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1.5 Constraints

Lagrange multipliers

e First we considered minimizing U(z,y) subject to a constraint Q(x,y) = 0. We said that we should
instead minimize

U(z,y,\) =U(z,y) — \Q(z,y) . (1.104)

A is known as a Lagrange multiplier”. This leads to the conditions

) _ (90U _,9Q U 9QN 1 oy —
dU(x,y)(ax Aax>dx+<ay Aay>dy QdA =0 (1.105)

where the terms in front of dz, dy, and dA should be set to zero. We explained that @) can be thought
of as a generalized coordinate, and A is a generalized force conjugate to ). This is just like adding an
external force. For instance if I have a potential U(x,y) and add an external force f in the z direction
then the new potential is

U(z,y, ) =Ulx,y) — fx. (1.106)

The forces of constraint in the z and y directions are

Fy =28,Q, (1.107)
F, =)0,Q. (1.108)

e The setup easily generalizes to more coordinates and more constraints. For coordinates z” and con-
straints Q(z4) with a = 1...m, if we want to minimize U(2*) subject to these constraints, we
instead extremize

Uz?) = U(z?) — A Q% (z?) (1.109)
requiring that dU = 0, i.e. require

oU
— = 1.11
Ox4 0 (1.110)
oU
—_—= 1.111
o Y (1.111)

The forces of constraint in the z# direction are

0Q“

J D e
A A‘“axA

(1.112)

Newton’s Laws and Lagrange with constraints

e Consider Newton’s Laws for particles with positions r,. For simplicity consider just one constraint.

Q(ra) =0 (1.113)
Then
dQ =V,,Q -dr,=0 (1.114)
The forces of constraints F.¢ do no work
FC .dr* =0 (1.115)

5The sign in front of X is irrelevant. The choice here is so that A corresponds to the generalized force in the direction of
increasing @, compare to Eq. (1.106). When we consider contraints in the Lagrangian, L = T — U, the multipliers will then

come with a plus sign L=T-U+ AQ.
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Thus, we make take F.¢ to be proportional to the gradient of Q
FC =)V, .Q (1.116)
Then Newton’s Laws read

dgf“ = F™ {)\V,.Q. (1.117)

Then Newton’s Law (F = ma) and the constraint, determine the accelerations of the particles and
the magnitude of the forces of constraint, i.e. A.

e You should do some simple problems on Attwood’s machines (see below) to convice yourself that we
are always solving Eq. (1.117) when doing Freshmann physics problems.

e In the Lagrangian formalism we add some lagrange multipliers to enforce the constraints. Instead of
extremizing L(7q,Tq), one extremizes L(74,74,A) = L + AQ, where ) is like an extra coordinate. The

Euler-Lagrange equations for L are®
d (0L oL
dt (ar ) “or (1.120)

0=Q (1.121)

e If there are more constraints @, simply make the replacement A\Q) — A\,Q% in the lagrangian formal-
ism. In the Newtonian formalism the force of constraint on the a-th particle is

F, = AV, Q. (1.122)

e Attwood machine. Consider two masses m; and msy hanging over a massless pulley (you know the
problem!). We have two coordinates z; and zo where z; and zo are the distances below the pulley
(increasing z means further down). The constraint is

Q=z+2-L (1.123)
The hatted Lagrangian is
L= Jmasf + 3mais + migz +maggzs + Az + 2 — L) (1.124)

Newton’s or Lagranges’ equation of motion are

mia; =mig + A (1.125)
Mmoas =Mog + A (1.126)

Which are easily solved for ay, as and A, using that Eq. (1.127) implies by differentationg that a1 +as =
0. Solving these equations gives A negative, i.e. the force is up not down. The case when the pulley
has mass in the Lagrangian formalism is suggested as an excercise.

6Perhaps we should write it a bit more explicitly. The coordinates of r, are ré with i = x,y, 2. We mean

d (oL oL
— - =— 1.11
dt <8r‘g ) orl, (1.118)
d (oL oL
Rl el ek 1.119
dt ( O\ ) O\ ( )

The equation 0 = @ follows from the equation for A, which simply enforces the constraint.


https://en.wikipedia.org/wiki/Atwood_machine
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