
Problem 1. Practice with delta-fcns

A delta-function is a infinitely narrow spike with unit integral.
∫
dx δ(x) = 1.

(a) (Optional). A theta function (or step function) is

θ(x− xo) =


1 x > xo

0 x < xo
1
2

x = xo

(1)

Not worrying about the case when x = xo, show that

d

dx
θ(x− xo) = δ(x− xo) (2)

(b) (Optional) Show that

δ(ax) =
1

|a|
δ(x) (3)

(c) (Optional) Using the identity of part (b), show that

δ(g(x)) =
∑
m

1

|g′(xm)|
δ(x− xm) where g(xm) = 0 and g′m(xm) 6= 0 (4)

(d) Show that ∫ ∞
0

dx δ(cos(x)) e−x =
1

2 sinh(π/2)
(5)

The delta function δ(x) should be thought of as sequence of functions δε(x) – known as
a Dirac sequence – which becomes infinitely narrow and have integral one. For example, an
infinitely narrow sequence of normalized Gaussians

δ(x) = lim
ε→0

δε(x) = lim
ε→0

1√
2πε2

e−
x2

2ε2 . (6)

The important properties are

1 =

∫
dx δε(x) (7)

and the convolution property

f(x) = lim
ε→0

∫
dxof(xo)δε(x− xo) (8)

I will notate any Dirac sequence with δε(x).
Delta functions are perhaps best thought about in Fourier space. In particular think

about Eq. (??) in Fourier space. At finite epsilon this reads

f(k) ' f(k)δε(k) . (9)
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So the Fourier transform of a Dirac sequence δε(k) should be essentially one, except at large
k where the function f(k) is presumably small.

According to the uncertainty principle, a spike that has width ∆x ∼ ε in coordinate
space, will have width ∆k ∼ 1/ε in k-space (momentum space). The meaningless formal
expression ∫ ∞

−∞

dk

2π
eikx = δ(x) (10)

means that one should regulate this integral in some way and take the limit as the regulator
ε goes to zero. For example, one could cut off the upper limit at a kmax = 1/ε,

δε(x) =

∫ 1/ε

−1/ε

dk

2π
eikx =

sin(x/ε)

πx
(11)

Making a graph of this function (with 1/ε = 200):
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we see that for small ε it is infinitely narrow spike. Integrate around this spike between
−∆ . . .∆, where ∆ is small compared to one ∆� 1, but much greater than ε, ∆� ε

Iε =

∫ ∆

−∆

dx
sin(x/ε)

πx
(12)

=

∫ ∆/ε

−∆/ε

du
sin(u)

(πu)
(13)

'
∫ ∞
−∞

du
sin(u)

(πu)
(14)

'1 (15)

In the last steps we extended the integration to∞ (since ∆/ε� 1), and have used the table
integral,

∫∞
−∞ du sin(u)/(πu) = 1. The approximation becomes exact in the limit ε→ 0, and

thus we have shown that

δ(x) = lim
ε→0

δε(x) = lim
ε→0

sin(x/ε)

πx
(16)
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is a Dirac sequence.
The precise way in which you regulate the Fourier integral is unimportant. The next

problem regulates the Fourier integral in a particularly common way.

(a) Consider the Fourier transform pair f(x) and f(k) =
∫∞
−∞ dx eikxf(x). Note that

f(k = 0) =

∫ ∞
−∞

dxf(x) (17)

Without using Mathematica, compute the following Fourier transform

δε(x) ≡
∫ ∞
−∞

dk

2π
eikxe−ε|k| (18)

(You can check your algebra by explicitly checking that
∫
dx δε(x) = 1 by direct inte-

gration – explain to yourself why one knows this integral must be unity before doing
the integral).

Verify that
lim
ε→0

δε(x) = δ(x) (19)

i.e. that δε(k) is a Dirac sequence. This is another proof that

δ(x) = lim
ε→0

∫ ∞
−∞

dx eikxe−ε|x| =

∫ ∞
−∞

dx eikx (20)
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Problem 2. The electric stress tensor

Recall that the stress tensor is the force per area. The force per volume f j is (minus) the
divergence of the stress tensor (see class notes)

f j = −∂iT ij (21)

This follows from the conservation law

∂tg
j + ∂iT

ij = 0 (22)

where gj is the momentum per volume, and the basic notion that the force is the time
derivative of the momentum.

The force per volume in electrostatics is

f j = ρEj (23)

This form must be the divergence of something. As you will show in this excercise

ρEj = −∂iT ijE (24)

where
T ijE ≡ −E

iEj + 1
2
E2δij (25)

(a) (Optional) First write the electrostatic Maxwell equations ∇ ·E = ρ and ∇×E = 0
using tensor notation, and explain why ∂iEj = ∂jEi.

(b) Within the limits of electrostatics, show that the electric force on a charged body is
related to a surface integral of the (electric) stress tensor:

F j =

∫
V

d3r ρ(r)Ej = −
∫
S

dS niT
ij
E (26)

where T ijE = −EiEj + 1
2
E2δij, i.e. show that ρEj = −∂iT ijE
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Problem 3. A stress tensor tutorial

Do not turn in the optional parts.

