1 Retarded Green Functions and Green Theorem

1.1 Linear operators, boundary conditions, and adjoints

Consider the simplest of all differential operator

$$
\begin{equation*}
\mathcal{L}_{t}=\left[\frac{d}{d t}\right] \tag{1.1}
\end{equation*}
$$

The operator is fully specified by its action and the space of functions on which it acts, i.e. the boundary conditions and domain of the functions which we are talking about. For instance lets take the space of functions between $t_{\min }$ and $t_{\text {max }}$ with retarded boundary conditions, i.e. $v(t)=0$ for $t \leq t_{\text {min }}$.

$$
\begin{equation*}
\mathcal{L}_{t} v(t)=\left[\frac{d}{d t}\right] v(t) \quad v\left(t_{\text {min }}\right)=0 \tag{1.2}
\end{equation*}
$$

Numerically we discretize using backward differences

$$
\begin{equation*}
\frac{d v}{d t}=\frac{v(t)-v(t-\Delta t)}{\Delta t} \tag{1.3}
\end{equation*}
$$

Then the action of the differential operator can be put in matrix form

$$
\mathcal{L}_{t} v(t)=\left(\begin{array}{ccccc}
1 / \Delta t & 0 & & & \tag{1.4}\\
-1 / \Delta t & 1 / \Delta t & & & \\
& -1 / \Delta t & \ddots & & \\
& & \ddots & 1 / \Delta t & 0 \\
& & & -1 / \Delta t & 1 / \Delta t
\end{array}\right)\left(\begin{array}{c}
v\left(t_{1}\right) \\
v\left(t_{2}\right) \\
v\left(t_{3}\right) \\
\vdots \\
v\left(t_{N}\right)
\end{array}\right)
$$

where $t_{n}=t_{\text {min }}+n \Delta$. The last point is at $t_{N}=t_{\text {max }}-\Delta$
Can you see how the retarded boundary conditions are used when placing the entries into the matrix - basically we said

$$
\begin{equation*}
\left.\frac{d v(t)}{d t}\right|_{t_{1}}=\frac{v\left(t_{1}\right)}{\Delta t} \tag{1.5}
\end{equation*}
$$

which is true if $v\left(t_{\text {min }}\right)=0$.
The adjoint differential operator is a unique operator satisfying

$$
\begin{equation*}
\int_{t_{\min }}^{t_{\max }} d t V_{2}(t)\left(\mathcal{L}_{t} v_{1}(t)\right)=\int d t\left(\mathcal{L}_{t}^{\mathrm{adj}} V_{2}(t)\right) v_{1}(t) \tag{1.6}
\end{equation*}
$$

Here $v_{1}(t)$ satisfies retarded boundary conditions (that is $v_{1}\left(t_{\min }\right)=0$) and $V_{2}(t)$ satisfies the adjoint boundary conditions, which (as we will show below) are advanced boundary conditions $V_{2}\left(t_{\max }\right)=0$ for the particular boundary conditions satisfied by \mathcal{L}_{t}.

As you know the adjoint is found by taking the hermitian transpose

$$
\mathcal{L}_{t}^{\operatorname{adj}} v(t)=\left(\begin{array}{ccccc}
1 / \Delta t & -1 / \Delta t & 0 & 0 & 0 \tag{1.7}\\
0 & 1 / \Delta t & \ddots & 0 & 0 \\
0 & 0 & \ddots & -1 / \Delta t & 0 \\
0 & 0 & 0 & 1 / \Delta t & -1 / \Delta t \\
0 & 0 & 0 & 0 & 1 / \Delta t
\end{array}\right)\left(\begin{array}{c}
v\left(t_{0}\right) \\
v\left(t_{1}\right) \\
v\left(t_{2}\right) \\
\vdots \\
v\left(t_{N}\right)
\end{array}\right)
$$

We see that the adjoint differential operator is

$$
\begin{equation*}
\mathcal{L}_{t}^{\text {adj }}=-\frac{d}{d t} \tag{1.8}
\end{equation*}
$$

This only half specifies the operator. The full specification is for the space of functions $v(t)$ between $t_{\min } \ldots t_{\text {max }}$ which vanish at the upper end

$$
\begin{equation*}
\mathcal{L}_{t}^{\text {adj }}=-\frac{d}{d t} \quad v\left(t_{\max }\right)=0 \tag{1.9}
\end{equation*}
$$

