Problem 1. Practice with delta-fcns

A delta-function is a infinitely narrow spike with unit integral. [ dzd(x) = 1.

(a) (Optional). A theta function (or step function) is

1 z>zx,
Oxr—x,) =10 z<ua, (1)
T r=u,

Not worrying about the case when x = z,, show that

d
%9(95 —z,) =0(x — x,) (2)

(b) (Optional) Show that

(c) (Optional) Using the identity of part (b), show that

Ig(z)) = Z m&m — Tp) where g(z,,) =0 and ¢/, () # 0 (4)

(d) Show that
1

~ 2sinh(7/2) (5)

/ dx §(cos(z))e™™
0
The delta function §(z) should be thought of as sequence of functions d.(z) — known as
a Dirac sequence — which becomes infinitely narrow and have integral one. For example, an
infinitely narrow sequence of normalized Gaussians
1 22

o) = lim () = limy —> 5 (6)

The important properties are
1= /da: de() (7)

and the convolution property

f(z) = lli% dzo f(2,)0e(x — o) (8)

I will notate any Dirac sequence with ().
Delta functions are perhaps best thought about in Fourier space. In particular think
about Eq. (?77?) in Fourier space. At finite epsilon this reads

f(k) = f(k)oc(k). (9)



So the Fourier transform of a Dirac sequence d.(k) should be essentially one, except at large
k where the function f(k) is presumably small.

According to the uncertainty principle, a spike that has width Az ~ € in coordinate
space, will have width Ak ~ 1/e in k-space (momentum space). The meaningless formal
expression

/_OO et = o) (10)

means that one should regulate this integral in some way and take the limit as the regulator
€ goes to zero. For example, one could cut off the upper limit at a ky.x = 1/e,

1/e , sin(x /e
de(z) = / dk etk — sin(z/e) (11)
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Making a graph of this function (with 1/e = 200):
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we see that for small € it is infinitely narrow spike. Integrate around this spike between
—A ... A, where A is small compared to one A < 1, but much greater than e, A > ¢

[GZ/A 4, Sinz/e) (12)

(A sin(u)

—/_A/E du () (13)
[ " sin(u)

_/Ood ) (14)
~1 (15)

In the last steps we extended the integration to oo (since A/e > 1), and have used the table
integral, [*°_du sin(u)/(mu) = 1. The approximation becomes exact in the limit € — 0, and

thus we have shown that _
i(z) = lir% de(z) = lim sin(w/e)
e—

e—0 T

(16)
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is a Dirac sequence.
The precise way in which you regulate the Fourier integral is unimportant. The next
problem regulates the Fourier integral in a particularly common way.

(a) Consider the Fourier transform pair f(z) and f(k) = [~ dxz e f(x). Note that

fie=0 - | " daf(2) (17)

—o0
Without using Mathematica, compute the following Fourier transform

56(w)5/ %eik‘”e*'k| (18)

oo 2T

(You can check your algebra by explicitly checking that [ dxd.(z) = 1 by direct inte-
gration — explain to yourself why one knows this integral must be unity before doing

the integral).
Verify that

iy .(2) = () (19
i.e. that 0.(k) is a Dirac sequence. This is another proof that
d(z) = lim dz etkredel = / dx e (20)
=0 J_ o oo



Problem 2. The electric stress tensor

Recall that the stress tensor is the force per area. The force per volume f7 is (minus) the
divergence of the stress tensor (see class notes)

fl=-0,T" (21)
This follows from the conservation law
g’ + 0T =0 (22)

where ¢’ is the momentum per volume, and the basic notion that the force is the time
derivative of the momentum.
The force per volume in electrostatics is

f = pE (23)

This form must be the divergence of something. As you will show in this excercise

pE? = —9,T (24)
where - o B
Ty = —E'E’ + LE?§% (25)

(a) (Optional) First write the electrostatic Maxwell equations V- E = pand V x E =0
using tensor notation, and explain why 0,E; = 0, E;.

(b) Within the limits of electrostatics, show that the electric force on a charged body is
related to a surface integral of the (electric) stress tensor:

FI = / &rp(r) B = — / dSn;T} (26)
\% S

where T}/ = —E'E7 + 1E%5Y i.e. show that pEI = —9,T}/



Problem 3. A stress tensor tutorial

Do not turn in the optional parts.

