Problem 1. Basics of Relativity

(a) The space time event at $X^{\mu}=\left(X^{0}, X^{i}\right)=(c t, \boldsymbol{x})$ happens at $\underline{X}^{\mu}=\left(\underline{X}^{0}, \underline{X}^{i}\right)=(c \underline{t}, \underline{\boldsymbol{x}})$ according to an observer moving to the right along the x axis with velocity v. Define the "light-cone" coordinates $x^{+} \equiv X^{0}+X^{1}$ and $x^{-} \equiv X^{0}-X^{1}$. Show that under this boost that the x^{+}coordinates are contracted, while the x^{-}coordinates are elongated

$$
\begin{align*}
& \underline{x}^{+}=e^{-y} x^{+}=\sqrt{\frac{1-\beta}{1+\beta}} x^{+} \tag{1}\\
& \underline{x}^{-}=e^{y} x^{-}=\sqrt{\frac{1+\beta}{1-\beta}} x^{-} \tag{2}
\end{align*}
$$

Here

$$
\begin{equation*}
y=\tanh ^{-1} \beta=\frac{1}{2} \log \left(\frac{1+\beta}{1-\beta}\right) \tag{3}
\end{equation*}
$$

is the so-called "rapidity" of the boost. What is $\underline{x}^{+} \underline{x}^{-}$and why is it unchanged under boost?
(b) A Lorentz tensor transforms as

$$
\begin{equation*}
\underline{T}^{\mu \nu}=L_{\rho}^{\mu} L_{\sigma}^{\nu} T^{\rho \sigma} \tag{4}
\end{equation*}
$$

Show that the transformation rule can be alternatively written

$$
\begin{equation*}
\underline{T}_{\nu}^{\mu}=L_{\rho}^{\mu} T_{\sigma}^{\rho}\left(L^{-1}\right)^{\sigma}{ }_{\nu} \tag{5}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\underline{T}_{\nu}^{\mu}=L^{\mu}{ }_{\rho} L_{\nu}{ }^{\sigma} T^{\rho}{ }_{\sigma} \tag{6}
\end{equation*}
$$

(c) The frequency and wave number of a plane wave of light, $e^{-i \omega t+i \boldsymbol{k} \cdot \boldsymbol{x}}=e^{i K \cdot X}$, form a lightlike four vector

$$
\begin{equation*}
K^{\mu}=\left(\frac{\omega}{c}, \boldsymbol{k}\right) \tag{7}
\end{equation*}
$$

(i) Show that $K \cdot K=K_{\mu} K^{\mu}=0$ (this is the statement that K is lightlike.)
(ii) If a photon has frequency ω_{o} and is propagating along the z-axis, show (using the 4 -vector properties of K^{μ}) that according to an observer propagating in the negative z direction with speeed β

$$
\begin{equation*}
\omega=\sqrt{\frac{1+\beta}{1-\beta}} \omega_{o} \tag{8}
\end{equation*}
$$

(d) Show that the four velocity $U^{\mu}=d x^{\mu} / d \tau$ satisfies $U_{\mu} U^{\mu}=-c^{2}$.
(e) For a particle with four momentum $P^{\mu}=\left(\frac{E}{c}, \boldsymbol{p}\right)=m U^{\mu}$ show that $P_{\mu} P^{\mu}=-\left(m c^{2}\right)^{2} / c^{2}$. This determines $E(\boldsymbol{p})$ the relation between energy and momentum:

$$
\begin{equation*}
\frac{E(\boldsymbol{p})}{c}=\sqrt{\boldsymbol{p}^{2}+(m c)^{2}} \tag{9}
\end{equation*}
$$

(i) Show the velocity of the particle (i.e. the group velocity) is

$$
\begin{equation*}
\boldsymbol{v}_{\boldsymbol{p}} \equiv \frac{\partial E(\boldsymbol{p})}{\partial \boldsymbol{p}}=\frac{c^{2} \boldsymbol{p}}{E} \tag{10}
\end{equation*}
$$

(f) A particle with velocity v_{p} in the x direction. Using the 4 -vector transformation properties of U^{μ}, show that according to an observer moving to the right with velocity v, the particle moves with velocity

$$
\begin{equation*}
\underline{v}_{p}=\frac{v_{p}-v}{1-v_{p} v / c^{2}} \tag{11}
\end{equation*}
$$

