1 Basic Mechanics

1.1 Newtonian mechanics a brief review

Momentum and Center of Mass

- Newton’s equations of motion for a system of particles reads
 \[\frac{dp_a}{dt} = F_a \]
 where \(a = 1 \ldots N \) labels the particles. Here \(p_a = m_a v_a \). We usually divide up the forces on the \(a \)-the particle into external forces acting on the system from outside, and internal forces acting between pairs of particles:
 \[F_a = F_a^{\text{ext}} + \sum_{b \neq a} F_{ab} \]
 external forces internal forces

 Here
 \[F_{ab} = \text{Force on particle } a \text{ by } b, \]
 and of course we have Newton’s equal and opposite rule
 \[F_{ab} = -F_{ba}. \]

- Summing over the particles we find (after using Eq. (1.4)) that the internal forces cancel and the total change in momentum per time is the sum of external forces
 \[\frac{dP_{\text{tot}}}{dt} = F_{\text{tot}}^{\text{ext}} \]
 where \(P_{\text{tot}} = \sum_a p_a \) and \(F_{\text{tot}}^{\text{ext}} = \sum_a F_{a}^{\text{ext}} \). If there are no external forces then \(P_{\text{tot}} \) is constant

- The velocity of the center of mass is
 \[v_{\text{cm}} = \frac{P_{\text{tot}}}{M_{\text{tot}}} = \frac{1}{M_{\text{tot}}} \sum_a m_a v_a. \]

 The position of the center of mass (relative to an origin \(O \)) is
 \[R_{\text{cm}} = \frac{1}{M_{\text{tot}}} \sum_a m_a r_a. \]

Angular momentum:

- Angular momentum is defined with respect to a specific origin \(O \) (i.e. \(r_a \) depends on \(O \)) which is not normally notated
 \[\ell_{a,O} \equiv \ell_a \equiv r_a \times p_a. \]
It evolves as
\[
\frac{d\ell}{dt} = r_a \times F_a \tag{1.9}
\]

- The total angular momentum \(L_{\text{tot}} = \sum_a \ell_a \) changes due to the total external torque
\[
\frac{dL_{\text{tot}}}{dt} = \tau_{\text{ext}}^{\text{tot}} , \tag{1.10}
\]

where \(\tau_{\text{ext}}^{\text{tot}} = \sum_a r_a \times F_a^{\text{ext}} \) were we have generally assumed that the internal forces are radially directed \(F_{ab} \propto (r_a - r_b) \)

- The angular momentum depends on the origin \(O \). Writing the position of the particle relative to the center of mass as \(\Delta r_a \), i.e.
\[
\ell_a = R_{\text{cm}} + \Delta r_a , \tag{1.11}
\]

the angular momentum of the system about \(O \) is
\[
L_O = R_{\text{cm}} \times P_{\text{tot}} \quad + \quad \sum_a \Delta r_a \times p_a \quad \text{Ang-mom of center of mass about } O \quad \text{Ang-mom about the cm} \tag{1.12}
\]

Energy

- Energy conservation is derived by taking the dot product of \(v \) with \(dp/\text{dt} \). We find that the change in kinetic energy (on the \(a \)-the particle) equals the work done (on the \(a \)-particle).
\[
\frac{1}{2} m_a v_a^2(t) \bigg|_{t_2}^{t_1} = W_a \tag{1.13}
\]

where the work is
\[
W_a = \int_{r_a(t_1)}^{r_a(t_2)} F_a \cdot dr_a \tag{1.14}
\]

- Potential Energy. For conservative forces the force can be written as (minus) the gradient of a scalar function which we call the potential energy
\[
F_a = -\nabla r_a U \tag{1.15}
\]

Consider the potential energy \(U_{12} \) between particle 1 and 2. Since the force is equal and opposite
\[
F_{12} = -\nabla r_1 U_{12}(r_1, r_2) = +\nabla r_2 U_{12}(r_1, r_2) = -F_{21} \tag{1.16}
\]

and this is used to conclude that interaction potential between two particles is of the form
\[
U_{12}^{\text{int}} = U(|r_1 - r_2|) \tag{1.17}
\]

Typically we divide up the potential into an external potential and the internal ones
\[
U(r_a) = U^{\text{ext}}(r_a) + \frac{1}{2} \sum_{ab, a \neq b} U_{ab}^{\text{int}}(r_a, r_b) \tag{1.18}
\]

The sum over the internal potentials comes with a factor of a half because the energy between particle-1 and particle-2 is counted twice in the sum, e.g. for just two particles
\[
U_{12}^{\text{int}}(r_1, r_2) = \frac{1}{2} \left(U(|r_1 - r_2|) + U(|r_2 - r_1|) \right). \tag{1.19}
\]
1.1. NEWTONIAN MECHANICS A BRIEF REVIEW

