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1.5 Constraints

Lagrange multipliers

• First we considered minimizing U(x, y) subject to a constraint Q(x, y) = 0. We said that we should
instead minimize

Û(x, y, λ) = U(x, y)− λQ(x, y) . (1.104)

λ is known as a Lagrange multiplier5. This leads to the conditions

dÛ(x, y) =

(
∂U

∂x
− λ∂Q

∂x

)
dx+

(
∂U

∂y
− λ∂Q

∂y

)
dy −Qdλ = 0 (1.105)

where the terms in front of dx, dy, and dλ should be set to zero. We explained that Q can be thought
of as a generalized coordinate, and λ is a generalized force conjugate to Q. This is just like adding an
external force. For instance if I have a potential U(x, y) and add an external force f in the x direction
then the new potential is

Û(x, y, f) = U(x, y)− fx . (1.106)

The forces of constraint in the x and y directions are

Fx =λ∂xQ , (1.107)

Fy =λ∂yQ . (1.108)

• The setup easily generalizes to more coordinates and more constraints. For coordinates xA and con-
straints Qα(xA) with α = 1 . . .m, if we want to minimize U(xA) subject to these constraints, we
instead extremize

Û(xA) = U(xA)− λαQα(xA) (1.109)

requiring that dÛ = 0, i.e. require

∂Û

∂xA
=0 (1.110)

∂Û

∂λα
=0 (1.111)

The forces of constraint in the xA direction are

FA = λα
∂Qα

∂xA
(1.112)

Newton’s Laws and Lagrange with constraints

• Consider Newton’s Laws for particles with positions ra. For simplicity consider just one constraint.

Q(ra) = 0 (1.113)

Then

dQ = ∇raQ · dra = 0 (1.114)

The forces of constraintsFC
a do no work

FC
a · dra = 0 (1.115)

5The sign in front of λ is irrelevant. The choice here is so that λ corresponds to the generalized force in the direction of
increasing Q, compare to Eq. (1.106). When we consider contraints in the Lagrangian, L = T − U , the multipliers will then

come with a plus sign L̂ = T − U + λQ.
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Thus, we make take FC
a to be proportional to the gradient of Q

FC
a = λ∇ra

Q (1.116)

Then Newton’s Laws read

dpa
dt

= F ext
a + λ∇ra

Q . (1.117)

Then Newton’s Law (F = ma) and the constraint, determine the accelerations of the particles and
the magnitude of the forces of constraint, i.e. λ.

• You should do some simple problems on Attwood’s machines (see below) to convice yourself that we
are always solving Eq. (1.117) when doing Freshmann physics problems.

• In the Lagrangian formalism we add some lagrange multipliers to enforce the constraints. Instead of
extremizing L(ṙa, ra), one extremizes L̂(ṙa, ra, λ) = L+ λQ, where λ is like an extra coordinate. The
Euler-Lagrange equations for L̂ are6

d

dt

(
∂L̂

∂ṙa

)
=
∂L̂

∂ra
(1.120)

0 =Q (1.121)

• If there are more constraints Qα, simply make the replacement λQ→ λαQ
α in the lagrangian formal-

ism. In the Newtonian formalism the force of constraint on the a-th particle is

Fa = λα∇ra
Qα . (1.122)

• Attwood machine. Consider two masses m1 and m2 hanging over a massless pulley (you know the
problem!). We have two coordinates z1 and z2 where z1 and z2 are the distances below the pulley
(increasing z means further down). The constraint is

Q = z1 + z2 − L (1.123)

The hatted Lagrangian is

L̂ = 1
2m1ż

2
1 + 1

2m2ż
2
2 +m1gz1 +m2ggz2 + λ(z1 + z2 − L) (1.124)

Newton’s or Lagranges’ equation of motion are

m1a1 =m1g + λ (1.125)

m2a2 =m2g + λ (1.126)

z1 + z2 = L (1.127)

Which are easily solved for a1, a2 and λ, using that Eq. (1.127) implies by differentationg that a1+a2 =
0. Solving these equations gives λ negative, i.e. the force is up not down. The case when the pulley
has mass in the Lagrangian formalism is suggested as an excercise.

6Perhaps we should write it a bit more explicitly. The coordinates of ra are ria with i = x, y, z. We mean

d

dt

(
∂L̂

∂ṙia

)
=
∂L̂

∂ria
(1.118)

d

dt

(
∂L̂

∂λ̇

)
=
∂L̂

∂λ
(1.119)

The equation 0 = Q follows from the equation for λ, which simply enforces the constraint.

https://en.wikipedia.org/wiki/Atwood_machine
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