


12 Relativity

Postulates

(a) All inertial observers have the same equations of motion and the same physical laws. Relativity explains
how to translate the measurements and events according to one inertial observer to another.

(b) The speed of light is constant for all inertial frames

12.1 Elementary Relativity

Mechanics of indices, four-vectors, Lorentz transformations

(a) We desribe physics as a sequence of events labelled by their space time coordinates:

xµ = (x0, x1, x2, x3) = (c t,x) (12.1)

The space time coordinates of another inertial observer moving with velocity v relative to the first
measures the coordinates of an event to be

xµ = (x0, x1, x2x3) = (c t,x) (12.2)

(b) The coordinates of an event according to the first observer xµ determine the coordinates of an event
according to another observer xµ through a linear change of coordinates known as a Lorentz transfor-
mation:

xµ → xµ = Lµν(v)xν (12.3)

I usually think of xµ as a column vector 
x0

x1

x2

x3

 (12.4)

so that without indices the transform (
x
)
→ (x) =

(
L
)

(x) (12.5)

where L is the a matrix and (x) signifies column vectors like Eq. (12.4)

Then to change frames from K to an observer K moving to the right with speed v relative to K the
transformation matrix is

(L) = (Lµν ) =


γ −γβ
−γβ γ

1
1

 (L)µν = Lµν (12.6)

with β = v/c and γ = 1/
√

1− β2. Here L0
1 = −γβ is the entry in the “0”-th row and “1”-st column
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52 CHAPTER 12. RELATIVITY

A short excercise done in class shows that a this boost contracts the x+ ≡ x0 +x1 direction (i.e. ct+x)
and expands the x− ≡ x0 − x1 direction (i.e. ct − x). Thus, x+ and x− are eigenvectors of Lorentz
boosts in the x direction

x+ =

√
1− β
1 + β

x+ (12.7)

x− =

√
1 + β

1− β
x− (12.8)

(c) Instead of using v we sometimes use the rapidity y

tanh y =
v

c
or y = 1

2 ln
1 + β

1− β
(12.9)

and note that y ' β for small β

With this parametrization we find that the Lorentz boost appears as a hyperbolic rotation matrix

(L) = (Lµν) =


cosh y − sinh y
− sinh y cosh y

1
1

 (12.10)

Then
x+ = e−yx+ x− = eyx− (12.11)

(d) Since the spead of light is constant for all observers we demand that

− (ct)2 + x2 = −(ct)
2

+ x2 (12.12)

under Lorentz transformation. We also require that the set of Lorentz transformations satisfy the
follow (group) requirements:

L(−v)L(v) =I (12.13)

L(v2)L(v1) =L(v3) (12.14)

here I is the identity matrix. These properties seem reasonable to me, since if I transform to frame
moving with velocity v and then transform back to a frame moving with veloicty −v, I shuld get back
the same result. Similarly two Lorentz transformations produce another Lorentz transformation.

(e) Since the combination
− (ct)2 + x2 (12.15)

is invariant under lorentz transformation, we introduced an index notation to make such invariant
forms manifest. We formalized the lowering of indices

xµ = gµνx
ν xµ = (−c t,x) (12.16)

with a metric tensor:
g00 = −1 g11 = g22 = g33 = 1 (12.17)

In this way we define a dot product

x · x = xµxµ = −(ct)2 + x2 (12.18)

is manifestly invariant.

Similarly we raise indices
xµ = gµνxν (12.19)
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with

gµν =


−1

1
1

1

 (12.20)

Of course the process of lowering and index and then raising it agiain does nothing:

gµν = gµσgσν = δµν = identity matrix =


1

1
1

1

 (12.21)

(f) Generally the upper indices are “the normal thing”. We will try to leave the dimensions and name of
the four vector, corresponding to that of the spatial components. Examples: xµ = (ct,x), Aµ = (Φ,A)
, Jµ = (cρ, j), and Pµ = (E/c,p).

(g) Four vectors are anything that transforms according to the lorentz transformation Aµ = (A0,A) like
coordinates

Aµ = LµνA
ν (12.22)

Given two four vectors, Aµ and Bµ one can always construct a Lorentz invariant quantity.