(a) (Optional) Consider a plane of charge with surface charge density σ, use the boundary
conditions (i.e. Gauss Law) to show that the electric field on either side is σ/2

(b) (Optional) Consider an ideal infinite parallel plate capacitor with surface charge densi-
ties σ and −σ respectively. Without using the stress tensor machinery, show that the
force per area on each of the plates is σ2/2

(c) (Optional) Consider a charged perfectly conducting solid object of any shape. Explain
physically why the electric field is: (i) normal to the surface, (ii) zero on the inside,
(iii) and equal to

E = σn or Ei = σ ni (27)

(d) Without using the stress tensor machinery, show that the force per area on the walls
of any metal surface is σ2/2. (Hint: how large is the self field? Use part (a).)

The physics of the stress tensor is easy illustrated by knowing that the stress tensor of
ideal gas is T ijgas = p δij, where p is the pressure (force per area). Thus, if one considers a
wall separating two gasses of left and right pressures pL and pR (i.e. the normal vector is1,
nj = δjx), then the net force per area on the wall is

niT
ij
L − niT

ij
R = (pL − pR)nj (28)

Note: that it is only the differences in the stress tensor which are physically important.

(e) (Optional) Recall that the net force on any object

F j = −
∮
dS niT

ij , (29)

which we derived from the conservation law

∂tg
j + ∂iT

ij = 0 . (30)

Deduce from this that the net force per area on a wall separating two regions is

ni(T
ij
out − T

ij
in ) . (31)

(f) Using the electric stress tensor T ijE = −EiEj + 1
2
E2δij, show that the force per area on

the surface of a charged metal object is

force-per-area =
σ2

2
nj (32)

where n points from inside the metal to out.

1The notation is to confuse/educate you – I could have written n = (1, 0, 0) or n = x̂.
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(g) Now consider a charged and isolated parallel plate capacitor with charge per area −σ
and +σ on the left and right plates (so that the normal is nj = δjx). A plane of charge
with charge per area σ/2 lies halfway between the plates.

(i) Compute all non-zero components of the stress tensor in the regions to the left
and right of the plane of charge.

(ii) Use the stress tensor to compute the force per area on the plane of charge, and
show that it agrees with a simple minded approach.

6



Problem 4. Practice with the stress tensor

(a) Calculate the force between two (solid and insulating) uniformly charged hemispheres
each with total charge Q and radius R that are separated by a small gap as shown
below. You should find

F =
3Q2

16πR2
(33)
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Problem 5. Green function of a sphere

Consider a grounded, metallic, hollow spherical shell of radius R. A point charge of charge
q is placed at a distance, a, from the center of the sphere along the z-axis. For simplicity
take a > R.

(a) Start by momentarily setting R = 1, and therefore measure all lengths in units of R.
a is then shorthand for a/R in this system of units. With these units, show that the
distance from the point r = a ẑ to any point, n, on the surface of the sphere is equal
(up to a constant factor of a) to the distance from a point at r = (1/a) ẑ to the same
point n on the sphere.

(b) Use the result of part (a) to construct the Green function of the grounded sphere of
radius R using images, i.e. find the potential due to a point charge at r = aẑ in the
presence of a grounded sphere.

(c) Compute the surface charge density, and show that it is correct by directly integrating
to find the total induced charge on the sphere of part (b). You should find that the
total induced charge is equal to the enclosed image charge (why?). Please do not use
Mathematica to do integrals.

(d) Now consider a point charge of charge q at a point r = zẑ above a metallic hemisphere
of radius R in contact with a grounded plane (see below). Determine the force on the
charge as a function of z. You should find that at a distance z = 2R the force is

F z = − Q2

4πR2

(
737

3600

)
(34)

(e) Show that at large distances, z, the Taylor series expansion for F z is

F z ' Q2

4πR2

[
−1

4u2
− 4

u5
+ . . .

]
where u = z/R. Explicitly explain the coefficients of the series expansion (i.e. the
−1/4 and −4) in terms of the multiple moments of the image solution.
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Problem 6. An non-uniformly charged spherical shell

A hollow spherical shell of radius R is made of insulating material, and has a charge per unit
area:

σ(θ, φ) = σo
(
cos θ + 1

2
sin θ cosφ

)
(35)

(a) Find the potential for r < R and r > R.

(b) From the asymptotics of your solution, determine the dipole moment p in Cartesian
coordinates p = pxx̂ + pyŷ + pzẑ.

(c) Determine the electric field inside the sphere in Cartesian coordinates.
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Problem 7. Metal sphere in an electric Field

(a) A metal sphere of radius, a, lies in an electric field E = Eoẑ. Determine the potential
Φ(r) inside and outside of the sphere.

(b) Determine the induced surface charge density σ.

(c) By comparing the potental to the expectations of the multipole expansion, show that
the induced dipole moment is

p = 4πa3Eoẑ (36)

You may check your work by integrating the induced charge density σ to find the dipole
moment.
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