• Energy. The total energy is

\[E = \sum_a \frac{1}{2} m_a v_a^2 + U^{\text{ext}}(r_a) + \frac{1}{2} \sum_{ab, a \neq b} U^{\text{int}}_{ab}(r_a, r_b) \]

(1.20)

and is constant if there are no non-conservative forces. If there are non-conservative forces then

\[E(t_2) - E(t_1) = W_{NC} \]

(1.21)

where the work done by the non-conservative forces is \(W_{NC} = \sum_a \int F^{NC}_a \cdot dr_a \)

• It is convenient to measure velocities relative to the center of mass

\[v_a = v_{cm} + \Delta v_a \]

(1.22)

where \(\Delta v_a = \dot{\Delta} r_a \), then the kinetic energy

\[K = \frac{1}{2} M_{tot} v_{cm}^2 + \sum_a \frac{1}{2} m_a \Delta v_a^2 \]

(1.23)

KE of center-mass KE relative to center-mass

Galilean invariance:

• Consider newton’s laws then for an isolated system of particles

\[\frac{dp_a}{dt} = F_a \]

(1.24)

where \(F_a = -\nabla r_a U \) with

\[U = \frac{1}{2} \sum_{ab, a \neq b} U^{\text{int}}_{ab}(|r_a - r_b|) \]

(1.25)

Here the space-time coordinates are measured by an observer \(O \) with origin.

Then consider an observer \(O' \) moving with constant velocity \(-u\) relative to \(O \). The “new” coordinates (those measured by \(O' \)) are related to the old coordinates via a Galilean boost

\[r_a \rightarrow r'_a = r_a + ut \]

(1.26)

\[t \rightarrow t' = t \]

(1.27)

The potential which only depends on \(r_a - r_b \) is independent of the shift. The observer measures

\[v_a \rightarrow v'_a = v_a + u \]

(1.28)

\[p_a \rightarrow p'_a = p_a + m_a u \]

(1.29)

The equations of motion for observer \(O' \) are unchanged

\[\frac{dp'_a}{dt'} = F'_a \quad F' \equiv \nabla_{r'} U(|r'_a - r'_b|) \]

(1.30)
1.2 The action and the Euler Lagrange equations

- The action
 \[S[r(t)] = \int_{t_1}^{t_2} dt L(r, \dot{r}, t) \]
 takes an arbitrary path \(r(t) \) (which may not satisfy the EOM) and returns a number. It is called a functional.

- The action principle says that the path \(r(t) \) that satisfies the EOM (sometimes called the classical or “on-shell” path) is an extremum the action\(^1\). This means that if we replace the on-shell path \(r(t) \) with \(r(t) \to r(t) + \delta r(t) \) for an arbitrary (small) function \(\delta r(t) \) that vanishes near \(t_1 \) and \(t_2 \) then the action is unchanged
 \[S[r(t) + \delta r(t)] = S[r(t)] \] when \(r(t) \) is “on-shell”, i.e. satisfies the EOM

- Generally we define
 \[\delta S[r(t), \delta r(t)] \equiv S[r(t) + \delta r(t)] - S[r(t)] \] and note that \(\delta S[r, \delta r] \) depends on both the path and the variation. The requirement that \(\delta S = 0 \) determines the equation of motion. You should be able to prove that when \(\delta S = 0 \) for an arbitrary variation, the equations of motion are (in 1d)
 \[\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = \frac{\partial L}{\partial x} \]
 we call
 \[p_A = \frac{\partial L}{\partial \dot{q}^A} \] the canonical momentum conjugate to \(q^A \) \(A = 1 \ldots N \)
 \[F_A = \frac{\partial L}{\partial q^A} \] the generalized force associated with \(q^A \)

- If a coordinate \(q^A \) does not appear in the Lagrangian (but of course \(\dot{q}^A \) does or it wouldn’t appear at all), the variable is called cyclic. For a cyclic coordinate we have from the Euler Lagrange equations (Eq. (1.37))
 \[\frac{dp_A}{dt} = 0 \] i.e. \(p_A \) is a constant of the motion.

The hamiltonian function

- The hamiltonian (or energy) function (sometimes called the “first integral”) is
 \[h(q, \dot{q}, t) = p\dot{q} - L(q, \dot{q}, t) = \frac{\partial L}{\partial \dot{q}} \dot{q} - L(q, \dot{q}, t) \] and obey the equation of motion
 \[\frac{dh}{dt} = -\frac{\partial L}{\partial t} . \]

\(h(q, \dot{q}, t) \) is therefore constant if \(L \) does not depend explicitly on time.