(a) (Optional) Consider a plane of charge with surface charge density o, use the boundary
conditions (i.e. Gauss Law) to show that the electric field on either side is /2

(b) (Optional) Consider an ideal infinite parallel plate capacitor with surface charge densi-
ties 0 and —o respectively. Without using the stress tensor machinery, show that the
force per area on each of the plates is 0%/2

(c¢) (Optional) Consider a charged perfectly conducting solid object of any shape. Explain
physically why the electric field is: (i) normal to the surface, (ii) zero on the inside,
(iii) and equal to

E=o0n or E'=on' (27)

(d) Without using the stress tensor machinery, show that the force per area on the walls
of any metal surface is 0%/2. (Hint: how large is the self field? Use part (a).)

The physics of the stress tensor is easy illustrated by knowing that the stress tensor of

ideal gas is Tgiis = pd¥, where p is the pressure (force per area). Thus, if one considers a

wall separating two gasses of left and right pressures p; and pr (i.e. the normal vector is,
n/ = §%), then the net force per area on the wall is
nTy —n Ty = (pr, — pr)n? (28)

Note: that it is only the differences in the stress tensor which are physically important.

(e) (Optional) Recall that the net force on any object

which we derived from the conservation law
oy’ +0,T7 =0. (30)
Deduce from this that the net force per area on a wall separating two regions is

ni(To — T - (31)

out

(f) Using the electric stress tensor T}/ = —E'E7 + 1 E264, show that the force per area on
the surface of a charged metal object is

o?
force-per-area = ?nj (32)

where m points from inside the metal to out.

!The notation is to confuse/educate you — I could have written n = (1,0,0) or n = &.



(g) Now consider a charged and isolated parallel plate capacitor with charge per area —o
and +o on the left and right plates (so that the normal is n/ = §7%). A plane of charge
with charge per area o/2 lies halfway between the plates.

(i) Compute all non-zero components of the stress tensor in the regions to the left
and right of the plane of charge.

(ii) Use the stress tensor to compute the force per area on the plane of charge, and
show that it agrees with a simple minded approach.



Problem 4. Practice with the stress tensor

(a) Calculate the force between two (solid and insulating) uniformly charged hemispheres
each with total charge () and radius R that are separated by a small gap as shown
below. You should find

%
- 167R?

(33)




Problem 5. Green function of a sphere

Consider a grounded, metallic, hollow spherical shell of radius R. A point charge of charge
q is placed at a distance, a, from the center of the sphere along the z-axis. For simplicity
take a > R.

()

Start by momentarily setting R = 1, and therefore measure all lengths in units of R.
a is then shorthand for a/R in this system of units. With these units, show that the
distance from the point » = az to any point, n, on the surface of the sphere is equal
(up to a constant factor of a) to the distance from a point at 7 = (1/a) z to the same
point m on the sphere.

Use the result of part (a) to construct the Green function of the grounded sphere of
radius R using images, i.e. find the potential due to a point charge at » = az in the
presence of a grounded sphere.

Compute the surface charge density, and show that it is correct by directly integrating
to find the total induced charge on the sphere of part (b). You should find that the
total induced charge is equal to the enclosed image charge (why?). Please do not use
Mathematica to do integrals.

Now consider a point charge of charge g at a point » = 2z above a metallic hemisphere
of radius R in contact with a grounded plane (see below). Determine the force on the
charge as a function of z. You should find that at a distance z = 2R the force is

Q> [ 737
P (20 4
A7 R? \ 3600 (34)

Show that at large distances, z, the Taylor series expansion for F* is

e e

TR w2 W

where v = z/R. Explicitly explain the coefficients of the series expansion (i.e. the
—1/4 and —4) in terms of the multiple moments of the image solution.




Problem 6. An non-uniformly charged spherical shell

A hollow spherical shell of radius R is made of insulating material, and has a charge per unit
area;

o(6,¢) = o, (cosf + 1 sinf cos ¢) (35)
(a) Find the potential for r < R and r > R.

(b) From the asymptotics of your solution, determine the dipole moment p in Cartesian
coordinates p = p,X + p,y + p.2.

(c¢) Determine the electric field inside the sphere in Cartesian coordinates.



Problem 7. Metal sphere in an electric Field

(a) A metal sphere of radius, a, lies in an electric field E = E,z. Determine the potential
®(7) inside and outside of the sphere.

(b) Determine the induced surface charge density o.

(¢) By comparing the potental to the expectations of the multipole expansion, show that

the induced dipole moment is
p =A4na*E,z (36)

You may check your work by integrating the induced charge density o to find the dipole
moment.
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