Problem 1. A conducting slab

A plane polarized electromagnetic wave E = E;e’**~*! is incident normally on a flat uniform
sheet of an excellent conductor (o > w) having thickness D. Assume that in space and in
the conducting sheet © = € = 1, discuss the reflection an transmission of the incident wave.
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Show that the amplitudes of the reflected and transmitted waves, corrrect to first order
in (w/o)'?, are:
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where

and § = y/2/wpo is the skin depth.

Verify that for zero thickness and infinite skin depth you obtain the proper limiting
results.

Optional: Show that, except for sheets of very small thickness, the transmission

coefficient is
8(Rey)2e~2P/0

5
1 — 2e=2P/% cos(2D/§) + e=4P/0 (5)
Sketch log T as a function of D/§, assuming Rey = 1072, Define “very small thickness”.
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Problem 2. Analysis of the Goos-Hanchen effect

A ribbon beam of in plane polarized radiation of wavelength X is totally internally reflected
at a plane boundary between a non-permeable (i.e. p = 1) dielectric media with index of
refraction n and vacuum (see below). The critical angle for total internal reflection is 69,
where sin #¢ = 1/n. First assume that the incident wave takes the form E(t,r) = Ejetkr—ivt
of a pure plane wave polarized in plane and study the transmitted and reflected waves.
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(a) Starting from the Maxwell equations, show that for z > 0 (i.e. in vacuum) the electric
field takes the form:

E2<£U,Z) = EQei%(\/m)zeiwnsinell‘ (6)

(b) Starting from the Maxwell equations, show that for §; > 69 the ratio of the reflected
amplitude to the incident amplitude is a pure phase
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and determine the phase angle. Thus the reflection coefficient R = |EFr/Ef|? = 1
However, phase has consequences.

(c) Show that for a monochromatic (i.e. constant w = ck) ribbon beam of radiation in
the z direction with a transverse electric field amplitude, E(z)e®***~! where E(z) is
smooth and finite in the transverse extent (but many wavelengths broad), the lowest
order approximation in terms of plane waves is

dk

E(QE, Z,t) _ e/%A(n)eim”kz_m (8)

where k = w/c. Thus, the finite beam consists of a sum plane waves with a small range
of angles of incidence, centered around the geometrical optics value.



(d) Consider a reflected ribbon beam and show that for 8; > 69 the electric field can be
expressed approximately as
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where €p is a polarization vector, 2” is the coordinate perpendicular to the reflected

wave vector kg, and the displacement dz = —%% is determined by phase shift.

(e) Using the phase shift you computed, show that the lateral shift of the reflected in plane
polarized beam is
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Problem 3. Reflection of a Gaussian Wave Packet Off a Metal
Surface:

In class we showed that the amplitude reflection coefficient from a good conductor (w < o)
for a plane wave of wavenumber k& = w/c is
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where the phase is for w < o:
2w
P(w) =4/ —. (12)
o
Consider a Gaussian wave packet with average wave number k, centered at z = —L at
time ¢t = —L/c which travels towards a metal plane located at z = 0 and reflects. Show that
the time at which the center of the packet returns to z = —L is given by
L o,
t== 13
c * 2c (13)

where the time delay is due to the phase shift d¢(w,)/dw, and §, = /2c/ouk, is the skin
depth.



Problem 4. Snell’s law in a crystal

Consider light of frequency w in vacuum incident upon a uniform dielectric material filling
the space y > 0. The light is polarized in plane (as shown below) and has incident angle 6;.
The dielectric material has uniform permittivity € and p = 1.

(a) Derive Snell’s law from the boundary conditions of electrodynamics.

Consider light propagating in a crystal with ¢ = 1 and dielectric tensor ¢;;. Along the
principal crystalline axes €;; is given by

€1 0 0
€ij = 0 €2 0 s (14)
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and thus, along the axes D; = ¢;F; (no sum over i).

(b) Starting directly from the Maxwell equations in the dielectric medium, show that the
frequency and wave numbers of the plane wave solutions E(t,7) = Ee*"=%! in the
crystal are related by

2
det (kz’kj — k%6 + i 5Z-~> =0 (no sum over ). (15)
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Now consider light of frequency w in vacuum incident upon a dielectric crystal. The light
has incident angle 6, and propagates in the x — y plane, i.e. k, = 0. The incident light is
also polarized in x —y plane, and the axes of the dielectric crystal are aligned with the x,y, z
axes (see below). Only the y axis of the crystal has a slightly larger dielectric constant than
the remaining two axes,
€ 0 0
€ij = 0 € (1 +(5> 0 s (16)
0 0 €

with 0 < 1.

(c) Determine angle of refraction (or sinfy) including the first order in ¢ correction to
Snell’s law.

(d) Is the refracted angle smaller or larger than in the isotropic case? Explain physi-
cally. Does the angular dependence of your correction makes physical sense? Explain
physically.

(e) If the incident light is polarized along the z axis (out of the x — y plane), what is the
deviation from Snell’s law? Explain physically.
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Figure 1: Snell’s law geometry