\(^1\)Sometimes for clarity we will put a bar, e.g., \(\bar{r}(t) \) to indicate that this path is on-shell, i.e. that it satisfies the EOM.
1.2. THE ACTION AND THE EULER LAGRANGE EQUATIONS

- If more then one coordinate is involved then
 \[h(q^A, \dot{q}^A, t) = \sum_A p_A q^A - L \]
 \[= \frac{\partial L}{\partial \dot{q}^A} \dot{q}^A - L \]
 \[(1.43) \]
 \[(1.44) \]
 where we have and will from now on follow the summation convention, where repeated indices are summed over.

- We will distinguish the hamiltonian function \(h(q, \dot{q}, t) \), which is a function of \(q, \dot{q} \), and \(t \), from the Hamiltonian \(H(p, q, t) \) which is a function of \(q \) and \(p \) and \(t \) through the Legendre transform (more later). Thus \(p_A(q, \dot{q}, t) \) in the hamiltonian function (Eq. (1.43)) is a function of the \(q \) and the \(\dot{q} \), while in the Hamiltonian the \(\dot{q} \) is a function of \(q \) and \(p \).

- For a rather general Lagrangian
 \[L = \frac{1}{2} a_{ij}(q) \dot{q}^i \dot{q}^j + b_i(q) \dot{q}^i - U(q), \]
 \[(1.45) \]
 (which is the form of the Lagrangian for a particle in a magnetic field or gravity) the hamiltonian function is
 \[h(\dot{q}, q, t) = \frac{1}{2} a_{ij}(q) \dot{q}^i \dot{q}^j + U(q) \]
 \[(1.46) \]
 The fact that the hamiltonian function is independent of \(b_i \) is closely related to the fact that magnetic fields do no work.

The period of one dimensional motion

- For one dimensional Lagrangian’s of the form
 \[L = \frac{1}{2} m(q) \dot{q}^2 - V_{\text{eff}}(q) \]
 \[(1.47) \]
 The first integral is
 \[E = \frac{1}{2} m(q) \dot{q}^2 + V_{\text{eff}}(q) \]
 \[(1.48) \]
 You should be able to show that the this first integral equation can be used to determine \(q(t) \) implicitly. Integrating from \((t_0, q_0)\) to \((t, q(t))\) yields
 \[\pm \int_{q_0}^{q(t)} dq \left(\frac{m(q)}{2(E - V_{\text{eff}}(q))} \right)^{1/2} = t - t_0, \]
 \[(1.49) \]
 which, when inverted, gives \(q(t) \). The plus sign is when \(q \) is increasing in time, while the minus sign is when \(q(t) \) is decreasing in time.

- In a typical case the potential \(V_{\text{eff}}(q) \) and energy \(E \) is shown below
For the specified energy, the motion is unbounded for $q > q_c$, and oscillates between when $q_A < q < q_B$. q_A, q_B and q_C are called turning points. The period $T(E)$ is the time it takes to go from q_A to q_B and back. Thus half a period $T(E)/2$ is the time it takes to go from q_A to q_B or

$$T(E)/2 = \int_{q_A}^{q_B} dq \left(\frac{m(q)}{2(E - V_{\text{eff}}(q))} \right)^{1/2}.$$ (1.50)
1.3 The Hamiltonian Formalism, the Routhian, and the Legendre Transform

The Hamiltonian formalism: basic version

- Let the Lagrangian be a convex function of the velocity \(v_q \equiv \dot{q}\). In one dimension this means that the momentum \(p = \partial L / \partial v_q\) is an increasing function of the velocity \(v_q \equiv \dot{q}\), i.e. \(\partial^2 L / \partial v_q^2 > 0\). This means there is one value of the velocity for given momentum \(p\), \(\dot{q}(p)\). Clearly \(L \propto v^2\) is convex.

In higher dimensions we require that \(\partial^2 L / \partial \dot{q}_i \partial \dot{q}_j\) is a positive definite matrix. This means that for a given value of \(p_i\) there is a unique value of the velocity vector \(v_i = \dot{q}_i(p)\) at fixed \(q\).

- With convex function \(L(q)\) a Legendre transform useful, and trades the velocity dependence of the Lagrangian dependence for the momentum dependence \(p\) of the Hamiltonian.

