Problem 1. Periodic pulses

Consider a periodic motion that repeats itself with period 7,. Show that the continuous
frequency spectrum becomes a discrete spectrum containing frequencies that are integral
multiples of the fundamental, w, = 27 /7.

Let the electric field from a single pulse (or period) be Fi(t), i.e. where F;(t) is non-
zero between 0 and 7, and vanishes elsewhere, ¢ < 0 and ¢ > 7,. Let E;(w) be its fourier
transform.

(a)

Suppose that the wave form repeats once so that two pulses are received. Es(t) consists
of the first pulse Fi(t), plus a second pulse, Fs(t) = E1(t) + F1(t —T,). Show that the
Fourier transform and the power spectrum is

Ey(w) = Bi(w) (1 +e*7)  |By(w)* = |Er(w)[* (2 + 2 cos(wTy)) (1)

Now suppose that we have n (with n odd) arranged almost symmetrically around ¢ = 0,
1.€.

En(t) = Ex(t+(n—1)T5/2)+. . .+ E1(t+To) + Er(t) +Er(t—=To)+. .. Er(t—(n—1)T5/2
(

so that for n = 3

E3(t) = Er(t+T,) + Ex(t) + Er(t = To) - (3)
Show that i (nwTo/2)
En(w) = El(w) m (4)
and

sin(nwT,/2) ) 2 )

|E,(w)? = |Ey(w)]? (W

By taking limits of your expressions in the previous part show that after n pulses, with
n — 0o, we find

ZEl W) =— 7T d(w — wm) (6)

To
and
B = 0T, x50 - w) 1)
total time

where w,,, = 2mm/7,.
Remark We have in effect shown that if we define
= Z 6(t —nT,). (8)

Then the Fourier transform of A(t) is
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(d) Show that a general expression for the time averaged power radiated per unit solid

angle into each multipole w,, = mw, is:

dP,  |rE(wm)|
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» 2, 4,2
dP,, e‘w,m
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ar,

(10)

(11)

Here dP,, /dS) is defined so that over along time period AT, the energy per solid angle

AW > dP,
A m
Q) Tmzzl dQ)

Also note that we are summing only over the positive values of m which is different

1S

from how we had it in class:

dpP,,

dP_,,

aQ

ds?

(12)

(13)



Problem 2. Radiation spectrum of a SHO

(a) Show that for the simple harmonic motion of a charge discussed in Problem 2 the
average power radiated per unit solid angle in the m-th harmonic is

dP,, _eep?

BRT=N T m? tan? 6 [J,,(mf3 cos 0)]? (14)

(b) Show that in the non-relativistic limit the total power radiated is all in the fundamental
and has the value

P=_—"wii? (15)
™

where H? is the mean squared amplitude of the oscillation.



Problem 3. Radiation spectrum from a damped SHO

The non-relativistic motion of a charged particle of charge e is described by a damped
harmonic oscillator

d*z dz )
m— +mn— + mw.z =0 16
where 7 is small, n < w,. Also assume that Aw = w — w, <€ w,. Be sure to use these
approximations at all points of the clculation.

The charge is released from rest with initial amplitude z(t = 0) = H.
(a) On the z axis, far from the charge, how is the light polarized ?

(b) Estimate (i.e. don’t calculate) the energy lost per time to radiation. We will require
that the energy lost to radation is small compared to energy lost to friction. How does
this requirement constrain the dimensionful parameters of this problem: m, H,w,,n, e, c

(c) Determine the spectrum of photons which are emitted

v (17)

AN 1dl 2
h ww>0

ot 288
dw  hdw
(The factor of two incorporates the contributions with w < 0, which give an equal
contribution. Why?) Express your final result in terms of the fine structure constant

« instead of the charge (squared).

(d) Optional — but extremely good practice for exam Integrate the results of the
previous part over frequency to determine the total energy that is emitted. Calculate
the same result by integrating the Larmour formula

B q? 2a*(t.)

Plte) = A3 3

(18)

over time.

(e) Optional In part (c) you determine the frequency spectrum for Aw < w,. In part
(d) you integrated over Aw (from —oo...00) to determine the total power. Estimate
the error made by extending this integral over the full frequency range instead of just
a narrow range around w,. Similarly estimate the error in your approximate formula
for the acceleration.



