Spherical Coordinates and the Shear Stress
a)

$$
\begin{aligned}
& x^{\prime}=r \sin \theta \cos \phi \\
& x^{2}=r \sin \theta \sin \phi \\
& x^{3}=r \cos \theta
\end{aligned} \quad \vec{s}=x^{\prime} \hat{x}+x^{2} \hat{y}+x^{3} \hat{z}
$$

Then

$$
\begin{aligned}
& \vec{g}_{r}=\frac{\partial \vec{s}}{\partial r}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \\
& \vec{g}_{\theta}=\frac{\partial \vec{s}}{\partial \theta}=(r \cos \theta \cos \phi, r \cos \theta \sin \phi,-r \sin \theta) \\
& \vec{g}_{\phi}=(-r \sin \theta \sin \phi, r \sin \theta \cos \phi, 0)
\end{aligned}
$$

Take $\phi=0$

side view
 top view.

The circle has radius $r \sin \theta$

Then
b) $\quad g_{a b}=\vec{g}_{a} \cdot \vec{g}_{b}$

$$
\begin{aligned}
& g_{r r}=1=(\sin \theta \cos \phi)^{2}+(\sin \theta \sin \phi)^{2}+\cos ^{2} \theta \\
& g_{\theta \theta}=r^{2} \\
& g_{\phi \phi}=r^{2} \sin ^{2} \theta
\end{aligned}
$$

All others are zero eeg

$$
\begin{aligned}
\vec{g}_{\phi} \cdot \vec{g}_{r} & =(-r \sin \theta \sin \phi \cos \phi)+(r \sin \theta \cos \phi \sin \phi) \\
& =0
\end{aligned}
$$

Thus

- $g_{a b}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & r^{2} & 0 \\ 0 & 0 & r^{2} \sin ^{2} \theta\end{array}\right)$
- $d s^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}$

Since the metric is diagonal

$$
g^{a b}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / r^{2} & 0 \\
0 & 0 & 1 / r^{2} \sin ^{2} \theta
\end{array}\right)
$$

And thus

$$
\begin{aligned}
& \vec{g}^{r}=g^{r a} \vec{g}_{a}=g^{r r} \vec{g}_{r}=\vec{g}_{r} \\
& \vec{g}^{\theta}=g^{\theta \theta} \vec{g}_{\theta}=\frac{1}{r^{2}} \vec{g}_{\theta} \\
& \vec{g}^{\phi}=\frac{\vec{g}_{\phi}}{r^{2} \sin ^{2} \theta}
\end{aligned}
$$

c) Then

$$
\begin{aligned}
d V & =\left(\operatorname{det} g_{a b}\right)^{1 / 2} d u^{\prime} d u^{2} d u^{3} \\
& =\left(1 \cdot r^{2} \cdot r^{2} \sin ^{2} \theta\right)^{1 / 2} d r d \theta d \phi \\
& =r^{2} \sin \theta d r d \theta d \phi
\end{aligned}
$$

d) Now we note by definition
$\partial_{a} \vec{g}_{b}=\Gamma_{a b}^{c} \vec{g}_{c}$ and recall that $\Gamma_{a b}^{c}=\Gamma_{b a}^{c}$
Thus we have to compute:

$$
\begin{aligned}
& \partial_{r} \vec{g}_{r}=0 \\
& \partial_{r} \vec{g}_{\theta}, \partial_{r} \vec{g}_{\phi} \\
& \partial_{\theta} \vec{g}_{\theta}, \partial_{\theta} \vec{g}_{\phi} \\
& \partial_{\phi} \vec{g}_{\phi}
\end{aligned}
$$

Working we have
$\partial_{r} \vec{g}_{\theta}=\frac{\vec{g}_{\theta}}{r}$. $\partial_{r} \vec{g}_{\phi}=\frac{g_{\phi}}{r}$, thus $\Gamma_{r_{\theta}}^{\theta}=\frac{1}{r} \Gamma_{r_{\phi}}^{\phi}=\frac{1}{r}$

- $\partial_{\theta} \vec{g}_{\theta}=\frac{\partial}{\partial \theta}(+r \cos \theta \cos \phi,+r \cos \theta \sin \phi,-r \sin \theta)$

$$
=(-r \sin \theta \cos \phi,-r \sin \theta \sin \phi,-r \cos \theta)
$$

- $\partial_{\theta} \vec{g}_{\theta}=-r \vec{g}_{r}$

$$
\Gamma_{\theta \theta}^{r}=-r
$$

Then

$$
\begin{aligned}
\partial_{\theta} \vec{g}_{\phi} & =(-r \cos \theta \sin \phi,-r \cos \theta \cos \phi, 0) \\
& =\frac{\cos \theta}{\sin \theta} \vec{g}_{\phi} \quad \Gamma_{\theta \phi}^{\phi}=\cot \theta \\
\partial_{\phi} \vec{g}_{\phi} & =(-r \sin \theta \cos \phi,-r \sin \theta \sin \phi, 0)
\end{aligned}
$$