A ·B = AµB
µ = AµgµνB

ν = −A0B0 +A ·B = −A0B0 +A ·B = AµgµνB
µ = AµB

µ = A ·B (12.23)

(h) Notation. We denote the transformation matrix

(L) (12.24)

A matrix just has rows and columns and has no idea what is a row with an upper index µ versus a
lower index

Then entries (L)µν of the matrix are labelled by rows (µ) and columns (ν). You are free to move this
row and column index up and down at will – the first index labels the row, the second the column. In
this way

(L)µν =
(
L>
)
νµ

= (L)
µ
ν =

(
L>
) µ

ν
= Lµν (12.25)

is all the same numerical number Lµν for specified µ and ν. However, the much preferred placemnt of
the indices surrounding the matrix is just a visual reminder of the individual entries Lµν which together
form the matrix, (L) and (L>), and that is all, e.g.

xµ = Lµνx
ν = (L)µνx

ν = xν(L>) µ
ν (12.26)

The indices labelling Lµν can not be raised and lowered randomly, but are raised and lowered with the
metric tensor, i.e. multiplying the matrix (L) with the matrix (g). Thus

(gL)µν = gµρL
ρ
ν ≡ Lµν (12.27)

and
(gLg)

ν
µ = gµρL

ρ
σg
σν ≡ L ν

µ (12.28)

(i) From the invariance of the inner prodcut we see that the lower (covariant) components of four vectors
transform with the inverse transformation and as a row,

xµ → xν = xµ(L−1)µν . (12.29)

I usually think of xµ (with a lower index) as a row

(x0 x1 x2 x3) (12.30)
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So the transformation rule in terms of matrices is

(x0 x1 x2 x3) = (x0 x1 x2 x3)

(
L−1

)
(12.31)

In this way the inner product

AµB
µ = (A0 A1 A2 A3)

(
L−1

)(
L

)
B0

B1

B2

B3

 = AµB
µ (12.32)

is invariant. If you wish to think of xµ as a column, then it transforms under lorentz transformation
with the inverse transpose matrix 

x0
x1
x2
x3

 =

(
L−1>

)
x0
x1
x2
x3

 (12.33)

(j) As is clear from Eq. (12.23), the metric tensor is an invariant tensor, i.e.

gµν = LµρL
ν
σg
ρσ = (L)µρ(L)νσg

ρσ (12.34)

is the same tensor diag(−1, 1, 1, 1) in all frames (so I dont need to put an underline gµν on the LHS).
From Eq. (12.34) it follows that the inverse (transpose) Lorentz transform can be found by raising and
lowering the indices of the transform matrix, i.e.

L σ
ρ ≡ gρµLµνgνσ = (L−1>) σ

ρ = (L−1)σρ (12.35)

where we have defined L σ
ρ . Thus if one wishes to think of a lowered four vector Aµ as a column, one

has

Aν = L µ
ν Aµ (12.36)

Thus, a short excercise (done) in class shows that if

Tµν =LνρL
µ
σT

σρ (12.37)

=(L)µσ T
σρ (L>) ν

ρ (12.38)

then there is a consistency check

Tµν =Lµσ L
ρ
ν Tσρ (12.39)

=(L)µσ T
σ
ρ (L−1)ρν (12.40)

i.e. that lower indices transform like rows with the inverse matrix (L−1) upstairs indices transform like
columns with the regular matrix (L).

Doppler shift, four velocity, and proper time.

(a) The frequency and wave number form a four vector Kµ = (ωc ,k), with |k| = ω/c. This can be used to
determine a relativistic dopler shift.

(b) For a particle in motion with velocity vp and gamma factor γp, the space-time interval is

ds2 ≡ dxµdxµ = −(cdt)2 + dx2 = −(cdτ)2 . (12.41)
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ds2 is associated with the clicks of the clock in the particles instantaneous rest frame, ds2 = −(cdτ)2,
so we have in any other frame

dτ ≡
√
−ds2/c = dt

√
1−

(
dx

dt

)2

/c2 (12.42)

=
dt

γp
(12.43)

(c) The four velocity of a particle is the distance the particle travels per proper time

Uµ ≡ dxµ

dτ
= (u0,u) = (γpc, γpvp) (12.44)

so
Uµ = LµνU

ν (12.45)

Note UµU
µ = −c2.