Problem 4. Soft bremsstrahlung during a decay

In a collision or decay that happens at location r, over an infinitessimally short time scale,
Taccel, the charged particles moving with velocity, vi,vs,... before the collsions and the
charged particles moving with vy/, vy, ..., after the collision each contribute to the radiation

field.

(a)

(The total radiation field is just a sum of the radiation fields from each particle.)

Show that for frequencies low w < 1/Tyccel the total radiation field is

. M XM X Vi G MXMXV;
Era = iw(r—n-ro)/c b I J J
d(w,r) =€ § : drrc 1—mn - By Z drre? 1 —n- B

j’ €final j € initial
(19)
This generalizes the result of Lecture 46.
Hint. You may encounter an integral like
/ nxmn xvewTd-mnv/e (20)
0

To give this integral definite meaning insert a convergence factor e~“” and then take
the limit e — 0 after integration. In any real experiment the velocity v(T") would be
cut off in time, and provide this convergence factor naturally.

A neutral w® meson of mass M,,c?> = 784 MeV has a relatively rare decay mode w® —
7t~ with branching fraction of 1.53%. (98.5% of the time it decays to something
else.) It has another rare decay mode w® — ete™ with branching ratio 7.28 x 1073%.
(These are pretty rare decays for the w® meson — most of the time it decays to 7+7~7°
with a branching fraction of 89.2%). The mass of a pion is mc? = 140 MeV, while the
electron mass is ...

(i) Compute the frequency spectrum of the soft electromagnetic radiation per solid
angle that accompanies both of these decay modes

ar ) dW
dwdQ  ~dwd

(21)

)
w>0

Describe your result qualitatively.

(ii) Show that for both of these decay modes the frequency spectrum of radiated
energy at low frequencies is

dI e? 1+ 32 1+ 4 e? M, 1

— = 1 2|~ —|In{— ) —= 22

dw 4%20{( I6; )nl—ﬁ ] 2cln(m) 2} (22)
where M, is the mass of the w, meson, m is the mass of one of the decay products,
and f is the velocity/c of the decay products.

(iii) Roughly evaluate the total energy radiated in each decay by integrating the spec-
trum up to a point where the photon’s momentum is half of the momentum of
the decay products. (Beyond this point the recoil of the charged decay products

6



would need to be considered. This lies outside of classical electrodynamics. In
classical electrodynamics we specify the currents and solve for the fields.). You
should find in a leading log(M,,/m) approximation

Irough « Mw
rough | Py (2 23
Myc?  «w °8 ( m ) (23)

Using this rough evaluation, what fraction of the rest energy of the w? is carried
away by soft radiation in the two decay modes



Problem 5. Thomson Scattering

We will do this in class. It is very important, especially for astrophysics.

(i)

(i)

(iv)

Polarized light with linear polarization vector €,, is propagating in the z-direction
with electric field amplitude F, and is incident upon an electron at rest. Assume

that hw is much less than the electron mass m.c?. Show that the time average

power radiated into light with polarization € is

Py e\ .
() =105t () 1€ (24)

where € is the polarization of the outgoing radiation, iz.e. n-€ = z-€, = 0.

Show that the time averaged power radiated into light of any polarization by an
incident beam with polarization ¢, is

dPun ol 62 ?
< de > = %CE? (W) |n X €O|2 (25)

Show that the polarized and unpolarized cross sections for incident light with
polarization €, are

dope
S "
and p
o =riln el (27)
respectively. Here the classical electromagnetic radius is
2
e
e = ——— 28
" (4m)mec? (28)

By sticking in appropriate powers of i, show that r, is 137 times smaller than the
compton wavelength, Xo = ii/m.c. Show that 7. is (137)? times smaller than the
Bohr radius.

Remark: A heuristic way to understand why r. is smaller than the “the size
of an electron” | h/mec, is that the cross section is the cross-sectional area o
(h/mec)? of the electron times the probability that the light will actually interact
with the electron, wich is a?.