Take $\phi=0$
(*)

From the picture $\partial_{\phi} \vec{g}_{\phi}$ is directed inward (but 1 to the z-axis) since it is like centripetal acceleration.
We may decompose it into components directed in the $-\hat{r}$ direction $\left(\hat{r}=\vec{g}_{r}\right)$ and the (negative) $\hat{\theta}$ direction $\left(\hat{\theta}=\vec{g}_{\theta} \mid r\right)$. Thus

$$
\partial_{\phi} \vec{g}_{\phi}=r \sin \theta\left(-\sin \theta \vec{g}_{r}-\cos \theta \vec{g}_{\theta} / r\right) \quad \text { Picture! }
$$

One can check explicitly that this decomposition works. Thus

$$
\Gamma_{\phi \phi}^{r}=-r \sin ^{2} \theta \quad \Gamma_{\phi \phi}^{\theta}=-\sin \theta \cos \theta
$$

Summarizing

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Gamma_{\theta \theta}^{r}=-r \\
\Gamma_{\phi \phi}^{r}=-r \sin ^{2} \theta
\end{array}\right. \\
& \left\{\begin{array}{l}
\Gamma^{\Gamma_{\theta}}{ }_{r \theta}=\frac{1}{r} \\
\Gamma_{\phi \phi}^{\theta}=-\cos \theta \sin \theta
\end{array}\right. \\
& \left\{\begin{array}{l}
\Gamma_{\phi \phi}^{\phi}=\frac{1}{\sigma} \\
\Gamma_{\phi}^{\phi}=\frac{\cos \theta}{\sin \theta} \\
\theta \phi
\end{array}\right.
\end{aligned}
$$

A picture explaing $\Gamma_{\phi \phi}^{r}$ and $\Gamma_{\phi \phi}^{\theta}$ is given on the previous page.
e) Using the formula

$$
\Gamma_{a b}^{c}=\frac{1}{2} g^{c d}\left(\partial_{a} g_{d b}+\partial_{b} g_{a d}-\partial_{d} g_{a b}\right)
$$

Then $g_{\phi \phi}=+r^{2} \sin ^{2} \theta$ while $g_{r \phi}=0$ thus

- $\Gamma_{\phi \phi}^{r}=\frac{1}{2} g^{r r}\left(-\partial_{r} g_{\phi \phi}\right), \quad g^{r r}=1, \quad$ and so

$$
\Gamma_{\phi \phi}^{r}=-\sin ^{2} \theta .
$$

Similarly

$$
\begin{aligned}
-\Gamma_{\phi \phi}^{\theta} & =\frac{1}{2} g^{\theta \theta}\left(-\partial_{\theta} g_{\phi \phi}\right)=\frac{1}{2}\left(\frac{1}{r^{2}}\right)\left(-\partial_{\theta}\left(r^{2} \sin ^{2} \theta\right)\right) \\
& =-\sin \theta \cos \theta
\end{aligned}
$$

(f) Then

$$
\int \frac{d \phi}{2 \pi} \cos \phi \hat{p} \neq 0
$$

because $\quad \hat{p}=\cos \phi \hat{x}+\sin \phi \hat{y}$ depends on space, yielding

$$
\int \frac{d \phi}{2 \pi} \cos \phi[(\cos \phi) \hat{x}+(\sin \phi \cdot) \hat{y}]=\frac{1}{2} \hat{x} .
$$

we used that $\left\langle\cos ^{2}\right\rangle=\left\langle\sin ^{2}\right\rangle=\frac{1}{2}$ to evaluate the integral. We also used $\left\langle\cos ^{2} \sin \right\rangle=0$
g) $\nabla \times \vec{A}=\vec{e}_{i} \varepsilon^{i j k} \partial_{j} A_{k}$