(d) The transformation of the four velocity under Lorentz transformation should be compared to the
transformation of velocities. For a particle moving with velocity vp in frame K, then in another frame
K moving to the right with speed v the particle moves with velocity

v‖p =
v
‖
p − v

1− v‖pv/c2
(12.46)

v⊥p =
v⊥p

γp(1− v‖pv/c2)
(12.47)

where v
‖
p and v⊥p are the components of vp parallel and perpendicular to v. These are easily derived

from the transformation rules of Uµ and the fact that vp = u/u0.

Energy and Momentum Conservation

(a) Finally the energy and momentum form a four vector

Pµ =

(
E

c
,p

)
(12.48)

The invariant product of Pµ with itsself the rest energy

PµPµ = −(mc)2 (12.49)

This can be inverted giving the energy in terms of the momentum, i.e. the dispersion curve

E(p)

c
=
√
p2 + (mc)2 (12.50)

(b) The relation between energy and momentum determines the velocity. At rest E = mc2. Then a boost
in the negative −vp direction shows that a particle with velocity vp has energy and momentum

Pµ =

(
E

c
,p

)
= mc (γp, γpβp) = mUµ (12.51)

i.e.

vp = c
p

(E/c)
=
∂E(p)

∂p
(12.52)

Thus as usual the derivative of the dispersion curve is the velocity.
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(c) Energy and Momentum are conserved in collisions, e.g. for a reaction 1 + 2→ 3 + 4 w have

Pµ1 + Pµ2 = Pµ3 + Pµ4 (12.53)

Usually when working with collisions it makes sense to suppress c or just make the association:Ep
m

 is short for

 E
cp
mc2

 (12.54)

A starting point for analyzing the kinematics of a process is to “square” both sides with the invariant
dot product P 2 ≡ P · P . For example if P1 + P2 = P3 + P4 then:

(P1 + P2)2 =(P3 + P4)2 (12.55)

P 2
1 + P 2

2 + 2P1 · P2 =P 2
3 + P 2

4 + 2P3 · P4 (12.56)

−m2
1 −m2

2 − 2E1E2 + 2p1 · p2 =−m2
3 −m2

4 − 2E3E4 + 2p3 · p4 (12.57)
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12.2 Covariant form of electrodynamics

(a) The players are:

i) The derivatives

∂µ ≡
∂

∂xµ
=

(
1

c

∂

∂t
,∇
)

(12.58)

∂µ ≡ ∂

∂xµ
=

(
−1

c

∂

∂t
,∇
)

(12.59)

ii) The wave operator

� = ∂µ∂
µ =
−1

c2
∂

∂t2
+∇2 (12.60)

iii) The four velocity Uµ = (u0,u) = (γp, γpvp)

iv) The current four vector
Jµ = (cρ,J) (12.61)

v) The vector potential
Aµ = (Φ,A) (12.62)

vi) The field strength is a tensor
Fαβ = ∂αAβ − ∂βAα (12.63)

which ultimately comes from the relations

E =− 1

c
∂tA−∇Φ (12.64)

B =∇×A (12.65)

In indices we have

F 0i =Ei Ei =F 0i (12.66)

F ij =εijkBk Bi = 1
2εijkF

jk (12.67)

In matrix form this anti-symmetric tensor reads

Fαβ =


0 Ex Ey Ez

−Ex 0 Bz −By
−Ey −Bz 0 Bx

−Ez By −Bx 0

 (12.68)

Raising and lowering indices of Fµν can change the sign of the zero components, but does not
change the ij components, e.g.

