2.41)

which can be found by equating Eq. (2.31) and Eq. (2.20) using

r̂ = (sin θ cosφ, sin θ sinφ, cos θ) (2.42)
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