All Arfken problems are reproduced at the end of this assignment

Problem 1. Arfken 11.2.11.

Problem 2. Integrals
(a) Do Arfken 11.3.3

(b) The integral
4-3i
| @i ()

4
is not defined without specifying the path. Explain on general grounds why this inte-
geral depends on the path, while the previous excercise does not.

Problem 3. Integrals around loops
o Arfken, 11.3.7

e Evaluate

dz
j{ (22— 1)(2z2+ 1)%2(2 +3) )

for the contour the unit circle with clockwise orientation

Problem 4. Trignometric integrals
(a) Learn about trignometric integrals by reading Example 11.8.1 in Arfken and evaluate

the integral
2m de
I(a) = R — 3
(a) /0 1+ acosd ()

for real a < 1.
(b) Do Arfken 11.8.3.
(c¢) Consider I(a) in Eq. (3) to be an analytic function a. Where is the nearest singularity

of I(a) to the origin, and why is this the expected result.

Problem 5. Some Fourier Integrals

(a) Recall that the fourier transfrom, f(w) = [ dte™™" f(t), of exponential

et (4)
is a Lorentzian: 5
8
w? + 72 (5)



Using complex analysis, show that inverse fourier transform of Eq. (5) is Eq. (4), i.e.
show by contour integration

TFdw i 2y —l¢
| emmme ®)

o0

(b) For e small but finite, show that

/OO Wit pipyeet (7)

oo 2m w+ie

Eq. (7) shows that the 6(t) function has the following Fourier representation:

> dw —iwt i

0(t) = lim

=0 [ 27 w + 1€

(8)
(c) Differentiate both sides of Eq. (8) with resepect to ¢ and comment on what you find.

Problem 6. Radii of convergence

(a) What is the radius of convergence of the following functions at z = 2i.

(ii) sin(z). Hint show that sin(z) is an entire function as discussed below.
(iii) log(z +4)

(b) Recall that the radius of convergence of a power series is given by the formula'
l R T 1/n
= lim |a,| (11)

Given the power series expansion of the Bessel function from the previous homework,
show that the radius of convergence of Jy(x) is infinity using this formula

A function which has an infinite radius of convergence is known as an entire function.
Examples of entire functions are sin(z), cos(z), €*, J,(2) .

'In general this assumes that the limit exists. A pure mathematician might write
1
— = lim supla,|'/" 9)
n—roo

which means that one should take the maximum of the limit points of the sequence. For instance for the
series

fl2) =20 4312 42222 +3323 12424 1355 + .., (10)
the sequence, |a,|'/™, has two limit points: 2 and 3. The maximum of these limit points is 3 and the radius
of convergence is 1/3.
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11.3 Cauchy’s Integral Theorem 477

11.2.10 For what complex values do each of the following functions f(z) have a derivative?

@ f@O=r"
b f@)=z732,
(c) f(z)=tan"!(z),
@ f(z)=tanh™'(2).
11.2.11 Two-dimensional irrotational fluid flow is conveniently described by a complex poten-
tial f(z) = u(x,v) 4 iv(x, y). We label the real part, u(x, y), the velocity potential,

and the imaginary part, v(x, y), the stream function. The fluid velocity V is given by
V =Vu.If f(z) is analytic:

(a) Show thatdf/dz= Vi —iV,.
(b) Show that V - V = 0 (no sources or sinks).
(c) Show that V x V = 0 (irrotational, nonturbulent flow).

11.2.12 The function f(z) is analytic. Show that the derivative of f(z) with respect to z* does
not exist unless f(z) is a constant.
Hint. Use the chain rule and take x = (z 4+ 2%) /2,y = (z — 2*) /2i.

Note. This result emphasizes that our analytic function f(z) is not just a complex func-
tion of two real variables x and y. It is a function of the complex variable x + iy.

11.3 CAUCHY’S INTEGRAL THEOREM

Contour Integrals

With differentiation under control, we turn to integration. The integral of a complex vari-
able over a path in the complex plane (known as a contour) may be defined in close
analogy to the (Riemann) integral of a real function integrated along the real x-axis.

