
Physics 501: Classical Mechanics
Midterm Exam

Stony Brook University

Fall 2020

General Instructions:

You may use one page (front and back) of handwritten notes and, with the proctor’s ap-
proval, a foreign-language dictionary. No other materials may be used.
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Problem 1. A pendulum on a wheel

Consider a pendulum consisting of a uniform rod of length ` and mass m in the earth’s
gravitational field. The pivot point of the pendulum is attached to the rim of a wheel of
radius a which turns with angular velocity ω, but otherwise the angle of the pendulum is
able to rotate freely around its pivot point.

(a) Determine the Lagrangian of the system. You should find after suitable manipulations
that the Lagrangian can be written

L =
1

6
m`2φ̇2 +

1

2
ma`ω2 cos(ωt− φ) +

1

2
mg` cosφ (1)

You will be graded on the clarity of the derivation not the answer.

(b) Describe the motion qualitatively when ω is small, and when ω is large? Define what
is meant by fast and slow in this context. When ω is arbitrarily fast determine the
determine the steady state value of φ as a function of time.

(c) When ω is fast, but not arbitrarily fast, the steady state of part (b) will be perturbed
by gravity, and φ will oscillate around its steady state value. Expand the Lagrangian
to quadratic order in δφ, and find the resulting equation of motion for δφ.

(d) Determine the steady state amplitude and frequency of the resulting oscillations to
lowest non-trivial order in the gravitational perturbation, assuming that you are far
from any resonance.

(e) If the rotational frequency is twice the resonant frequency of the oscillator of part (c),
the perturbative expansion developed in (d) will break down. Explain why.
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(a) The position of any point u along the rod (with u = 0 . . . `) is

x =a sin(ωt) + u sin(φ) (2)

y =− a cos(ωt)− u cos(φ) (3)

So the velocity is

ẋ =aω cos(ωt) + u cosφ φ̇ (4)

ẏ =aω sin(ωt) + u sinφ φ̇ (5)

Thus the kinetic energy is

T =
1

2

∫
dm(ẋ2 + ẏ2) (6)

=
1

2

∫
dm
(
u2φ̇2 + 2auωφ̇ [cos(ωt) cosφ+ sin(ωt) sinφ] + totderiv

)
(7)

=
1

2

∫
dm
(
u2φ̇2 + 2auωφ̇ cos(ωt− φ)

)
(8)

=
1

2

∫
dm

(
u2φ̇2 + 2auω

[
− d

dt
(sin(ωt− φ)) + ω cos(ωt− φ)

])
(9)

=
1

2

∫
dm
(
u2φ̇2 + 2auω2 cos(ωt− φ) + totderiv

)
(10)

=
1

6
m`2φ̇2 +

1

2
ma`ω2 cos(ωt− φ) (11)

The potential energy is

U =

∫
dmgy = −1

2

(mg
`

)
`2 cosφ+ totderiv (12)

Thus the Lagrangian is

L =
1

6
m`2φ̇2 +

1

2
ma`ω2 cos(ωt− φ) +

1

2
mg` cosφ (13)

(b) Clearly if ω is small, the pendulum just makes small oscillations. If ω is fast the cen-
tripetal force (in the a rotating frame picture) is extremely large, and the pendulum is pushed
outward from the center as far as possible. In this limit the steady state configuration is
φ = ωt. Small and fast mean that we should compare the two terms in the Lagrangian. The
frequency is fast when

ma`ω2 � mg` (14)

Then we have

ω �
√
g

a
(15)
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(c) Then we write φ = ωt+ψ with the understanding that ψ ≡ δφ is small. The Lagrangian
is

L =
1

6
m`2(ω + ψ̇)2 +

1

2
ma`ω2 cos(ψ) +

1

2
mg` cos(ωt+ ψ) (16)

=
1

6
m`2ψ̇2 +

1

6
2m`2ωψ̇ +

1

2
ma`ω2 cos(ψ)− 1

2
mg` cos(ωt+ ψ) + const (17)

=
1

6
m`2ψ̇2 +

1

2
ma`ω2 cos(ψ) +

1

2
mg` cos(ωt+ ψ) + totderivs (18)

=
1

6
m`2ψ̇2 +

1

2
ma`ω2 cos(ψ) +

1

2
mg` (cos(ωt) cosψ − sinωt sin(ψ)) (19)

'1

6
m`2ψ̇2 − 1

4
ma`ω2

(
1 +

g

aω2
cos(ωt)

)
ψ2 − 1

2
mg` sin(ωt)ψ (20)

