
Problem 1. Green theorem for first and second order equations
and the initial value problem

First order: Consider a model first order equation equation for the velocity

m
dv

dt
+mηv = 0 (1)

describing how a particle slows down.

(a) Determine the Green function for this equation, i.e. find the causal function that
satisfies [

m
d

dt
+mη

]
GR(t) = δ(t) (2)

using the direct method, and by fourier transforms.

(b) Show that for t > to
v(t) = mGR(t, to)v(to) (3)

is a solution to the differential equation, and satisfies the boundary conditions specified
at t = to.

(c) Consider GR(t, to) as a function of to for fixed t. What equation and boundary condi-
tions does GR(t, to) obey? Read the note on Green functions and linear operators.

Eq. (3) is normally how the Green function (propagator) is used in quantum mechanics. The
Green function is used slightly differently for second order equations, since x and ẋ enter the
game.

Second order: In class we showed that the electrostatic potential can be determined from
knowledge of the boundary value and the Dirichlet Green function. A very similar state-
ment can be made about an initial value problem, i.e. the solution at future times can be
determined from the initial conditions and the Green function.

For definiteness we will take a harmonic oscillator with mass m and resonant frequency
ωo:

m
d2x

dt2
+mω2

ox = 0 .

The retarded Green function GR(t|to) is the position x(t) of the harmonic oscillator at time
t from an impulsive force at time to. It is causal, meaning that it vanishes whenever t < to,
i.e. (

m
d2

dt2
+mω2

o

)
GR(t|to) = δ(t− to) and GR(t, to) = 0 for t < to . (4)

As always with Green functions, the second argument of the Green function obeys the adjoint
equation, which in this (non-disaptive) case is the same algebraic equation but with advanced
boundary conditions:(

m
d2

dt2o
+mω2

o

)
GR(t|to) = δ(t− to) and GR(t, to) = 0 for to > t . (5)
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(a) Given the initial conditions for the oscillator, x(to) and ∂tox(to), at time to, show that
the future value of the oscillator x(t) is given by the Wronskian of the Green function
and the initial conditions

x(t) = m [GR(t, to)∂tox(to)− x(to)∂toGR(t, to)] t > to (6)

Do this in two ways:

(i) Read the notes online on Green fucntions and operators. Then prove Eq. (6) by
starting with the statement that Ladj

t′ GR(t, t′) = δ(t− t′), and thus for t > to

x(t) =

∫ ∞
to

dt′x(t′)Ladj
t′ GR(t, t′) (7)

(ii) Prove that Eq. (6) satisfies the equations of motion(
m
d2

dt2
+mω2

o

)
x(t) = 0 (8)

and the initial conditions,

lim
t→to

x(t) =x(to) (9)

lim
t→to

dx(t)

dt
=∂tox(to) (10)

(b) Show that for the wave equation, −�GR(tx|toxo) = δ(t−to)δ3(x−xo), the appropriate
generalization of Eq. (6) is

u(t,x) =
1

c2

∫
d3xo [GR(tx|toxo)∂tou(to,xo)− u(to,xo)∂toGR(tx|toxo)] (11)

where u(t,x) satisfies the wave equation −�u(t,x) = 0 together with the initial con-
ditions specified by the function, u(to,x), and its first derivative, ∂tou(to,x), at to.
Remark: The results of this problem show that the general solution to the driven
harmonic oscillator starting from some initial time moment to is

d2x

dt2
+mω2

ox(t) = F (t) (12)

is

x(t) = m [GR(t, to)∂toxo − x(to)∂toGR(t, to)] +

∫ t

to

dt′GR(t, t′)F (t′) . (13)

At late times (in the presence of any infinitessimal damping) the initial conditions can
be ignored.

Similarly for the first order equation:[
m
d

dt
+mη

]
v(t) = F (t) ; (14)

the general solution is

v(t) = mGR(t, to)v(to) +

∫ t

to

dt′GR(t, t′)F (t′) . (15)
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Problem 2. Green function of the Diffusion equation

Consider the homogeneous diffusion equation:

∂tn−D∇2n(t, r) = 0 . (16)

The retarded Green function of the equation satisfies[
∂t −D∇2

]
G(tr|toro) = δ(t− to)δ3(r − ro) . (17)

with retarded boundary conditions.

(a) Write Eq. (17) in time and k by introducing the spatial Fourier transform

G(t,k) ≡
∫
d3r e−ik·rG(t, r) , (18)

and then determine the retarded Green function of the diffusion equation in k and
time using the “direct” method.

(b) Determine the retarded Green function in ω and k, GR(ω,k), by Fourier transforming
Eq. (17) in time and space. Verify that if you perform the Fourier integral over ω that
you get the result of part (a).

(c) By taking the spatial Fourier transform verify that

GR(τ, r) = θ(τ)
1

(2πσ2(τ))3/2
exp

(
−(r − ro)

2

2σ2(τ)

)
(19)

where σ2(t) = 2Dτ where τ = t− to

Problem 3. Electric field in the far field

If you get stuck check the notes online. The scalar and vector potential in the far field are

ϕ(t, r) =
1

4πr

∫
d3roρ(T, ro) (20)

A(t, r) =
1

4πr

∫
d3roJ(T, ro)/c (21)

where the retarded time T = t− |r − ro|/c in the far field is

T = t− r/c+
n · ro
c

(22)

The goal is to compute the electric field

E(t, r) = −1

c
∂tA(t, r)−∇ϕ(t, r) (23)
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(a) (Optional) Consider the change of variable t, ro → T, ro. Show that

∂

∂T
=
∂

∂t
(24)(

∂

∂ro

)
T

=

(
∂

∂ro

)
t

− n

c

∂

∂t
(25)

(b) Compute (
∂

∂t
+ cn

∂

∂r

)
T (26)

You should find a simple result. Interpret the answer using the definition of T

T ≡ the time when the light should be emitted from ro to arrive at the observation
point (t, r).

How do you interpert the derivative:(
∂

∂t
+ cn

∂

∂r

)
(27)

(c) (Optional) Show that

E = − 1

4πrc2

∫
ro

∂J(T, ro)

∂T
+

n

c

1

4πr

∫
ro

∂ρ(T, ro)

∂T
(28)

(d) (Optional) Use current conservation to express

∂ρ(T, ro)

∂T
= − (∇ro · J)T = − (∇ro · J)t +

n

c
· ∂J
∂T

(29)

where (∇ro · J)t denotes the divergence at fixed observation time

(e) (Optional) Conclude that only the transverse piece of the current to n contributes to
the radiation field

E =− 1

4πr

1

c2

∫
ro

[∂tJ − n(n · ∂tJ)]︸ ︷︷ ︸
the part of ∂tJ transverse to n

. (30)

=n×
[
n

c
× 1

4πr

∫
ro

1

c

∂J(T, ro)

∂T

]
(31)

(32)
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