
D Separation of Variables

D.1 Cartesian coordinates

ϕo(x, y)

b a

y

x

z

specified on bottom

ϕ = 0 on sides

(a) Laplacian (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Φ = 0 (D.1)

(b) Eigen fucntions along boundary vanishing at x = 0 and x = a and y = 0 and y = b

ψnm(x, y) = sin
(nπx

a

)
sin
(mπy

b

)
n = 1 . . .∞ m = 1 . . .∞

(c) Orthogonality ∫ a

0

dx

∫ b

0

dy ψnm ψn′m′ =
(a

2

)( b
2

)
δnn′δmm′

(d) Solution
∞∑
n=1

∞∑
m=1

[
Anme

−γnmz +Bnme
+γnmz

]
ψnm(x, y) (D.2)

where γnm =
√

(nπ/a)2 + (mπ/b)2
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D.2 Spherical coordinates

Boundary θ, φ

ϕ = ϕo(θ, φ)

(a) Laplacian [
1

r2
∂

∂r
r2
∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

]
Φ = 0 (D.3)

(b) Eigen fucntions along boundary θ, φ, regular at θ = 0 and π, 2π periodic in φ

ψ`m(θ, φ) = Y`m(θ, φ) ` = 0 . . .∞ m = −` . . . `

(c) Orthogonality: ∫
dΩ Y ∗`m(θ, φ) Y`′m′(θ, φ) = δ``′δmm′

(d) Solution

Φ =

∞∑
`=0

∑̀
m=−`

[
A`mr

` +
B`m
r`+1

]
Y`m (D.4)

(e) When there is no azimuthal dependence things simplify to

Φ =

∞∑
`=0

[
A`r

` +
B`
r`+1

]
P`(cos θ) (D.5)

where P`(cos θ) is the legendre polynomial, which up to a normalization if Y`0(θ, φ), satisfying the
orthogonality ∫ 1

−1
d(cos θ)P`(cos θ)P`′(cos θ) =

2

2`+ 1
δ``′
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D.3 Cylindrical Boundary: z, φ are the boundary.

L

z = 0

ϕ(ρ = R, z) = ϕo(z)

z = L

ϕ = 0

ϕ = 0

(a) Laplacian: [
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2

]
Φ = 0 (D.6)

(b) Eigenfunctions along boundary z, φ vanishing at z = 0 and z = L and 2π periodic in φ

ψnm(z, φ) = sin (knz) e
imφ kn ≡

nπ

L
n = 1 . . .∞ m = −∞ . . .∞

(c) Orthogonality: ∫ L

0

dz

∫ 2π

0

ψnm(z, φ)ψnm(z, φ) =
L

2
(2π)δnn′δmm′

(d) Solution:

Φ =

∞∑
n=1

∞∑
m=−∞

[AnmIm(knρ) +BnmKm(knρ)]ψnm(z, φ) (D.7)

Here Iν(x) and Kν(x) is the modified bessel function of the first and second kinds. Note that K−m(x) =
Km(x) and I−m(x)
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D.4 2D cylindrical coordinates

Boundary:

φ changing

ρ = const

(a) Laplacian: [
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂φ2

]
Φ = 0 (D.8)

(b) Eigenfunctions along boundary φ: 2π periodic in φ

ψm(φ) = eimφ m = −∞ . . .∞

(c) Orthogonality ∫ 2π

0

ψ∗m(φ)ψm′(φ) = 2πδmm′ (D.9)

(d) Solution

Φ = A0 +B0 ln ρ+

∞∑
m=−∞

(
Amρ

|m| +
Bm
ρ−|m|

)
ψm
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D.5 Cylindrical Boundary: ρ, φ are the boundary

ϕ = 0 on sides

z = 0

z = L

L

ϕ(ρ, φ, z = L) = ϕo(ρ, φ)

ρ, φ surface

Boundary specified on

(a) Laplacian: [
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2

]
Φ = 0 (D.10)

(b) Eigenfunctions along boundary ρ, φ vanishing at ρ = R and regular at ρ = 0, 2π periodic in φ:

ψmn(ρ, φ) = Jm (kmnρ) eimφ n = 1 . . .∞ m = −∞ . . .∞

Here:
kmn =

xmn
R

(D.11)

where xmn is the n-th zero of the m-th Bessel function, e.g. the zeros of J0(x) are

(x01, x02, x03) = 2.40483, 5.52008, 8.65373 (D.12)

These are given by xmn = BesselZeroJ[m,n] in Mathematica. Note also that J−m(x) = Jm(x)

(c) Orthogonality:∫ R

0

ρdρ

∫ 2π

0

ψmn(ρ, φ)ψmn(ρ, φ) =

(
R2

2
[Jm+1(kmnR)]

2

)
(2π) δnn′δmm′

(d) Solution:

Φ =

∞∑
n=1

∞∑
m=−∞

[
Amne

−kmnz +Bnme
kmnz

]
ψmn(ρ, φ) (D.13)
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D.6 Continuum Forms and Fourier and Hankel Transforms

In each case we are expanding two directions of the solution in a complete set of eigenfunctions

〈x|F 〉 =
1

Cn

∑
n

〈x|n〉 〈n|F 〉 , (D.14)

and solving the laplace equation to find the dependence on the third direction.

(a) For the cartesian case when a and b go to infinity. The sum becomes an integral and the sum over n
and m becomes a 2D fourier transform

Φ =

∫
d2k⊥
(2π)2

eik⊥·x⊥
[
A(k⊥)e−k⊥z +B(k⊥)ek⊥z

]
.

We are using the fact that any function in the x, y plane (in particular the boundary condition Φo(x, y))
can be expressed as a fourier transform pairs

F (x, y) ≡
∫

d2k⊥
(2π)2

[
eik⊥·x⊥

]
F (kx, ky) , (D.15)

F (kx, ky) ≡
∫
d2x⊥

[
e−ik⊥·x⊥

]
F (x, y) . (D.16)

(b) For the cylindrical case when L goes to ∞, the sum over n becomes an integral yielding

Φ =
1

2π

∞∑
m=−∞

∫ ∞
−∞

dκ

2π

[
eiκzeimφ

]
[A(κ)Im(|κ|ρ) +B(k)Km(|κ|ρ)]

We are using the fact that any regular function of z and φ (in particular the boundary condition
Φo(z, φ)) can be written in terms of its fourier components

F (z, φ) =
1

2π

∞∑
m=−∞

∫ ∞
−∞

dκ

2π

[
eiκzeimφ

]
Fm(κ) (D.17)

Fm(κ) =

∫ 2π

0

dφ

∫ ∞
−∞

dz
[
e−iκze−imφ

]
F (z, φ) (D.18)

(c) Finally for the second cylindrical case when the radius goes to infinity

Φ =
1

2π

∞∑
m=−∞

∫ ∞
0

kdk
[
Jm(kρ)eimφ

] [
A(k)e−kz +B(k)ekz

]
(D.19)

We are using the fact that any regular cylindrical function of ρ and φ (in particular the boundary
condition Φo(ρ, φ)) can be written as Hankel transform

F (ρ, φ) =
1

2π

∞∑
m=−∞

∫ ∞
0

kdk
[
Jm(kρ)eimφ

]
Fm(k) (D.20)

Fm(k) =

∫ 2π

0

dφ

∫ ∞
0

ρdρ
[
Jm(kρ)e−imφ

]
F (ρ, φ) (D.21)
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