We replace $\partial_{j}=\nabla_{j}$ in cartesian coordinates.
Then inserting identity, $\quad \delta_{i^{\prime}}^{i}=\left(M_{0}^{-1}\right)_{a}^{i}\left(M_{0}\right)^{a}{ }_{i}$, and similarly for j, k we find:

$$
\begin{aligned}
\nabla \times \vec{A}= & e_{i}\left(m_{0}^{-1}\right)_{a}^{i}(m)_{i}^{a} \times \\
& \left(\nabla_{j} A_{k}\right)\left(m_{0}^{-1}\right)_{b}^{j}\left(m_{0}\right)_{j}^{b}\left(m_{0}^{-1}\right)_{c}^{k}\left(m_{0}\right)^{c} k^{\prime} \times \\
& \varepsilon^{\prime} j^{\prime} k^{\prime} \\
= & \vec{g}_{a}\left(\nabla_{b} A_{c}\right) \varepsilon^{a b c}
\end{aligned}
$$

We used for instance the tensorial property:

$$
\nabla_{b} A_{c}=\left(\nabla_{i} A_{j}\right)\left(m_{0}^{-1}\right)_{b}^{i}\left(m_{0}^{-1}\right)^{j} c
$$

And

$$
\vec{g}_{a}=\vec{e}_{i}\left(m_{0}^{-1}\right)^{i} a \quad \varepsilon^{a b c}=(m m m) \varepsilon^{i j k}
$$

Here

$$
\left(m_{0}\right)_{i}^{a}=\frac{\partial u^{a}}{\partial x^{i}} \quad\left(m_{0}^{-1}\right)_{a}^{i}=\frac{\partial x^{i}}{\partial u^{a}}
$$

Since

$$
\nabla \times \vec{A}=\vec{g}_{a} \varepsilon^{a b c} \nabla_{b} A_{c}
$$

We note

- $\quad \varepsilon^{a b c} \nabla_{b} A_{c}=\varepsilon^{a b c}\left(\partial_{b} A_{c}-\Gamma_{b c}^{d} A_{d}\right)$.

But note in the second term:

- $\varepsilon^{a b c} \Gamma_{b c}^{d}=0$ since $\varepsilon^{a b c}$ is odd under interchange of (b, c), while $\Gamma_{b c}^{d}$ is even under interchange of (b, c). Thus

$$
(\nabla \times \vec{A})=\vec{g}_{a} \varepsilon^{a b c}\left(\partial_{b} A_{c}\right)
$$

Using for orthogonal systems $\vec{g}_{a}=h_{a} \vec{e}_{\hat{a}}$, and $A_{c}=h_{c} A_{\hat{c}}=h_{c} A^{\hat{c}}$; and the fact that

$$
\begin{aligned}
& \varepsilon^{a b c}=\frac{1}{h_{1} h_{2} h_{3}}[a b c] \text {, we determine } \\
&(\nabla \times \vec{A})=\frac{1}{h_{2} h_{3}} \vec{e}_{\hat{\imath}}\left(\frac{\partial}{\partial u^{2}}\left(h_{3} A^{\hat{B}}\right)-\frac{\partial}{\partial u^{3}}\left(h_{2} A^{\hat{}}\right)\right) \\
&+\frac{1}{h_{1} h_{3}} \vec{e}_{\hat{2}}\left(\frac{\left.\partial\left(h_{1} A^{\hat{l}}\right)-\frac{\partial}{\partial u^{3}}\left(h_{3} A^{\hat{3}}\right)\right)+ \text { last }}{\partial u^{\prime}}\right. \text { term }
\end{aligned}
$$

h) The stokes theorem says

$$
\int d \vec{a} \cdot(\nabla \times \vec{v})=\oint d \vec{l} \cdot \vec{V}
$$

Then $d a=r d r d \theta=h_{r} h_{\theta} d r d \theta \quad h_{r}=1 \quad h_{\theta}=r$

in $h_{1} h_{2} d u^{\prime} d u^{2}$ is the area of the 1,2 plane.

$$
d \vec{a}=h_{r} h_{\theta} d r d \theta(-\hat{\phi})
$$

So

$$
d \vec{a} \cdot \nabla \times \vec{V}=-h_{r} h_{\theta} d r d \theta(\nabla \times \vec{v})_{\phi}
$$

Then

$$
(\nabla x \vec{v})_{\phi}=\frac{1}{h_{r} h_{\theta}}\left[\frac{\partial\left(h_{\theta} v^{\hat{\theta}}\right)}{\partial r}-\frac{\partial\left(h_{r} v^{r}\right)}{\partial \theta}\right]
$$

So

$$
d \stackrel{\rightharpoonup}{a} \cdot(\nabla \times \vec{V})=-\left(\frac{\partial\left(h_{\theta} V^{\hat{\theta}}\right)}{\partial r}-\frac{\partial\left(h_{r} V^{\hat{r}}\right)}{\partial \theta}\right) d r d \theta
$$