We divide the contour, from zg to z;, designated C, into n intervals by picking n — 1
intermediate points z1, z2, ... on the contour (Fig. 11.2). Consider the sum

n
Sn=Zf(§j)(z,-—zj 1),
j=1
where ¢; is a point on the curve between z; and z;1. Now let n — oo with
lzj —zj-1| >0

for all j. If lim,,, o S, exists, then

= £
Jim 3" 6P -2-0= [ f@dz= [ f@a (1L16)
j=1 0 C

The right-hand side of Eq. (11.16) is called the contour integral of f(z) (along the specified
contour C from z = zg to z = zp).
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11.3 Cauchy’s Integral Theorem 485

2 z)
Show that/f(z)dz=—/f(z)dz.
21 )

=|flmax - L,

Prove that 'ff(z)dz
c

where | f|max is the maximum value of | f(z)| along the contour C and L is the length
of the contour.
Show that the integral
4-3i
f (422 - 3iz)dz
3444

has the same value on the two paths: (a) the straight line connecting the integration
limits, and (b) an arc on the circle |z| = 5.

Let F(2) = f cos2¢ d¢.

a(l41)
Show that F(z) is independent of the path connecting the limits of integration, and
evaluate F(iri).

Evaluate §.(x? — iy?) dz, where the integration is (a) clockwise around the unit circle,
(b) on a square with vertices at =1 =+ i. Explain why the results of parts (a) and (b) are
or are not identical.

Verify that

depends on the path by evaluating the integral for the two paths shown in Fig. 11.7.
Recall that f(z) = z* is not an analytic function of z and that Cauchy’s integral theorem
therefore does not apply.

Show that

dz
=O'
fzz+z
c

in which the contour C is a circle defined by |z| =R > 1.

Hint. Direct use of the Cauchy integral theorem is illegal. The integral may be evaluated
by expanding into partial fractions and then treating the two terms individually. This
yields O for R > 1 and 27i for R < 1.
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522 Chapter 11 Complex Variable Theory

11.7.11

11.7.12

11.8

A function f(z) is analytic along the real axis except for a third-order pole at z = xg.
The Laurent expansion about z = x; has the form
a3 a
f@Q=——%3+ el + g(2),
(z—x0)° z—x0

with g(z) analytic at z = x;. Show that the Cauchy principal value technique is appli-
cable, in the sense that

@ limso {f"‘;o" fOydx+ [ f(x)dx} is finite.
(b) me f(2)dz = tima_,,
where C,, denotes a small semicircle about z = xp.
The unit step function is defined as (compare Exercise 1.15.13)
u(s —a)= I

Show that u(s) has the integral representations

D eacia
1, s>a.

1 e« er’xs
(@) u(s)=Ilim,_, ¢+ —][ —dx.
2ni) x-—ie
oc
1 1 2 ixs
e
(b) u(-‘)—a%-% o X
o0

Note. The parameter s is real.

EVALUATION OF DEFINITE INTEGRALS

Definite integrals appear repeatedly in problems of mathematical physics as well as in
pure mathematics. In Chapter 1 we reviewed several methods for integral evaluation, there
noting that contour integration methods were powerful and deserved detailed study. We
have now reached a point where we can explore these methods, which are applicable to a
wide variety of definite integrals with physically relevant integration limits. We start with
applications to integrals containing trigonometric functions, which we can often convert to
forms in which the variable of integration (originally an angle) is converted into a complex
variable z, with the integration integral becoming a contour integral over the unit circle.

Trigonometric Integrals, Range (0,27)

We consider here integrals of the form

27
I=ff(sin0,c050)d0, (11.91)
0

https://jigsaw.vitalsource.com/api/vO/books/9780123846549/print?from=522&t0=522
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11.8 Evaluation of Definite Integrals 523

where f is finite for all values of 6. We also require f to be a rational function of siné
and cos @ so that it will be single-valued. We make a change of variable to
z=€?, dz=ie’do,
with the range in 6, namely (0, 27), corresponding to e’ moving counterclockwise around
the unit circle to form a closed contour. Then we make the substitutions
dz z—z"" 24z

0 = —i — inf = ™= rannr Ky = ' Q
d i = sin 2 cosd 2 (11.92)

where we have used Eq. (1.133) to represent sin@ and cos. Our integral then becomes

-1 1
T2 242 dz
I=—i ) —, 11.93
'ff( 2 2 )z e

with the path of integration the unit circle. By the residue theorem, Eq. (11.64),
I=(~i)2iy_ residues within the unit circle. (11.94)

Note that we must use the residues of f/z. Here are two preliminary examples.