First note

\[
dL = pd\dot{q} + \frac{\partial L}{\partial q} dq + \frac{\partial L}{\partial t} dt
\]

\text{“spectators”} \hspace{1cm} (1.51)

We can trade the \(d\dot{q}\) for \(dp\) by looking at \(L - p\dot{q}\), or, as is conventional, minus this quantity. Thus we define

\[
H(p, q, t) = p \dot{q}(p) - L(\dot{q}(p), q, t)
\]

where \(\dot{q}(p)\) is determined from \(p\) at fixed \(q\) and \(t\), i.e. we must invert the relation

\[
p = \frac{\partial L(\dot{q}, q, t)}{\partial \dot{q}} \Rightarrow \text{determines } \dot{q}(p)
\]

We have (do it yourself!)

\[
dH(p, q, t) = \dot{q} dp - \left(\frac{\partial L}{\partial q} dq + \frac{\partial L}{\partial t} dt\right). \hspace{1cm} (1.54)
\]

Thus we have

\[
\frac{\partial H}{\partial p} = \dot{q} \quad \frac{\partial H}{\partial q} = -\frac{\partial L}{\partial q} \quad \frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}
\]

\text{were } L \text{ is a function } \dot{q} \text{ and } H \text{ is a function of the corresponding } p. \text{ You should be able to show that these results (together with the Euler-Lagrange equations) yield Hamilton’s equations of motion:}

\[
\frac{dq}{dt} = \frac{\partial H(q, p, t)}{\partial p}
\]

\text{and the equation of motion are}

\[
\frac{dp}{dt} = -\frac{\partial H(q, p, t)}{\partial q}
\]

\[
\frac{dq^i}{dt} = \frac{\partial H(q, p, t)}{\partial p_i}
\]

\[
\frac{dp_i}{dt} = -\frac{\partial H(q, p, t)}{\partial q^i}
\]

- When more variables are around then we simply sum over the \(p_i\dot{q}^i\) term

\[
H(p, q, t) = \sum_i p_i \dot{q}^i(p) - L(\dot{q}(p), q, t)
\]

(1.58)
• The total derivative of the Hamiltonian satisfies
 \[\frac{dH}{dt} = \frac{\partial H}{\partial t} \]
 (1.61)
 so that if \(H \) is not an explicitly function of time then it is constant.

• For a (rather general) Lagrangian of the form
 \[L = \frac{1}{2} a_{ij}(q) \dot{q}^i \dot{q}^j + b_i(q) \dot{q}^i - U(q), \]
 (1.62)
 the momenta and velocities are related via
 \[p_i = a_{ij} \dot{q}^j + b_i, \quad \dot{q}^i = (a^{-1})^{ij}(p_j - b_j). \]
 (1.63)
 The Hamiltonian is
 \[H(p, q, t) = \frac{1}{2} (a^{-1})^{ij}(p_i - b_i)(p_j - b_j) + U(q). \]
 (1.64)
 This should be compared to the hamiltonian function in (1.46). The Hamiltonian is a function of the \(b_i \), while the hamiltonian function is not. The Hamiltonian and hamiltonian function return the same value at corresponding points where \(\dot{q} = \dot{q}(p) \), but have different functional forms.

The action principle

• The Hamiltonian can be used in the action principle to determine the equation of motion. The action takes a path in \(p, q \) space (\(p_i(t), q^i(t) \)) and returns a number
 \[S[p(t), q(t), t] = \int dt \ (p_i \dot{q}^i - H(p, q, t)) \]
 (1.65)
 We note \(p_i \dot{q}^i - H = L \) at corresponding points. Varying the action with \(p_i(t) \) and \(q^i(t) \) separately (keeping the ends fixed) gives the Hamiltonian equation of motion. By doing this variation you should be able to show that
 \[\frac{dq^i}{dt} = \frac{\partial H}{\partial p_i}, \]
 (1.66)
 \[\frac{dp_i}{dt} = - \frac{\partial H}{\partial q^i}. \]
 (1.67)