Integrating

$$
\begin{aligned}
& \int d \vec{a} \cdot(\nabla x \vec{V})=-\int_{r_{1}}^{r_{2}} d r \int_{\theta_{1}}^{\theta_{2}} d \theta\left(\frac{\left.\partial\left(h_{\theta} v^{\hat{\theta}}\right)-\frac{\partial\left(h_{r} v^{\hat{r}}\right)}{\partial \theta}\right)}{\partial r}+\int_{\theta}^{\theta_{1}} d \theta\left[-\left.h_{\theta} v^{\hat{\theta}}\right|_{r=r_{2}} ^{\theta_{2}}+\left.h_{\theta} v^{\hat{\theta}}\right|_{r=r_{1}}\right]\right. \\
&=\int_{r_{1}}^{r_{2}} d r\left[\left.h_{r} v^{\hat{r}}\right|_{\theta=\theta_{1}}-\left.h_{r} v^{\hat{r}}\right|_{\theta=\theta_{2}}\right]
\end{aligned}
$$

Each of four underlined terms is the contribution of one leg of the line integral for the loop shown

(3)

Take leg $\# 1$:

$$
\begin{aligned}
d \vec{l}_{(1)}=\underbrace{h_{\text {length per de }}}_{\hat{\theta}} \overbrace{(-\hat{\theta})}^{\text {direction }} d \vec{l} \cdot \vec{v} & =-h_{\theta} d \theta(\hat{\theta} \cdot \vec{v}) \\
& =-h_{\theta} d \theta v^{\theta}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int d \vec{a} \cdot(\nabla x \vec{v}) & =\int_{(1)} d \vec{l}_{(1)} \cdot \vec{v}+\int_{(2)} d \vec{l}_{2} \cdot \vec{v}+\int_{(3)} d \vec{l}_{(3)} \cdot \vec{V} \\
& +\int_{(4)} d \vec{l}_{4} \cdot \vec{V} \\
& =\oint d \vec{l} \cdot \vec{V}
\end{aligned}
$$

i) Divergence

$$
\begin{aligned}
\nabla \cdot \vec{v} & =\nabla_{a} v^{a}=\underline{\nabla_{r} v^{r}}+\underline{\nabla_{\theta} v^{\theta}}+\nabla_{\phi} v^{\phi} \\
& =\partial_{a} v^{a}+\Gamma_{a b}^{a} v^{b}
\end{aligned}
$$

Using the diagonal Christofell's

$$
\Gamma_{\theta r}^{\theta}=\frac{1}{r} \quad \Gamma_{\phi r}^{\phi}=\frac{1}{r} \quad \Gamma_{\phi \theta}^{\phi}=\frac{\cos \theta}{\sin \theta}
$$

We have

$$
\begin{gathered}
\text { have } \begin{array}{c}
\nabla_{r} v^{r} \\
\nabla \cdot V=\underline{\left(\partial_{r} v^{r}\right)}+\left(\partial_{\theta} V^{\theta}+\frac{\nabla^{r}}{r}\right)+\left(\partial_{\phi} V^{\phi}+\frac{V^{r}}{r}+\cot \theta V^{\theta}\right)
\end{array}, ~
\end{gathered}
$$

So regrouping

$$
\nabla \cdot v=\frac{1}{r^{2}} \frac{2}{\partial r}\left(r^{2} v^{r}\right)+\frac{1}{\sin \theta} \partial_{\theta}\left(\sin \theta v^{\theta}\right)+\frac{\partial}{\partial \phi} v^{\phi}
$$

This agrees with the other expression we had:

$$
\begin{aligned}
\nabla \cdot v=\frac{1}{\sqrt{g}} \partial_{a}\left(\sqrt{g} v^{a}\right)=\frac{1}{r^{2} \sin \theta} \partial_{r}\left(r^{2} \sin \theta v^{r}\right) & +\frac{1}{r^{2} \sin \theta}\left(\partial_{\theta} \sin \theta v^{\theta}\right) \\
& +\frac{1}{s^{2} \sin \theta} \partial_{\phi}\left(r^{2} \sin \theta v^{\phi}\right)
\end{aligned}
$$

Finally note

$$
v^{r}=v^{r} \quad v^{\hat{\theta}}=h_{\theta} v^{\theta} \quad v^{\phi}=h_{\phi} v^{\phi}
$$

Yielding

$$
\nabla \cdot \vec{v}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v^{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v^{\hat{\theta}}\right)+\frac{1}{r \sin \theta} \partial_{\phi} v^{\hat{\phi}}
$$

Which agrees with the textbook formula.

