Multipole Expansion with Spherical Harmonics

\[\rho(r) \]

Let us redo the multipole expansion

Then

\[\Psi(r) = \int d^3 r_0 \frac{\rho(r_0)}{4\pi |r - r_0|} \]

For \(r >> r_0 \) we can expand \(r_+ = r \) and \(r_- = r_0 \) and we have the expansion

\[\frac{1}{4\pi |r - r_0|} = \sum_{lm} \frac{r_0^l}{r^{l+1}} Y_{lm}(\theta, \phi) Y_{lm}^*(\theta_0, \phi_0) \]

This leads to

\[\Psi(r) = \sum_{lm} \frac{q_{lm}}{(2l+1)} \frac{Y_{lm}(\theta, \phi)}{r^{l+1}} \frac{Y_{lm}^*(\theta_0, \phi_0)}{r} + O(1/r^3) \]

where

\[q_{lm} = \int d^3 r_0 \rho(r_0) r_0^l Y_{lm}^*(\theta_0, \phi_0) \]

spherical multipole moment
This multipole expansion is entirely equivalent to the expansion we had previously:

\[\Psi(\mathbf{r}) = Q_{10} \mathbf{r} + \frac{\mathbf{p} \cdot \mathbf{r}}{4\pi r^2} + \frac{Q_{20} (\mathbf{r} \cdot \mathbf{\hat{r}} - \frac{1}{3} \mathbf{r} \mathbf{\hat{r}} \cdot \mathbf{r})}{4\pi r^3} \]

+ ...

To see this one needs to understand what \(Y_{lm}(\theta, \phi) \) are. \(Y_{lm} \) are linearly combos of the components of a symmetric traceless \(\ell \)-th rank tensor constructed out of \(\mathbf{r} \).

<table>
<thead>
<tr>
<th>Cartesian</th>
<th>Spherical</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{r}_i)</td>
<td>(Y_{i0})</td>
<td>0</td>
</tr>
<tr>
<td>(\hat{r}_i \hat{r}j - \frac{1}{3} \delta{ij})</td>
<td>(Y_{2m})</td>
<td>2</td>
</tr>
<tr>
<td>(\hat{r}_i \hat{r}_j \hat{r}_k \hat{r}_l)</td>
<td>(Y_{3m})</td>
<td>3</td>
</tr>
</tbody>
</table>

And so on.
To understand my meaning, take the dipole term:

\[Y_{11} \propto \left(\hat{x} + i \hat{y} \right) \]
\[Y_{1,-1} \propto \left(\hat{x} - i \hat{y} \right) \]
\[Y_{1,0} \propto \hat{z} \]

We see that \(Y_{1m} \) is a linear combo of \(\hat{f}^i \).

Similarly, \(q_{1m} \) is a linear combo of \(\hat{p}^i \), e.g.:

\[q_{01} = \int \frac{d^3 r_0}{r_0} \, Y_{1m}^* \rho(r_0) \propto \left(\hat{x} - i \hat{y} \right) \rho(r_0) \]

\[\propto (x - iy) \rho(r_0) \]

The \(x, y \) components of \(\hat{p}^i \) are:

\[\hat{p}^x = \int \frac{d^3 r_0}{r_0} \, x \rho(r_0) \quad \text{etc.} \]

The relation between \(\hat{p}^i \) and \(q_{1m} \) is the same as the relation (i.e. linear combo) between \(\hat{f}^i \) and \(Y_{1m} \).

The relations and normalizations are chosen so that the series agree, e.g.

\[\frac{\hat{p} \cdot \hat{r}}{4\pi r^2} = \sum_m \frac{1}{3} q_{1m} Y_{1m} \Rightarrow \hat{p} \cdot \hat{r} = \frac{4\pi}{3} \sum_m q_{1m} Y_{1m} \]

\[2l + 1 \quad \text{for} \quad l = 1 \]
This is the statement that

\[\vec{p} \cdot \hat{r} = (p_x - ip_y) \left(\frac{\hat{x} + i \hat{y}}{\sqrt{2}} \right) + (p_x + ip_y) \left(\frac{\hat{x} - i \hat{y}}{\sqrt{2}} \right) + p_z \cdot \hat{z} \]

\[= \frac{4\pi}{3} \left(q_{11} Y_{11} + q_{1-1} Y_{1-1} + q_{00} Y_{10} \right) \]

Similarly, \(Y_{2m} \) is a linear combo of \(\frac{\hat{r} \cdot \hat{s}}{3} \)

(There are five components of \(\frac{\hat{r} \cdot \hat{s}}{3} \) and five \(\ell = 2 \) spherical harmonics). And, \(q_{2m} \) is a linear combo of the quadrupole tensor \(Q_{ij} \) components

(The map between \(q_{2m} \) and \(Q_{ij} \) is the same as between \(Y_{2m}^* \) and \(\frac{\hat{r} \cdot \hat{s}}{3} \)). Then, this map is constructed so that

\[\frac{1}{4\pi r^3} Q_{ij} \left(\frac{\hat{r} \cdot \hat{s}}{3} \right) = \sum_{m} \frac{1}{5} q_{2m} Y_{2m} / r^3 \]

\[\sim 2\ell + 1 \text{ with } \ell = 2 \]