The Routhian

• It is often convenient to Legendre transform with respect to some of the coordinates. (This is usually convenient for the cyclic coordinates).
 Suppose we have two coordinates \(x \) and \(y \), with Lagrangian \(L(\dot{x}, x, \dot{y}, y) \). If we Legendre transform with respect to \(\dot{x} \) (replacing it with \(p_x \)), but leave \(\dot{y} \) alone:
 \[R(p_x, x, \dot{y}, y) = p_x \dot{x}(p_x) - L(\dot{x}(p_x), x, \dot{y}, y), \]
 (1.68)
 then \(R \) (known as the Routhian) acts like a Hamiltonian for \((p_x, x) \), but a Lagrangian\(^2\) for \((\dot{y}, y) \). You should be able to show that
 \[\frac{dx}{dt} = \frac{\partial R}{\partial p_x}, \]
 (1.69)
 \[\frac{dp_x}{dt} = - \frac{\partial R}{\partial x} \]
 (1.70)
 \[\frac{d}{dt} \left(\frac{\partial R}{\partial \dot{y}} \right) = \frac{\partial R}{\partial y} \]
 (1.71)
 Here, since the variables in \(R \) are \(p_x, x, \dot{y} \) and \(y \), the partial derivative, \(\partial R/\partial y \), means, \((\partial R/\partial y)_{p_x} \). In the Lagrangian setup \(L(\dot{x}, x, \dot{y}, y) \), with variables \(\dot{x}, x, \dot{y} \) and \(y \), one would have \((\partial L/\partial y)_{\dot{x}} \).

\(^2\)Technically it is actually \(-R\) that is Lagrangian for \(\dot{y}, y \), due to the fact we are subtracting \(L \) when making the Legendre transform in Eq. (1.68). Of course you could have done the following \(R = L - p_x \dot{x} \), and then it would be a Lagrangian for \(y \), but \(-R\) would be the Hamiltonian for \(x \).
The Legendre Transform as extremization in the presence of an external bias (force)

- Consider the convex function $U(x)$. Its derivative is\(^3\)

\[dU = f_0(x) \, dx \]

Then we define\(^4\)

\[\hat{U}(x, f) = fx - U(x) . \]

Then the Legendre transform is the extremum (maximum or minimum) of $\hat{U}(x, f)$ for fixed f, i.e.

\[V(f) = \text{extrm}_x \left(fx - U(x) \right) . \]

This means that we are to change x until we reach the value $x(f)$ where \hat{U} is a maximum or minimum. The value of \hat{U} at this point is $V(f)$. By differentiation, the extremal point is when $f = dU/dx = f_0(x)$, which must be inverted to determine $x(f)$. Then $V(f) = fx(f) - U(x(f))$.

- We have

\[dU = f(x) \, dx \quad \text{and} \quad dV = x(f) \, df \]

and a relation between the second derivatives

\[\frac{d^2U}{dx^2} \frac{d^2V}{df^2} = 1 \]

- Then inverse Legendre transform returns the back the potential

\[U(x) = \text{extrm}_f \left(fx - V(f) \right) \]

which you should prove for yourself.

- For more degrees of freedom, take $U(x_1, x_2)$ for example, the procedure works similarly. We define

\[V(f_1, f_2) = \text{extrm}_{x_1, x_2} \left(f_1 x_1 + f_2 x_2 - U(x) \right) \]

Then

\[dU = f_1 \, dx_1 + f_2 \, dx_2 \quad \text{and} \quad dV = x_1 \, df_1 + x_2 \, df_2 \]

Note that the matrices of second derivatives

\[U_{ij} \equiv \frac{\partial^2U}{\partial x^i \partial x^j} \quad V^{ij} \equiv \frac{\partial^2V}{\partial f_i \partial f_j} \]

are inverses of each

\[V^{il} U_{lj} = \delta^i_j \]

\(^3\)Think of $U(x)$ as the spring like potential that a particle feels. Then $f_0(x)$ is the external force that must be applied to the system so that the particle is in equilibrium at position x. The “internal” force that the potential gives is $f_{\text{internal}}(x) = -dU/dx$. This internal force must be counterbalanced by the applied force $f_0(x) = -f_{\text{internal}}(x)$.

\(^4\)Referring to the previous footnote $\hat{U}(x, f)$ is minus the potential in the presence of an applied external force f. In thermodynamics we would define the Legendre transform with $\hat{U} = U - fx$, but the overall sign leads only to minor differences. We follow the mechanics convention, $H = pv - L$, with regard to sign.
1.4 Motion in a Central Potential

Central potentials $U(r)$ and the Kepler Problem

- We have two bodies with m_1 and r_1 and m_2 and r_2, and generally take r_1 to be the “earth” and r_2 and sun. We first switch to center of mass R and relative coordinates r

$$R = \frac{m_1 r_1 + m_2 r_2}{M}, \quad (1.82)$$

$$r = r_1 - r_2. \quad (1.83)$$

with $M = m_1 + m_2$. We have the kinetic energy

$$T = \frac{1}{2} M \dot{R}^2 + \frac{1}{2} \mu \dot{r}^2 \quad (1.84)$$

where $\mu = m_1 m_2 / (m_1 + m_2)$ is the reduced mass, and thus the Lagrangian is

$$L = \frac{1}{2} M \dot{R}^2 + \frac{1}{2} \mu \dot{r}^2 - U(|r|) \quad (1.85)$$

where $U(|r|)$ is the potential energy of the two particles.