This follows because the discretization implies that

$$
\begin{equation*}
-\left.\frac{d v(t)}{d t}\right|_{t_{N}}=\frac{v\left(t_{N}\right)}{\Delta t} \tag{1.10}
\end{equation*}
$$

which is true provided $v\left(t_{\max }\right)=0$.
Without appealing to the discretization, the appropriate adjoint operator, and its boundary conditions are found by taking any function $V(t)$ and integrating by parts:

$$
\begin{equation*}
\int_{t_{\min }}^{t_{\max }} d t V(t)\left(\frac{d}{d t} v_{1}(t)\right)=\underbrace{\left[V\left(t_{\max }\right) v_{1}\left(t_{\max }\right)-V\left(t_{\min }\right) v_{1}\left(t_{\min }\right)\right]}_{\text {bndry terms }}+\int_{t_{\min }}^{t_{\max }} d t\left[-\frac{d}{d t} V(t)\right] v_{1}(t) \tag{1.11}
\end{equation*}
$$

Ignoring the boundary terms the adjoint operator is

$$
\begin{equation*}
\mathcal{L}_{t}^{\mathrm{adj}}=\left[-\frac{d}{d t}\right] \tag{1.12}
\end{equation*}
$$

But, the full specification also specifies that that $V\left(t_{\max }\right)=0$, so that the boundary terms vanish:

$$
\begin{equation*}
\mathcal{L}_{t}^{\text {adj }}=\left[-\frac{d}{d t}\right] \quad V\left(t_{\max }\right)=0 \tag{1.13}
\end{equation*}
$$

We conclude with examples.

Example operators and their adjoints

(a) a particle experiencing drag with time dependent mass and drag coefficient with retarded boundary conditions

$$
\begin{equation*}
\mathcal{L}_{t}=\left[m(t) \frac{d}{d t}+m(t) \eta(t)\right] \quad v\left(t_{\min }\right)=0 \tag{1.14}
\end{equation*}
$$

The adjoint is

$$
\begin{equation*}
\mathcal{L}_{t}^{\mathrm{adj}}=\left[-\frac{d}{d t} m(t)+m(t) \eta(t)\right] \quad v\left(t_{\max }\right)=0 \tag{1.15}
\end{equation*}
$$

(b) The damped harmonic oscillator with time dependent mass and drag coefficient

$$
\begin{equation*}
\mathcal{L}_{t}=\left[\frac{d}{d t} m(t) \frac{d}{d t}+\frac{d}{d t} m(t) \eta(t)+m(t) \omega_{o}^{2}\right] \quad v(t)=0 \quad t \leq t_{\min } \tag{1.16}
\end{equation*}
$$

The adjoint is

$$
\begin{equation*}
\mathcal{L}_{t}^{\mathrm{adj}}=\left[\frac{d}{d t} m(t) \frac{d}{d t}-m(t) \eta(t) \frac{d}{d t}+m(t) \omega_{o}^{2}\right] \quad v(t)=0 \quad \geq t_{\max } \tag{1.17}
\end{equation*}
$$

(c) The Sturm-Liouville operator with homogeneous boundary conditions

$$
\begin{equation*}
\mathcal{L}_{x}=\left[-\frac{d}{d x} p(x) \frac{d}{d x}+q(x)\right] \quad y\left(x_{\min }\right)=y\left(x_{\max }\right)=0 \tag{1.18}
\end{equation*}
$$

where $p(x)>0$ between $x_{\text {min }}$ and $x_{\text {max }}$ The operator is self adjoint, $\mathcal{L}_{x}^{\text {adj }}=\mathcal{L}_{x}$.

Self Test:

(a) Show using any of the methods of this section that, the adjoint of Eq. (1.16) is Eq. (1.17).

1.2 The $G_{R}\left(t, t_{o}\right)$ is adjoint respect to t_{o}

We now show that $G_{R}\left(t, t_{o}\right)$ when considered a function of t_{o} satisfies the adjoint differential equation and boundary conditions, i.e. since

$$
\begin{equation*}
\mathcal{L}_{t} G_{R}\left(t, t_{o}\right)=\delta\left(t-t_{o}\right) \tag{1.19}
\end{equation*}
$$

we will show that

$$
\begin{equation*}
\mathcal{L}_{t_{o}}^{\mathrm{adj}} G_{R}\left(t, t_{o}\right)=\delta\left(t-t_{o}\right) \tag{1.20}
\end{equation*}
$$

The proof of this goes like this. We start with

$$
\begin{equation*}
\int_{t_{\min }}^{t_{\max }} d t^{\prime} G_{R}\left(t, t^{\prime}\right) \mathcal{L}_{t^{\prime}} G_{R}\left(t^{\prime}, t^{\prime \prime}\right)=G_{R}\left(t, t^{\prime \prime}\right) \tag{1.21}
\end{equation*}
$$

If you think of $\mathcal{L}_{t^{\prime}}$ as a matrix, then it is clear that

$$
\begin{equation*}
\int_{t_{\min }}^{t_{\max }} d t^{\prime}\left(\mathcal{L}_{t^{\prime}}^{\text {adj }} G_{R}\left(t, t^{\prime}\right)\right) G_{R}\left(t^{\prime}, t^{\prime \prime}\right)=G_{R}\left(t, t^{\prime \prime}\right) \tag{1.22}
\end{equation*}
$$

