D Separation of Variables

D.1 Cartesian coordinates

(a) Laplacian

\[\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \Phi = 0 \] \hspace{1cm} (D.1)

(b) Eigen functions along boundary vanishing at \(x = 0 \) and \(x = a \) and \(y = 0 \) and \(y = b \)

\[\psi_{nm}(x, y) = \sin \left(\frac{n\pi x}{a} \right) \sin \left(\frac{m\pi y}{b} \right) \quad n = 1 \ldots \infty \quad m = 1 \ldots \infty \]

(c) Orthogonality

\[\int_0^a dx \int_0^b dy \psi_{nm} \psi_{n'm'} = \left(\frac{a}{2} \right) \left(\frac{b}{2} \right) \delta_{nn'} \delta_{mm'} \]

(d) Solution

\[\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left[A_{nm} e^{-\gamma_{nm} z} + B_{nm} e^{+\gamma_{nm} z} \right] \psi_{nm}(x, y) \] \hspace{1cm} (D.2)

where \(\gamma_{nm} = \sqrt{(n\pi/a)^2 + (m\pi/b)^2} \)
D.2 Spherical coordinates

(a) Laplacian
\[
\begin{bmatrix}
\frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}
\end{bmatrix} \Phi = 0
\] (D.3)

(b) Eigen functions along boundary \(\theta, \phi \), regular at \(\theta = 0 \) and \(\pi \), \(2\pi \) periodic in \(\phi \)
\[
\psi_{\ell m}(\theta, \phi) = Y_{\ell m}(\theta, \phi) \quad \ell = 0 \ldots \infty \quad m = -\ell \ldots \ell
\]

(c) Orthogonality:
\[
\int d\Omega Y^*_{\ell m}(\theta, \phi) Y_{\ell' m'}(\theta, \phi) = \delta_{\ell \ell'} \delta_{m m'}
\]

(d) Solution
\[
\Phi = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \left[A_{\ell m} r^\ell + \frac{B_{\ell m}}{r^{\ell+1}} \right] Y_{\ell m}
\] (D.4)

(e) When there is no azimuthal dependence things simplify to
\[
\Phi = \sum_{\ell=0}^{\infty} \left[A_{\ell} r^\ell + \frac{B_{\ell}}{r^{\ell+1}} \right] P_{\ell}(\cos \theta)
\] (D.5)

where \(P_{\ell}(\cos \theta) \) is the legendre polynomial, which up to a normalization if \(Y_{\ell 0}(\theta, \phi) \), satisfying the orthogonality
\[
\int_{-1}^{1} d(\cos \theta) P_{\ell}(\cos \theta) P_{\ell'}(\cos \theta) = \frac{2}{2\ell + 1} \delta_{\ell \ell'}
\]
D.3 Cylindrical Boundary: z, ϕ are the boundary.

(a) Laplacian:
\[
\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2} \Phi = 0
\]
(D.6)

(b) Eigenfunctions along boundary z, ϕ vanishing at $z = 0$ and $z = L$ and 2π periodic in ϕ

\[
\psi_{nm}(z, \phi) = \sin(k_n z) e^{im\phi} \quad k_n \equiv \frac{n\pi}{L} \quad n = 1 \ldots \infty \quad m = -\infty \ldots \infty
\]

(c) Orthogonality:
\[
\int_0^L dz \int_0^{2\pi} \psi_{nm}(z, \phi) \psi_{nm}(z, \phi) = \frac{L}{2} (2\pi) \delta_{nn'} \delta_{mm'}
\]

(d) Solution:
\[
\Phi = \sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty} [A_{nm} I_m(k_n \rho) + B_{nm} K_m(k_n \rho)] \psi_{nm}(z, \phi) \quad (D.7)
\]

Here $I_m(x)$ and $K_m(x)$ is the modified bessel function of the first and second kinds. Note that $K_{-m}(x) = K_m(x)$ and $I_{-m}(x)$
D.4 2D cylindrical coordinates

Boundary:
\[\rho = \text{const} \]
\[\phi \text{ changing} \]

(a) Laplacian:
\[
\left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2} \right] \Phi = 0 \quad (D.8)
\]

(b) Eigenfunctions along boundary \(\phi \): 2\(\pi \) periodic in \(\phi \)
\[\psi_m(\phi) = e^{im\phi} \quad m = -\infty \ldots \infty \]

(c) Orthogonality
\[
\int_0^{2\pi} \psi_m^*(\phi) \psi_m'(\phi) = 2\pi \delta_{mm'} \quad (D.9)
\]

(d) Solution
\[
\Phi = A_0 + B_0 \ln \rho + \sum_{m=-\infty}^{\infty} \left(A_m \rho^{|m|} + \frac{B_m}{\rho^{-|m|}} \right) \psi_m
\]
D.5 Cylindrical Boundary: ρ, ϕ are the boundary