Finally

$$
\begin{aligned}
T^{\hat{r} \hat{\theta}} & =h_{r} h_{\theta} T^{r \theta} \\
& =h_{r} h_{\theta}\left(\nabla^{r} v^{\theta}+\nabla^{\theta} v^{r}-\frac{2}{3} g^{r \theta} \nabla \cdot v\right) \\
& =h_{r} h_{\theta}\left[\frac{1}{h_{r}^{2}}\left(\nabla_{r} v^{\theta}\right)+\frac{1}{h_{\theta}^{2}}\left(\nabla_{\theta} v^{r}\right)\right] \\
& =h_{\theta}\left(\partial_{r} v^{\theta}+r_{\theta r}^{\theta} v^{\theta}\right)+\frac{1}{h_{\theta}}\left(\partial_{\theta} v^{r}+\frac{\Gamma_{\theta \theta}^{r}}{\theta} v^{\theta}\right) \\
& =r\left(\partial_{r}\left(V^{\hat{\theta}} / r\right)+\frac{1}{r^{2}} v^{\hat{\theta}}\right)+\frac{1}{r}\left(\partial_{\theta} v^{r}-r \frac{V^{\hat{\theta}}}{r}\right) \\
& =\partial_{r} V^{\hat{\theta}}+\frac{1}{r} \partial_{\theta} v^{r}-\frac{v^{\theta}}{r}
\end{aligned}
$$

If $T^{\hat{r} \hat{\theta}}=T^{\hat{\theta} \hat{r}}$ is the only component then:

- you are not allowed to commute

$$
\stackrel{\leftrightarrows}{T}=T^{\hat{r} \hat{\theta}}\left(\vec{e}_{r} \vec{e}_{\theta}+\vec{e}_{\theta} \vec{e}_{r}\right) \quad \text { these: } \vec{e}_{r} \otimes \vec{e}_{\theta} \neq \vec{e}_{\theta} \otimes \vec{e}_{r}
$$

It is a tensor product here!
Then the picture is the following:

$$
\left.\begin{array}{l}
\hat{\theta}=-\sin \theta \hat{z}+\cos \theta \hat{x} \equiv \vec{e}_{\theta} \\
\hat{r}=\cos \theta \hat{z}+\sin \theta \hat{x} \equiv \vec{e}_{r}
\end{array}\right\}
$$

Thus $\vec{e}_{r}, \vec{e}_{\theta}$ are just rotated versions of \hat{x} and \hat{z}

So
for $\boldsymbol{e}_{\theta} \otimes \boldsymbol{e}_{r}$ you need to exchange the order of the two terms

$$
\begin{aligned}
\stackrel{\rightharpoonup}{T} & =\hat{T^{r} \hat{\theta}}\left[(\cos \theta \hat{z}+\sin \theta \hat{x})(-\sin \theta \hat{z}+\cos \theta \hat{x})+\vec{e}_{\theta} \vec{e}_{r}\right] \\
& =T^{\hat{r} \hat{\theta}}[-\sin 2 \theta \hat{z} \hat{z}+\sin 2 \theta \hat{x} \hat{x}+\cos 2 \theta(\hat{x} \hat{z}+\hat{z} \hat{x})]
\end{aligned}
$$

Comparison with the cartesian form $\vec{T}=T i{ }_{i} \vec{e}_{i} \vec{e}_{j}$

$$
\stackrel{T}{T}=T^{x x} \hat{x} \hat{x}+T^{x z} \hat{x} \hat{z}+T^{z x} \hat{z} \hat{x}+T^{z z} \hat{z} \hat{z}
$$

Gives

$$
\begin{aligned}
T^{x x} & =T^{\hat{r} \hat{\theta}} \sin 2 \theta \\
T^{z z} & =-T^{\hat{r} \hat{\theta}} \sin 2 \theta \\
T^{x z}=T^{z x} & =T^{\hat{r} \hat{\theta}} \cos 2 \theta
\end{aligned}
$$

This is just a rotation by angle θ (see picture above!)

$$
T^{\hat{r} \hat{\theta}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \longrightarrow T^{\hat{r} \hat{\theta}}\left(\begin{array}{cc}
+\sin 2 \theta & \cos 2 \theta \\
\cos 2 \theta & -\sin 2 \theta
\end{array}\right)
$$

From the local cartesian basis $\vec{e}_{r}, \vec{e}_{\theta}$ to the global cartesian basis \hat{x}, \hat{y}. Compare with the previous homework.