Or

$$
\begin{equation*}
\mathcal{L}_{t^{\prime}}^{\text {adj }} G\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right) \tag{1.23}
\end{equation*}
$$

More formally, we can integrate by parts picking up boundary terms and the adjoint operator

$$
\begin{equation*}
\text { bndry-terms }+\int_{t_{\min }}^{t_{\max }} d t^{\prime}\left[\mathcal{L}_{t^{\prime}}^{\text {adj }} G\left(t, t^{\prime}\right)\right] G\left(t^{\prime}, t^{\prime \prime}\right)=G\left(t, t^{\prime \prime}\right) \tag{1.24}
\end{equation*}
$$

The only way this can be satisfied for all t and $t^{\prime \prime}$ is if the boundary terms vanish (i.e. $G\left(t, t^{\prime}\right)$ satisfies adjoint b.c. with respect to t^{\prime}), and

$$
\begin{equation*}
\mathcal{L}_{t^{\prime}}^{\text {adj }} G\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime \prime}\right) \tag{1.25}
\end{equation*}
$$

1.3 Green Theorem

Now we can prove Green theorem. For definiteness, take the drag equation with retarded boundary conditions:

$$
\begin{equation*}
\underbrace{\left[\frac{d}{d t}+\eta\right]}_{\mathcal{L}_{t}} v(t)=F(t) \tag{1.26}
\end{equation*}
$$

Given an inital condition at $t=0, v\left(t_{\min }\right)=v_{o}$, and the Green function $G\left(t, t_{o}\right)$ we would like to write down the general (formal) solution to the equation.

The procedure to do this is always the same - act with the adjoint operator on the Green function and integrate by parts

$$
\begin{align*}
v(t) & =\int_{t_{\min }}^{t_{\max }} d t_{o} v\left(t_{o}\right) \mathcal{L}_{t_{o}}^{\operatorname{adj}} G_{R}\left(t, t_{o}\right) \tag{1.27}\\
& =\int_{t_{\min }}^{t_{\max }} d t_{o} v\left(t_{o}\right)\left[-\frac{d}{d t_{o}}+\eta\right] G_{R}\left(t, t_{o}\right) \tag{1.28}
\end{align*}
$$

Integrating by parts we get

$$
\begin{equation*}
v(t)=-v\left(t_{\max }\right) G_{R}\left(t, t_{\max }\right)+v\left(t_{\min }\right) G_{R}\left(t, t_{\min }\right)+\int_{t_{\min }}^{t_{\max }} G\left(t, t_{o}\right)\left[\frac{d}{d t_{o}}+\eta\right] v\left(t_{o}\right) \tag{1.29}
\end{equation*}
$$

The first term vanishes because $G_{R}\left(t, t_{o}\right)$ vanishes whenever $t<t_{o}$. The last term uses the equation of motion, Eq. (1.26), and the again the causality condition $G_{R}\left(t, t_{o}\right)$, leading to

$$
\begin{equation*}
v(t)=G_{R}\left(t, t_{\min }\right) v\left(t_{\min }\right)+\int_{t_{\min }}^{t} d t_{o} G_{R}\left(t, t_{o}\right) F\left(t_{o}\right) \tag{1.30}
\end{equation*}
$$

In the absence of the external force we get

$$
\begin{equation*}
v(t)=G_{R}\left(t, t_{\min }\right) v\left(t_{\min }\right) \tag{1.31}
\end{equation*}
$$

Self test:

(a) For a damped simple harmonic oscillator

$$
\begin{equation*}
\left[m \frac{d^{2}}{d t^{2}}+m \eta \frac{d}{d t}+m \omega_{o}^{2}\right] x(t)=0 \tag{1.32}
\end{equation*}
$$

that the solution to the equation of motion (analogous to Eq. (1.31)) is

$$
\begin{equation*}
x(t)=m\left[G_{R}\left(t, t_{o}\right) \partial_{t_{o}} x\left(t_{o}\right)-x\left(t_{o}\right) \partial_{t_{o}} G_{R}\left(t, t_{o}\right)\right]+m \eta G_{R}\left(t, t_{o}\right) x\left(t_{o}\right) \tag{1.33}
\end{equation*}
$$

(b) Check that Eq. (1.33) satisfies the equations of motion and the initial conditions. You will need to establish (by looking at the action of the adjoint) that

$$
\begin{equation*}
\lim _{t \rightarrow t_{o}}\left[m \partial_{t} \partial_{t_{o}} G_{R}\left(t, t_{o}\right)-m \eta \partial_{t} G_{R}\left(t, t_{o}\right)\right]=0 \tag{1.34}
\end{equation*}
$$

What are the modifications if the parameters m and η depend on time?