- The overall center of mass motion does not change the orbital dynamics. We can choose $R = \dot{R} = 0$, so that the angular momentum of the center of mass is zero. Then the internal angular momentum is

$$L = \mu r \times \dot{r} \quad (1.86)$$

L can be chosen to lie along the z axis so that r lies in the x, y plane

$$r = r (\cos \phi, \sin \phi, 0) \quad (1.87)$$

The Lagrangian neglecting the center of mass motion is

$$L = \frac{1}{2} \mu (r^2 + r^2 \dot{\phi}^2) - U(r) \quad (1.88)$$

- There are two integrals of motion for the motion in the effective potential:

$$\ell = \mu r^2 \dot{\phi}, \quad (1.89)$$

$$E = \frac{1}{2} \mu \dot{r}^2 + V_{\text{eff}}(r, \ell) \quad (1.90)$$

The effective particle with mass μ moves in the effective potential is

$$V_{\text{eff}}(r, \ell) = \frac{\ell^2}{2 \mu r^2} + U(r). \quad (1.91)$$

Given the integrals of motion E and ℓ it is easy to determine $d\phi/d$ and dr/dt. From there it is straightforward to find an equation for $dr/d\phi = \dot{r}/\dot{\phi}$. Integrating $dr/d\phi$ gives the orbit for $r(\phi)$. This integral from (r_1, ϕ_1) to (r, ϕ) is

$$\phi - \phi_1 = \ell \int_{r_1}^{r} \frac{dr/r^2}{\sqrt{E - V_{\text{eff}}(r, \ell)}} \quad (1.92)$$

for an arbitrary potential $U(r)$.

- For the coulomb potential $U = -k/r$, Eq. (1.92) for $r(\phi)$ can be integrated by making the “conformal” substitution

$$u \equiv \frac{1}{r}, \quad du = \frac{dr}{r^2}, \quad (1.93)$$
1.4. MOTION IN A CENTRAL POTENTIAL

\[
\frac{1}{r} = \frac{1}{r_0} \left(1 + \epsilon \cos(\phi)\right).
\]

\(r_0 \) is known as the lattice rectum (see figure for geometric meaning), and \(\epsilon \) is known as the eccentricity of the ellipse, which is a measure of how much the orbit deviates from a circle. A convenient summary of the elliptic geometry is given in Fig. 1.1. The parameters of the ellipse \(r_0 \) and \(\epsilon \) are determined by the integrals of motion, \(E \) and \(\ell \). The lattice rectum is determined by the angular momentum, \(r_0 = \ell^2/\mu k \). The eccentricity \(\epsilon \) is determined by the excitation energy above the minimum of \(V_{\text{eff}} \) (with fixed \(\ell \)). More explicitly \(\epsilon = \sqrt{1 + \frac{E}{\epsilon_0}} \), with \(\epsilon_0 = \frac{\ell^2}{2\mu r_0^2} \). When the energy of the orbit is at its minimum, \(E = V_{\text{min}} = -\epsilon_0 \), then the eccentricity is zero and the radius is constant, i.e. the orbit is circular.

- The Coulomb potential has a characteristic scale \(r_0 \sim \ell^2/\mu k \) when the potential \(k/r_0 \) and kinetic \(\ell^2/\mu r_0^2 \) are the same order of magnitude. Indeed, for a circular orbit of radius \(r_0 \), one shows by freshman physics that the radius is determined by the angular momentum, \(r_0 = \ell^2/\mu k \). For such a circular orbits the kinetic energy is \(\epsilon_0 = \ell^2/2\mu r_0^2 \) and is minus-half the potential \(U = -k/r_0 = -2\epsilon_0 \). The total energy (kinetic+potential) is \(E = -\epsilon_0 \) where

\[
\epsilon_0 = \frac{\ell^2}{2\mu r_0^2} = \frac{k}{2r_0},
\]

which explains the notation for the parameters in the previous item.

- For the Newton potential \(U = -k/r \) and the spherical harmonic oscillator \(U = \frac{1}{2}kr^2 \) the orbits are closed (Bertrand’s theorem). For no other central potentials are the orbits closed. The closed orbits are a consequence of an additional symmetry which we will discuss later.