Boundary specified on ρ, ϕ surface

- $\varphi = 0$ on sides
- $z = 0$
- $z = L$
- $\varphi(\rho, \phi, z = L) = \varphi_o(\rho, \phi)$

(a) Laplacian:

$$\left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2} \right] \Phi = 0 \quad (D.10)$$

(b) Eigenfunctions along boundary ρ, ϕ vanishing at $\rho = R$ and regular at $\rho = 0$, 2π periodic in ϕ:

$$\psi_{mn}(\rho, \phi) = J_m(k_{mn} \rho) e^{im\phi} \quad n = 1 \ldots \infty \quad m = -\infty \ldots \infty$$

Here:

$$k_{mn} = \frac{x_{mn}}{R} \quad (D.11)$$

where x_{mn} is the n-th zero of the m-th Bessel function, *e.g.* the zeros of $J_0(x)$ are

$$(x_{01}, x_{02}, x_{03}) = 2.40483, 5.52008, 8.65373 \quad (D.12)$$

These are given by $x_{mn} = \text{BesselZero}[m, n]$ in Mathematica. Note also that $J_{-m}(x) = J_m(x)$

(c) Orthogonality:

$$\int_0^R \rho d\rho \int_0^{2\pi} \psi_{mn}(\rho, \phi) \psi_{mn}(\rho, \phi) = \left(\frac{R^2}{2} \left[J_{m+1}(k_{mn} R) \right]^2 \right) (2\pi) \delta_{nn'} \delta_{mm'}$$

(d) Solution:

$$\Phi = \sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty} \left[A_{mn} e^{-k_{mn} z} + B_{mn} e^{k_{mn} z} \right] \psi_{mn}(\rho, \phi) \quad (D.13)$$
D.6 Continuum Forms and Fourier and Hankel Transforms

In each case we are expanding two directions of the solution in a complete set of eigenfunctions

\[
\langle x| F \rangle = \frac{1}{C_n} \sum_n \langle x| n \rangle \langle n| F \rangle ,
\]
(D.14)

and solving the laplace equation to find the dependence on the third direction.

(a) For the cartesian case when \(a \) and \(b \) go to infinity. The sum becomes an integral and the sum over \(n \) and \(m \) becomes a 2D fourier transform

\[
\Phi = \int \frac{d^2 k}{(2\pi)^2} e^{ik_\perp \cdot x_{\perp}} \left[A(k_\perp) e^{-k_{\perp} z} + B(k_\perp) e^{k_{\perp} z} \right].
\]

We are using the fact that any function in the \(x, y \) plane (in particular the boundary condition \(\Phi_o(x, y) \)) can be expressed as a fourier transform pairs

\[
F(x, y) \equiv \int \frac{d^2 k}{(2\pi)^2} \left[e^{ik_\perp \cdot x_{\perp}} \right] F(k_x, k_y),
\]

(D.15)

\[
F(k_x, k_y) \equiv \int d^2 x_{\perp} \left[e^{-ik_\perp \cdot x_{\perp}} \right] F(x, y).
\]

(D.16)

(b) For the cylindrical case when \(L \) goes to \(\infty \), the sum over \(n \) becomes an integral yielding

\[
\Phi = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{dk}{2\pi} \left[e^{ikz} e^{im\phi} \right] \left[A(k) I_m(|k|\rho) + B(k) K_m(|k|\rho) \right]
\]

We are using the fact that any regular function of \(z \) and \(\phi \) (in particular the boundary condition \(\Phi_o(z, \phi) \)) can be written in terms of its fourier components

\[
F(z, \phi) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{dk}{2\pi} \left[e^{ikz} e^{im\phi} \right] F_m(k),
\]

(D.17)

\[
F_m(k) = \int_0^{2\pi} d\phi \int_{-\infty}^{\infty} dz \left[e^{-ikz} e^{-im\phi} \right] F(z, \phi)
\]

(D.18)

(c) Finally for the second cylindrical case when the radius goes to infinity

\[
\Phi = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} \int_0^{\infty} dk \left[J_m(k\rho) e^{im\phi} \right] \left[A(k) e^{-kz} + B(k) e^{kz} \right]
\]

(D.19)

We are using the fact that any regular cylindrical function of \(\rho \) and \(\phi \) (in particular the boundary condition \(\Phi_o(\rho, \phi) \)) can be written as Hankel transform

\[
F(\rho, \phi) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} \int_0^{\infty} dk \left[J_m(k\rho) e^{im\phi} \right] F_m(k)
\]

(D.20)

\[
F_m(k) = \int_0^{2\pi} d\phi \int_0^{\infty} d\rho \rho \left[J_m(k\rho) e^{-im\phi} \right] F(\rho, \phi)
\]

(D.21)