Now consider unpolarized incident light (light which is equally likely to be polar-
ized in the = or y directions). Let the radiation be scattered at an angle 6 in the
xz plane, where n-n, = cosf. Depending on the scattering angle #, the outgoing
light will be partially polarized in the xz plane, or out of the xz plane (i.e. in the
y direction).
Show that the cross-section for unpolarized light to produce in-plane polarized
light is

CCZZ% = 1r2cos’ 6 (29)
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(vii)

while the cross-section to produce out-of-plane polarized light is

doy _ »
And conclude that the cross-section for unpolarized light to produce light of any
polarization is
d 1 20
a7 _ r?i (31)
ds? 2
By using the results of this problem and integrating over angles, or appealing
directly to the Larmour formula, determine the total electromagnetic cross section

for light electron scattering. This is known as the Thomson cross section:

8T ,
o — —7T

o (32

Evaluate the Thomson cross section numerically, without looking up any numbers.

Plot the polarization asymmetry

o do,
ol + do
dQ dQ

as a function of scattering angle 6.



Problem 6. Scattering from a perfectly conducting sphere

Consider light of wavenumber £ scattering off a perfectly conducting sphere of radius
a. Assume that ka < 1 and that the skin depth is much less than the size of the sphere
The incident light propagates along the z-direction.

(i)

(iii)

(iv)

Optional Show that the external field E = E,e !¢, and H = H,e ™“'n x ¢,
induces a time dependent electric and magnetic dipole moment :

p = 4na’ E,e " m = —27ra’ Hye ™' (34)
For the magnetic case you can look at the solutions to homework 5 (pages 2-6).
For the electric case you can look at lecture 3.

By computing the radiated power from the time dependent magnetic and electric
dipole, show that for arbitrary initial polarization €, of the incoming light, the
scattering cross section off the sphere, summed over outgoing polarizations is given
by:

do ) 1

m(eo,no,n) = k'a® 1 €, -n|* — z_l‘n (n, X €)]* —n,-n (35)
where n, and n are the directions of the incident and scattered radiations, while
€, is the (perhaps complex) unit polarization vector of the incident radiation
(e} €, =1;n,-€,=0).

Hint: as an intermediate step in the calculation show that

W2 e—iwttkr

Erad = Do [_60 + ’I’L('I’I, : 60) - %’I’I, X ('I’LO X 60)} (36)

dmwe? 1
where D, = 4wa®FE,. Then square this result (repeating to yourself like the the
little engine ... “I think I can, I think I can, think I can”) using the front cover
of Jackson.

If the incident radiation is linearly polarized, show that the cross section is

d 5 3

%(eo, n,, n) = k*a® §<1 + cos? ) — cos ) — 3 sin® 0 cos 2¢ (37)
where n - n, = cosf and the azimuthal angle ¢ is measured from the direction of
the linear polarization.

What is the ratio of the scattered intensities at 6 = 7/2, ¢ =0 and 6 = 7/2, ¢ =
7/2?7 Explain physically in terms of the induced multipoles and their radiation
patterns.
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Problem 7. (Optional) Estimates

Without looking up numbers make the following estimates'. Explain qualitatively how
you arrived at your estimate from the Lienard-Wiechert potentials.

(i) The light source NSLS II at BNL circulates electrons at 3 GeV with a circumfer-
ence of 792m. (i) Estimate the energy lost per turn to radiation. (:i) Estimate
the energy of the typical photon which is emitted, and compare this energy with
the energy of the electron. (iii) Estimate the angular width of the radiation cone.

(ii)) The LHC at CERN circulates protons at 7TeV with a circumference of 27 km.
(i) Estimate the energy lost per turn for a proton at the LHC. (i7) Estimate the
energy a typical photon that is emitted at the LHC due to synchrotron radiation,
and compare this to the proton energy. (7i7) Estimate the angular width of the
radiation cone.

! You really need to know these numbers to get through life:

e 1
CT Urhe 137

he =197 eV nm (38)

mec® = 0.511 MeV (half an MeV)  m,c* = 0.938 MeV (2000 times the electron mass ) (39)

Seriously. .. they wont be given on the final and you may need them, togethewith the Bohr model estimates.
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