Cross sections and scattering

- When considering the scattering problem we are interested in computing the scattering angle \(\theta \) (the angle of deflection) for given energy \(E \) and impact parameter \(b \). Here the impact parameter \(b \) is the transverse distance at large \(r \) from the target and is another way to record the angular momentum. At larger \(r \) the velocity is constant, \(E = \frac{1}{2}mv^2 \), and the angular momentum is

\[
\ell = mvr \sin \theta = mveb = \sqrt{2mE}b
\]
• The scattering angle $\theta(b)$ is shown below:

A particle comes in with impact parameters b (or angular momentum ℓ) and energy E, and is deflected by angle $\theta(b,E)$. From our mechanical perspective we find it easiest to compute the change in the angle ϕ as the particle propagates from its distance of closest approach r_{min} up to infinity. This is (the second) angle ψ in the figure above. It is related to $\theta(b,E)$ by simple geometry.

$$\theta(b) = \pi - 2\psi. \quad (1.97)$$

We have from Eq. (1.92)

$$\Delta \phi = \psi = \frac{\ell}{\sqrt{2m}} \int_{r_{\text{min}}}^{\infty} \frac{dr}{r^2} \frac{dV}{E - V_{\text{eff}}(r)}^{1/2}. \quad (1.98)$$

For the Coulomb problem $U = k/r$ this integration is straightforward with the substitution $u = 1/r$, and yields $\tan(\psi)$ and since $\psi = \pi/2 - \theta/2$

$$\cot(\theta/2) = \frac{2Eb}{k}. \quad (1.99)$$

• The scattering problem is usually phrased in terms of cross section:

(i) Consider a beam of particles of luminosity \mathcal{L}. \mathcal{L} is the number of particles crossing the target per area per time, and is also called the incident flux or intensity.

(ii) The number of incoming particles which scatter per time $d\Gamma$ with impact parameter between b and db is $d\Gamma = \mathcal{L}2\pi b|db|$. We put absolute values because we think of db as an positive interval.

(iii) The number of incoming particles per time (or rate $d\Gamma$) which then end up at in ring of solid angle $d\Omega = 2\pi \sin(\theta) d\theta$ per time is

$$d\Gamma = \mathcal{L} \frac{b}{\sin \theta} \frac{|db|}{|d\theta|} d\Omega. \quad (1.100)$$

So the scattering rate per solid angle is

$$\frac{d\Gamma}{d\Omega} = \mathcal{L} \frac{b}{\sin \theta} |db| |d\theta|. \quad (1.101)$$

The cross section is by definition the scattering rate divided by the incident flux

$$\frac{d\sigma}{d\Omega} = \frac{1}{\mathcal{L}} \frac{d\Gamma}{d\Omega} = \frac{b}{\sin \theta} \left| \frac{db}{d\theta} \right|. \quad (1.102)$$

(iv) The cross section has units of area and gives a measure of the effective size of the target. It is usually measured in barns, 1 barn $= 10^{-24}$ cm2.

• The scattering problem is usually phrased in terms of cross section:
For the Coulomb problem, we can different $d\theta/db$ (Eq. (1.99)) and use it in Eq. (1.102) to determine the Rutherford cross section

$$
\frac{d\sigma}{d\Omega} = \left(\frac{k}{4E} \right)^2 \frac{1}{\sin^4(\theta/2)} \sim \frac{1}{\theta^4},
$$

(1.103)

which is inversely proportional to $1/\theta^4$ at small angles.
1.5 Constraints

Lagrange multipliers

First we considered minimizing $U(x, y)$ subject to a constraint $Q(x, y) = 0$. We said that we should instead minimize

$$
\hat{U}(x, y, \lambda) = U(x, y) - \lambda Q(x, y).
$$

λ is known as a Lagrange multiplier\(^5\). This leads to the conditions

$$
d\hat{U}(x, y) = \left(\frac{\partial U}{\partial x} - \lambda \frac{\partial Q}{\partial x} \right) dx + \left(\frac{\partial U}{\partial y} - \lambda \frac{\partial Q}{\partial y} \right) dy - Q d\lambda = 0
$$

where the terms in front of dx, dy, and $d\lambda$ should be set to zero. We explained that Q can be thought of as a generalized coordinate, and λ is a generalized force conjugate to Q. This is just like adding an external force. For instance if I have a potential $U(x, y)$ and add an external force f in the x direction then the new potential is

$$
\hat{U}(x, y, f) = U(x, y) - fx.
$$

The forces of constraint in the x and y directions are

$$
F_x = \lambda \partial_x Q, \quad F_y = \lambda \partial_y Q.
$$

The setup easily generalizes to more coordinates and more constraints. For coordinates x^A and constraints $Q^\alpha(x^A)$ with $\alpha = 1 \ldots m$, if we want to minimize $U(x^A)$ subject to these constraints, we instead extremize

$$
\hat{U}(x^A) = U(x^A) - \lambda_\alpha Q^\alpha(x^A)
$$

requiring that $d\hat{U} = 0$, i.e. require

$$
\frac{\partial \hat{U}}{\partial x^A} = 0 \quad \frac{\partial \hat{U}}{\partial \lambda_\alpha} = 0
$$

