
Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates.
Here ψ is a scalar function and A is a vector field.



Figure 2: Vector and integral identities. Here ψ is a scalar function and A, a,b, c are vector
fields.



Problem 1. An uncharged rotor

Two equal and opposite charges are attached to the ends of a rod of length s as shown below.
The rod rotates (non-relativistically) counter-clockwise in the xy plane with angular speed
ωo = cko.

(a) Explicitly determine the components of the radiation electric field as a function of time
in the far field as a function of r, θ in the xz plane (see below). The answer should
take the form

E(r, θ, t) = Eθ(r, θ, t) θ̂ + Eφ(r, θ, t) φ̂ . (1)

Why is there no r̂ component in Eq. (1)? Hint: it may be helpful (but not essential) to
express the position of the ends of the rod using a complex notation, e.g. the position
of the plus charge is r+(t) = (s/2) (x̂+ iŷ) e−iωot.

(b) Write out the real electric field on the x and z axes in cartesian coordinates. Identify the
state of polarization that is observed in the two cases and give a physical explanation
for the observed polarization.

(c) Determine the time averaged rate at which energy is radiated per unit solid angle.

(d) After spinning for a long time (from time t = −∞ . . . 0), the rotating rod abruptly
stops when the azimuthal angle φo = 0. For a detector placed in the far field on the z
axis (θ = φ = 0) determine the energy per frequency per solid angle

(2π)
dW

dωdΩ
, (2)

and the yield of photons per frequency interval

dN

dωdΩ
. (3)
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Problem 2. Potential difference across a cylinder

A neutral thin dielectric cylindrical shell of radius a and thickness t (with t� a) rotates non-
relativistically with constant angular velocity ωo with ωoa/c� 1 (see below). The cylindrical
shell sits in a constant homogeneous magnetic field directed along the z axis, B = Bo ẑ (see
below). A potential difference of ∆V is observed between the inside and outsides of the
cylindrical shell as shown below. The cylinder has dielectric constant ε = 1 +χ with χ� 1.

(a) Recall that the vector potential of a constant magnetic field is A = 1
2
B×r. By making

a Lorentz transformation of the four potential Aµ (in the Lorentz gauge) determine
the potential Aµ in the co-rotating frame of the cylinder (i.e. a frame moving with the
walls of the cylinder)

(b) In a co-rotating frame determine the electric field experienced by the cylinder? Is your
electric field consistent with the gauge potential Aµ of part (a) ?

(c) In the co-rotating frame determine the charge density on the surface of cylinder and
make a sketch

(d) Qualitatively explain the potential difference ∆V in the lab frame.

(e) Quantitatively determine the potential difference ∆V in the lab frame. Indicate the
direction of the (weak) electric field in the lab frame by making a sketch.
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Problem 3. Radiation from a proper acceleration

(a) Write down the covariant action of a relativistic point particle coupled to a gauge field
Aµ and show that the action is gauge invariant.

(b) Using the action of part (a) determine the covariant equations of motion for a rela-
tivistic point particle in an electromagnetic field. Use the covariant equation of motion
to show that UµU

µ = const.

(c) Set c = 1 for simplicity. Now consider an ultra-relativistic relativistic positron of
positive charge q and mass m traveling with velocity vo ≡ tanh yo in the negative x-
direction from positive infinity (see below). (Note that γo = cosh yo and γovo = sinh yo.)
At x = 0 the particle enters a semi-infinite region (x < 0) of homogeneous electric field
directed in the positive x-direction, E = E x̂. The particle experiences a constant
force, decelerates to a momentary stop, and is finally re-accelerated to its original
speed (but in the opposite direction) by the time it leaves the electric field again (see
below).

(i) Determine the position x(τ) and the four velocity uµ(τ) = dxµ/dτ as a function
of proper time τ while the particle is in the electric field. Also determine the
relation between the proper time τ and t.

(ii) How long (in time) does the particle remain in the electric field, and how far to
the left of x = 0 (dmax in the figure below) does the particle penetrate into the
field?

Hint: Recall the properties hyperbolic functions

cosh y = cos(iy) =
ey + e−y

2
sinh(y) = −i sin(iy) =

ey − e−y

2
(4)

and its properties

d

dy
cosh(y) = sinh y

d

dy
sinh(y) = cosh(y) cosh2 y − sinh2 y = 1 (5)

You may find these relations useful in integrating the equations of motion, i.e. express-
ing the rapidity y as a function of τ .

(d) What is the energy lost to radiation during the relativistic motion of part (c)? Express
your answer as a dimensionless (order unity) integral which you may leave unevaluated.

(e) (extra-credit) For γo ∼ 10 estimate the electric field (in Volts/meter) where the
energy lost equals ∼ 1% of the initial energy.
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