Example 11.8.1  INTEGRAL OF cos IN DENOMINATOR

Our problem is to evaluate the definite integral
27

l=/L, la] < 1.
14 acosf

By Eq. (11.93) this becomes

Fok iy f dz
e A1+ @/ +z D]

unit circle

s g f dz
al 2+ Q/a)z+1
The denominator has roots

_l-+—«/l—a2 1-v1-a?
T —_—

u= and z2=-—

a
Noting that zjz2 = 1, it is easy to see that z; is within the unit circle and z; is outside.
Writing the integral in the form
f dz
z-2)z-22)

we see that the residue of the integrand at z = z; is 1/(z; — z;), so application of the
residue theorem yields

2 1
I==i--2mi
a 2-21
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524 Chapter 11 Complex Variable Theory

Inserting the values of z; and z3, we obtain the final result
2

f @ __m o
1+acos®@ 1—a2 i

Example 11.8.2  ANOTHER TRIGONOMETRIC INTEGRAL

Consider
2
. cos 20 df
v f 5 —4cosf’
0

Making the substitutions identified in Egs. (11.92) and (11.93), the integral / assumes the

form
. =f 122+27% (—idz)
5-2z+z7H\ z
A f (z*+ 1) dz
4) 2(z-1) -2’
where the integration is around the unit circle. Note that we identified cos26 as (z2 +
z~2)/2, which is simpler than reducing it first to its equivalent in terms of sinz and cos z.
We see that the integrand has poles at z = 0 (of order 2), and simple poles at z = 1/2 and

z = 2. Only the poles at z =0 and z = 1/2 are within the contour.
At z =0 the residue of the integrand is

4] =1 | 3
dz (z—%)(z—Z) z=0_2'

while its residue at z = 1/2 is
[ +1 ] _
2@=2))mp 6

Applying the residue theorem, we have

5 171 =
-

i 7

We stress that integrals of the type now under consideration are evaluated after trans-
forming them so that they can be identified as exactly equivalent to contour integrals to
which we can apply the residue theorem. Further examples are in the exercises.

https://jigsaw.vitalsource.com/api/vO/books/9780123846549/print?from=523&to=524 Page 3 of 4
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11.8 Evaluation of Definite Integrals 539
b 4
11.82  Show that = = 1
8. ow tha = = > 1.
L @+cost)?  @-132' “?
0
i 2
1183  Show that/ s=—p, forfti<l.
1—2tcos@ +1t 1—1¢
0
What happens if || > 1? What happens if || = 1?
2x
A Eatats o
o5 e J 5—4ccep’
0
ANS. m/12.
11.8.5 With the calculus of residues, show that
[ @) @n-Dn
n » n)!  (2n-D! 3
fcos 6d0—7r22n(n!)2 = el =012
0
The double factorial notation is defined in Eq. (1.76).
Hint.cos0 = }(e® +e %) =1z +z7"), lz1=1
11.8.6  Verify that simplification of the expression in Eq. (11.112) yields the result given in
Eq. (11.113).
11.8.7 Complete the details of Example 11.8.8 by verifying that there is no contribution to
the contour integral from either the small or the large circles of the contour, and that
Eq. (11.115) simplifies to the result given as (11.116).
[ cosh
11.8.8  Evaluate f ‘w dx, a=b>0.
o0
ANS. mw(a-b).
© 5
1189  Prove that f =3
x 2
o0
Hint. sin x = %(l — cos2x).
oc
xsinx T
11.8.10 Show that dri=—"
x241 2e
0
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