The forces of constraint in the x^A direction are

$$
F_A = \lambda_\alpha \frac{\partial Q^\alpha}{\partial x^A}
$$

Newton’s Laws and Lagrange with constraints

Consider Newton’s Laws for particles with positions r_a. For simplicity consider just one constraint.

$$
Q(r_a) = 0
$$

Then

$$
dQ = \nabla r_a Q \cdot dr_a = 0
$$

The forces of constraints F_a^C do no work

$$
F_a^C \cdot dr^a = 0
$$

\(^5\)The sign in front of λ is irrelevant. The choice here is so that λ corresponds to the generalized force in the direction of increasing Q, compare to Eq. (1.106). When we consider constraints in the Lagrangian, $L = T - U$, the multipliers will then come with a plus sign $L = T - U + \lambda Q$.\}
Thus, we make take F_C^a to be proportional to the gradient of Q

$$F_C^a = \lambda \nabla_{r_a} Q$$ \hspace{1cm} (1.116)

Then Newton’s Laws read

$$\frac{dp_a}{dt} = F_a^{\text{ext}} + \lambda \nabla_{r_a} Q.$$ \hspace{1cm} (1.117)

Then Newton’s Law ($F = ma$) and the constraint, determine the accelerations of the particles and the magnitude of the forces of constraint, i.e. λ.

- You should do some simple problems on Attwood’s machines (see below) to convince yourself that we are always solving Eq. (1.117) when doing Freshmann physics problems.

- In the Lagrangian formalism we add some lagrange multipliers to enforce the constraints. Instead of extremizing $L(\dot{r}_a, r_a)$, one extremizes $\hat{L}(\dot{r}_a, r_a, \lambda) = L + \lambda Q$, where λ is like an extra coordinate. The Euler-Lagrange equations for \hat{L} are

$$\frac{d}{dt} \left(\frac{\partial \hat{L}}{\partial \dot{r}_a} \right) = \frac{\partial \hat{L}}{\partial r_a}$$ \hspace{1cm} (1.120)

$$0 = Q$$ \hspace{1cm} (1.121)

- If there are more constraints Q^α, simply make the replacement $\lambda Q \rightarrow \lambda_\alpha Q^\alpha$ in the lagrangian formalism. In the Newtonian formalism the force of constraint on the a-th particle is

$$F_a = \lambda_\alpha \nabla_{r_a} Q^\alpha.$$ \hspace{1cm} (1.122)

- **Attwood machine.** Consider two masses m_1 and m_2 hanging over a massless pulley (you know the problem!). We have two coordinates z_1 and z_2 where z_1 and z_2 are the distances below the pulley (increasing z means further down). The constraint is

$$Q = z_1 + z_2 - L$$ \hspace{1cm} (1.123)

The hatted Lagrangian is

$$\hat{L} = \frac{1}{2} m_1 \dot{z}_1^2 + \frac{1}{2} m_2 \dot{z}_2^2 + m_1 g z_1 + m_2 g g z_2 + \lambda (z_1 + z_2 - L)$$ \hspace{1cm} (1.124)

Newton’s or Lagranges’ equation of motion are

$$m_1 a_1 = m_1 g + \lambda$$ \hspace{1cm} (1.125)

$$m_2 a_2 = m_2 g + \lambda$$ \hspace{1cm} (1.126)

$$z_1 + z_2 = L$$ \hspace{1cm} (1.127)

Which are easily solved for a_1, a_2 and λ, using that Eq. (1.127) implies by differentiating that $a_1 + a_2 = 0$. Solving these equations gives λ negative, i.e. the force is up not down. The case when the pulley has mass in the Lagrangian formalism is suggested as an exercise.

6Perhaps we should write it a bit more explicitly. The coordinates of r_a are r^i_a with $i = x, y, z$. We mean

$$\frac{d}{dt} \left(\frac{\partial \hat{L}}{\partial \dot{r}_a^i} \right) = \frac{\partial \hat{L}}{\partial r_a^i}$$ \hspace{1cm} (1.118)

$$\frac{d}{dt} \left(\frac{\partial \hat{L}}{\partial \lambda} \right) = \frac{\partial \hat{L}}{\partial \lambda}$$ \hspace{1cm} (1.119)

The equation $0 = Q$ follows from the equation for λ, which simply enforces the constraint.