Ei = F 0i = −F i0 = F i0 = −F i
0 = −F0i = F 0

i = F 0i (12.69)

vii) The dual field tensor implements the replacement

E → B B → −E (12.70)

As motivated by the maxwell equations in free space

∇ ·E =0 (12.71)

−1

c
∂tE +∇×B =0 (12.72)

∇ ·B =0 (12.73)

−1

c
∂tB −∇×E =0 (12.74)
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which are the same before and after this duality transformation. The dual field stength tensor is

Fαβ =


0 Bx By Bz

−Bx 0 −Ez Ey

−By Ez 0 −Ex
−Bz −Ey −Ex 0

 (12.75)

The dual field strength tensor

Fµν = 1
2ε
µνρσFρσ (12.76)

where the totally anti-symmetric tensor εµνρσ is

εµνρσ =


+1 even perms 0,1,2,3

−1 odd perms 0,1,2,3

0 0 otherwise

(12.77)

viii) The stress tensor is

Θµν
em = FµλF νλ + gµν

(
− 1

4FαβF
αβ
)

(12.78)

Or in terms of matrices

Θµν
em =


uem Sem/c

Sem/c T ij

 (12.79)

Note that Θ0i = Siem/c = c giem, and T ij = (−EiEj + 1
2δ
ijE2) + (−BiBj + 1

2δ
ijB2). You can

remember the stress tensor Θµν by recalling that it is quadratic in F , symmetric under interchange
of µ and ν, and traceless Θµ

µ = 0. These properties fix the stress tensor up to a constant.

(b) The equations are

i) The continuity equation:

∂µJ
µ =0 (12.80) ∂tρ+∇ · J =0 (12.81)

ii) The wave equation in the covariant gauge

−�Aµ =Jµ/c (12.82)
−�Φ =ρ (12.83)

−�A =J/c (12.84)

This is true in the covariant gauge

∂µA
µ =0 (12.85)

1

c
∂tΦ +∇ ·A = 0 (12.86)

iii) The force law is:

dPµ

dτ
= eFµν

Uν

c
(12.87)

1

c

dE

dt
=eE · v

c
(12.88)

dp

dt
=eE + e

v

c
×B (12.89)

If these equations are multiplied by γ they equal
the relativistic equations to the left.
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iv) The sourced field equations are :

−∂µFµν =
Jν

c
(12.90)

∇ ·E =ρ (12.91)

−1

c
∂tE +∇×B =

J

c
(12.92)

v) The dual field equations are :

−∂µFµν =0 (12.93)
∇ ·B =0 (12.94)

−1

c
∂tB −∇×E =0 (12.95)

as might have been inferred by the replacements E → B and B → −E. The dual field equations
can also be written in terms Fµν , and this is known as the Bianchi identity:

∂ρFµν + ∂µFνρ + ∂νFρµ = 0 , (12.96)

where ρ, µ, ν are cyclic.

Or (for the mathematically inclined) the Bianchi identity reads

∂[µ1
Fµ2µ3] = 0 , (12.97)

where the square brackets denote the fully antisymmetric combination of µ1, µ2, µ2, i.e. the order
is like a determinant

∂[µ1
Fµ2µ3] ≡

1

3!

[
(∂µ1

Fµ2µ3
− ∂µ2

Fµ1µ3
+ ∂µ3

Fµ1µ2
)

+ (−∂µ1Fµ3µ2 + ∂µ2Fµ3µ1 − ∂µ3Fµ2µ1)
]

(12.98)

The second line is the same as the first since Fµν is antisymmetric. Eq. (12.97) is the statement
that Fµν is an exact differential form.

vi) The dual field equations are equivalent to the statement that that Fµν (or E,B) can be written
in terms of the gauge potential Aµ (or Φ,A)

Fµν = ∂µAν − ∂νAµ (12.99)
B =∇×A (12.100)

E =− 1

c
∂tA−∇Φ (12.101)

The potentials are not unique as we can always make a gauge transform:

Aµ → Aµ + ∂µΛ (12.102)
A→A +∇Λ (12.103)

Φ→Φ +
1

c
∂tΛ (12.104)

vii) The conservation of energy and momentum can be written in terms of the stress tensor:

−∂µΘµν
em = Fµν

Jν

c
(12.105)

−
(

1

c

∂uem
∂t

+∇ · (Sem/c)

)
= E · J/c (12.106)

−
(

1

c

∂Sjem/c

∂t
+ ∂iT

ij

)
= ρEj + (J/c×B)j (12.107)

The energy and momentum transferred from the fields Fµν to the particles is

∂µΘµν
mech =Fµν

Jν

c
(12.108)
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Or

∂µΘµν
mech + ∂µΘµν

em =0 (12.109)
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