D  Separation of Variables

D.1 Cartesian coordinates

specified on bottom

(a) Laplacian
02 o? o?
(3x2 + oy? + 322> ®=0 (D-1)

(b) Eigen fucntions along boundary vanishing at t =0 and z =a and y =0 and y =b

wnm(sc,y):sin<@)sin<%) n=1...00 m=1...00
a

/Oa da /Ob 0y Vrm Yy = (g) (2) St Srrom

oo

(¢) Orthogonality

(d) Solution
n=1

where Y = \/(n7/a)? + (mm/b)?

[Anme_'YHmZ + Bnme"l")'nmz] Q/J’I’Lm (x7 y) (D'2)
1

m=
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D.2 Spherical coordinates

- © = o0, )

Boundary 6, ¢

N—

(a) Laplacian

— sinf— +

10 ,0 1 0 0 1 92
i A e e 2 o= D.
[7"2 or or " rZsind o0 00 r2gin? 0 0¢? 0 (D.3)

(b) Eigen fucntions along boundary 6, ¢, regular at § = 0 and 7, 27 periodic in ¢
Ve (0, 0) = Yo (0, 0) {=0...00 m=—L...4

(¢) Orthogonality:
/dQ }/;;n(ov ¢) }/@'m'(ev ¢) = 5@['57nm’

(d) Solution

[e%S) 14
B
_ Vi m
¢ = E E |:A£m7" + ﬂ“] Yom (D-4)
=0 m=—¢

(e) When there is no azimuthal dependence things simplify to

- B
— L L
o= Z [Agr + rZH] Py(cosb) (D.5)
£=0
where Py(cosf) is the legendre polynomial, which up to a normalization if Yyo(0, ¢), satisfying the
orthogonality
1
2
/_1 d(cos 0)Py(cos )Py (cos ) = méuf



D.3. CYLINDRICAL BOUNDARY: z,¢ ARE THE BOUNDARY.

D.3 Cylindrical Boundary: z,¢ are the boundary.

T — [ @lp =R, 2) = p.(2)

(a) Laplacian:

12 2+ii2+82 d =0
pop"op " pPog? T 02|

(b) Eigenfunctions along boundary z, ¢ vanishing at z = 0 and z = L and 27 periodic in ¢

Vrm (2, ¢) = sin (kpz) e™? kn = n=1...00 m=—-00...00

nm
L
(¢) Orthogonality:

L 27 L
/ dz Tﬁnm(% d)) wnm(z7 ¢) = 5 (277)6nn’6mm’
0 0

(d) Solution:

NE

[Avm I (knp) + Bpm K (knp)] Ynm (2, ¢)

n=1lm

— 00

85

(D.7)

Here I,,(z) and K, (x) is the modified bessel function of the first and second kinds. Note that K_,,(z) =

K, (z) and I_,,(x)
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D.4 2D cylindrical coordinates

Boundary:
p = const
¢ changing

(a) Laplacian:

100 12,
pop’op " 2 oe?] "

(b) Eigenfunctions along boundary ¢: 27 periodic in ¢

wm(¢):€im¢ m= —0o0...00

(¢) Orthogonality
2m

Vi () (¢) = 20y

(d) Solution

oo Bm
O = A+ Bolnp+ Z (Ampml + —

m=—0o0

(D.9)



D.5. CYLINDRICAL BOUNDARY: p,¢ ARE THE BOUNDARY

D.5 Cylindrical Boundary: p, ¢ are the boundary

©(p, ¢,z = L) = po(p, ¢)

z=1L
/
/// Boundary specified on

p, ¢ surface

@ =0 on sides

(a) Laplacian:
1o o 107 0?

Z - — — | P =
pop’op 2052 T 822 0

(b) Eigenfunctions along boundary p, ¢ vanishing at p = R and regular at p = 0, 27 periodic in ¢:

wmn(p,¢)=Jm(kmnp)eim¢ n=1...00 m=—-00...00

Here:

Tmn
kmn =

R

where Z,,,, is the n-th zero of the m-th Bessel function, e.g. the zeros of Jy(z) are

($01,$02,IC03) = 240483, 552008, 8.65373

These are given by z,,, = BesselZeroJ[m, n] in Mathematica. Note also that J_,,(x) = J,(x)
(¢) Orthogonality:

2

R 27 R

5 [Jm+1(k:mnR)]2) (270) Syt oy

(d) Solution:

oo oo

=33 [Apne™ + Bune™*] (0, 0)

n=1m=-—oo

87

(D.10)

(D.11)

(D.12)

(D.13)
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D.6 Continuum Forms and Fourier and Hankel Transforms

In each case we are expanding two directions of the solution in a complete set of eigenfunctions

(2| F) = Ci S (aln) (nlF) | (D.14)

n

and solving the laplace equation to find the dependence on the third direction.

(a) For the cartesian case when a and b go to infinity. The sum becomes an integral and the sum over n
and m becomes a 2D fourier transform

2k, .

We are using the fact that any function in the z,y plane (in particular the boundary condition ®,(z,y))
can be expressed as a fourier transform pairs

Pe) = [ TEE [ohom] Plhak,). (D.15)
F(ky, ky) z/d%ﬂ [eke®] P(z,y). (D.16)

(b) For the cylindrical case when L goes to co, the sum over n becomes an integral yielding
1 - > dk Kz  ime
o= > | 5[] AR La(IRlp) + BR)Kon(|xlp)]
L Y SRS 27

We are using the fact that any regular function of z and ¢ (in particular the boundary condition
®,(z,¢)) can be written in terms of its fourier components

1 = dr .. .
—_ bt ikz  imeo
F(z,0) =5 mzoo/oo 5 [e"%e™?] Fry (k) (D.17)
27 0 ) )
Fn(k) = / do / dz [e7 e "] F(z,¢) (D.18)
0 —o00
(c) Finally for the second cylindrical case when the radius goes to infinity

®= % 2. /000 kdk [T (kp)e'™ ] [A(k)e™" + B(k)e"] (D.19)

m=—0o0

We are using the fact that any regular cylindrical function of p and ¢ (in particular the boundary
condition ®,(p, $)) can be written as Hankel transform

F(p,¢) :% > /O " kdk [T (kp)e™?] Fy (k) (D.20)

m=—0o0

Fn®) = [ o [ pdo [1tkp)e ] F(p.0) (D.21)
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