
Problem 1. Classical Oscillations of H2O

Consider a classical description H2O. The oxygen is sufficiently heavy that it may be con-
sidered fixed. The hydrogen atoms are free to move in the three dimensional space. Their
equilibrium positions relative to the oxygen are r01 and r02. These vectors have magnitude ro
and opening angle angle 2θ as shown below. Thus the full space of vibrations is characterized
by the generalized vector

q =(x1, y1, z1, x2, y2, z2) (1)

≡(r1, r2) (2)

where r1 and r2 are the displacements of the hydrogen from their equilibrium positions
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The potential energy is a function of these oordinates. As a model take the potential

U =
1

2
k(r̂01 · r1)2 +

1

2
k(r̂02 · r2)2 +

1

2
k(x1 − x2)2 (3)

where r̂0i are unit vectors in the direction of r0i. The (r̂0i · r1)2 terms describe interac-
tion between the hydrogen and oxygen, while the remaining term describes the interactions
between the hydrogen atoms.

The molecule has a symmetry group known as C2v with group elements e, a, b, ab. Here
e is the indentity element, a denotes a rotation by π about the y axis passing through the
oxygen atom, b detenotes a reflection in the plane yz plane passing through oxygen, and ab
denotes the rotation-reflection that is the combined operation

(a) Determine the 4× 4 group multiplication table.

(b) What are the conjugacy classes. Show that for an abelian group the number of repre-
sentations is equal to the order of the group.

Using Schur’s lemma, show that all representations are one dimensional.
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(c) Determine the character table of the C2v by guess and check1: Check row orthogo-
nality of characters and column orthogonality of charactersk. Check that the sum of
characters squared is the order of the group. Use the constraints of part (b).

(d) Show that the group operations are represented on the state q through the matrices

O(a) =


0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0

 (5)

O(e) =figure me out (6)

O(b) =figure me out (7)

O(ab) =figure me out (8)

And deduce the characters χ(e) = 6, χ(a) = 0, χ(b) = 0, χ(ab) = 2.

(e) Show that the matrix representation O(g) can be written (after a change of basis
Oab → Oab) as

Oab(g) = 2D(1) ⊕D(2) ⊕D(3) ⊕ 2D(4) (9)

by using character analysis

(f) Given the first three basis vectors ~φi

~φ1 =(1, 0, 0, 0, 0, 0) (10)

~φ2 =(0, 1, 0, 0, 0, 0) (11)

~φ3 =(0, 0, 1, 0, 0, 0) (12)

Decompose each ~φi into vectors into transforming as a representation of the group C2v

using the projection operators êµaa

~φi =
∑
a,µ

~φ
(µ)
i,aa (13)

(For simplicity we will supress the aa label, since a = 1 for one dimensional “matrix”

representations of this group, ~φµi,aa ≡ ~φ
(µ)
i .) Not all the ~φ

(µ)
i will be non-zero. You

should find six linearly independent basis elements. Sketch these. For instance, a
sketch of ~φ

(4)
2 is shown below. There are several advantages of this basis over the

original ~φi with i = 1 . . . 6.

1

e a b ab

A1 µ = 1 1 1 1 1
A2 µ = 2 1 1 - 1 -1
B1 µ = 3 1 -1 1 -1
B2 µ = 4 1 -1 -1 1

(4)
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(g) Three vectors in the span of this basis are “zero eigenmodes” of the potential matrix
H. They are obtained by rotating the molecule as a whole by a small amount δθ. They
do not change the potential energy of the molecule, and do not correspond to actual
vibrations of the molecule that cost energy to establish.

For instance, if we displace one hydrogen atom slightly in the positive z direction and
the other hydrogen slightly in the negative z direction, this is just a small rotation as
a whole around the z axis.

Now we formalize this concept. If the equilibrium position of the hdrogen molecules is
~r0i relative to the center of mass, then a small rotation by an amount δθ around the n
axis produces a shift of the coordinates:

δ~r0i = δθ ~n× ~r0i (14)

If we take ~n in the ŷ direction we have

δ~r01 =δθ r0 sin(θ) (0, 0, 1) (15)

δ~r02 =δθ r0 sin(θ) (0, 0,−1) (16)

Corresponding to a zero eigen-mode2

~ψ0,y = (0, 0, 1, 0, 0,−1) (17)

(i) Determine the zero eigenmodes, ~ψ0,x, ~ψ0,y, ~ψ0,z associated with rotations around
the x, y, and z axes.

2We use ~ψ instead of ~φ because it is an eigenvector as you will show below. Without further analysis it

is not clear that the ~φ
(µ)
i are eigenvects:
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(ii) Show that the bais elements ~φ
(2)
3 and ~φ

(3)
3 are each proportional to a single zero

mode in the set, ~ψ0,x, ~ψ0,y, ~ψ0,z.

(h) Consider the two span of two basis vectors ~φ
(4)
1 and ~φ

(4)
2 . A linear combination of these

two vectors corresponds to a zero mode. Determine this combination. Explictly show
that it is a zero mode of H by evaluating H ~ψ

Determine the vector component of ~φ
(4)
1 (or ~φ

(4)
2 ) which is orthogonal to the zero mode

and sketch it. Let us call this vector ~ψ
(4)
1 since as we will see it is an eigen vector.

(i) Consider basis elements of definite symmetry ~φ
(µ)
a . Using group theoretical arguements

the next problem establishes that(
~φµa ,H~φνb

)
∝ δabδµν (18)

Since there is only one basis element belonging to D(4), namely ~ψ
(4)
1 . It must there-

fore be an eigenvector of H. Determine the associated oscillation frequency with this
eigenvector.

(j) Symmetry can only take you so far. There are two basis elements belonging to D(1),

namely ~φ
(1)
1 and ~φ

(1)
2 . The eigen modes H of the system will lie in the span of these two

basis elements. This reduces the problem of finding the eigen-modes to diagonlizing
the 2× 2 matrix. Write down the normal mode problem in this basis and deduce the
eigen frequencies.
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Problem 2. Inner product

For definiteness consider the canonical D3 (or triangle) group that we discussed in class in
two spatial dimensions. Take a inner product of two functions as simply

〈f, h〉 =

∫
d2x f ∗(x)h(x) (19)

For example f(x) might be f(x) = exp(−x2−y2) and h(x) = exp(−x2−(y−3)2). It is clear
that if we rotate both of these functions by 2π/3 and compute their inner product again we
will get the same answer

(a) Prove this statement, i.e. prove

〈Or1f,Or1h〉 = 〈f, h〉 (20)

We say that the inner product is invariant under the operations of the group if

〈Ogf,Ogh〉 = 〈f, h〉 (21)

for all elements of the group.

(b) Let f
(µ)
a (x) transform as a row (i.e. row a) of an irreducible representation (i.e. repre-

sentation (µ)) of the group, i.e.

Ogf
(µ)
a (x) = fµb (x)D

(µ)
ba (g) (22)

Use part (a) to show that 〈
f (µ)
a , f

(ν)
b

〉
= C(µ)δµνδab (23)

where the coefficient C(µ) is independent of row, but does depend on the representation.
Express C(µ) using inner products of f

(µ)
a .

Use the “colorful” slides from class to heuristically explain this result.

(c) Let the Hamiltonian H commute with the operators of the group

OgHO−1
g = H (24)

Show that 〈
f (µ)
a ,Hf (ν)

b

〉
= h(µ)δµνδab (25)

where hµ is independent of a. Express h(µ) using inner products of f
(µ)
a and H.
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