The equation of motion

1

3
m`2ψ̈ +

1

2
ma`ω2

(
1 + (g/aω2) cos(ωt)

)
ψ = −1

2
mg` sin(ωt) (21)

So dividing by 1/3m`2 the equation of motion takes the form

ψ̈ + ω2
0(1 + ε cos(ωt))ψ = −Ω2 sin(ωt) (22)

Then

ω2
0 =

3

2

a

`
ω2 (23)

ε =
g

aω2
(24)

Ω2 =
3

2

g

`
(25)

(d) At lowest order Ω2 � ω2, we drop terms of order ε. We try ψ = A sin(ωt) and find

ψ(0) =
−Ω2 sin(ωt)

−ω2 + ω2
0

(26)

(e) When keeping the term ω2
0 = ε cos(ωt)ψ the problem takes the form of a parametric

oscillator where
ω2
0(t) = ω2

0(1 + ε cos(ωt)) (27)

As analyzed in class when ω is twice ω0 then a parametric oscillator experiences runaway
growth for arbitrarily small ε. Requiring ω = 2ω0 means ` = 6a.
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Problem 2. General variation

Consider the action

S[q(t); q1, t1, q2t2] =

∫ t2

t1

dtL(q, q̇, t) (28)

evaluated on a trajectory q(t) with t ∈ [t1, t2] with endpoints q(t1) = q1 and q(t2) = q2.
Determine how the action is changed by a general infinitessimal variation

q(t)→q + δq(t) (29)

t1 →t1 + δt1 (30)

t2 →t2 + δt2 (31)

Assume that q(t) satisfies the equations of motion, but do not assume that δq(t) vanishes at
the end points. Explain all of your steps.

5



Solution

First let’s guess the answer. Since

S =

∫
pdq −Hdt (32)

We anticipate that
δS = p2δq2 − p1δq1 −H2δt2 +H1δt1 (33)

The analysis below in the Lagrangian framework confirms this.
The new path is q̃(t) with t ∈ [t1 + δt1, t2 + δt2]. Then

q̃(t2 + δt2) ≡q2 + δq2 (34)

q̃(t1 + δt1) ≡q1 + δq1 (35)

Then note (see picture) that the variation at the original endpoints involves the extrapolation

∆q2 ≡ q̃(t2)− q(t2) =δq2 − q̇(t2)δt2 (36)

∆q1 ≡ q̃(t1)− q(t1) =δq1 − q̇(t1)δt1 (37)

or if you prefer:

∆q2 + q̇(t2)δt2 =δq1 (38)

∆q1 + q̇(t1)δt1 =δq2 (39)

So

S =

∫ t2+δt2

t1+δt1

dtL(q̃, ˙̃q, t) (40)

'S(0) + L2δt2 − L1δt1 +

∫ t2

t1

dtL(q̃, ˙̃q, t) (41)

Now we do the usual steps writing q̃ = q + δq, integrating by parts etc. , and find

S 'S(0) + L2δt2 − L1δt1 +
∂L

∂q̇
δq(t)

∣∣∣∣t2
t1

+

∫ t2

t1

dt′
(
∂L

∂q
− d

dt

∂L

∂q̇

)
︸ ︷︷ ︸

=0

δq (42)

Using the EOM and the definition of ∆q = q̃(t)− q(t) given in Eq. (38) we have

S 'S(0) + L2δt2 − L1δt1 + p2∆q2 − p1∆q1 (43)

We have finally using the extrapoltations in Eq. (38)

δS = (p2δq2 −H2δt2)− (p1δq1 −H1δt1) (44)

where H = pq̇ − L.
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Figure 1: A general variation. Note that ∆q2 + q̇(t2)δt2 = δq2 and analogously for q1.
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Problem 3. A curious Lagrangian

Consider a Lagrangian

L =
1

2
mq̇2 − 1

2
mω2

0q
2 +

κ

4
q̇4 (45)

(a) The motion is started with initial conditions

q(0) = x0 q̇(0) = 0 (46)

Under what conditions can the term κq̇4/4 be considered a small perturbation?

(b) Determine the motion system treating κq̇4/4 as perturbation, and working to 1st order
in secular perturbation theory.
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Solution
(a) We should compare the two terms in the Lagrangian. Estimating q̇ ∼ x0ω0 we find

κx40ω
4
0 � mω2

0x
2
0 (47)

So we require that
κ

m
ω2
0x

2
0 � 1 (48)

(b) The equation of motion is

d

dt

(
mq̇ + κq̇3

)
= −mω2

0q (49)

Or

q̈ + ω2
0q = − κ

m

d

dt
q̇3 (50)

So we make the ansatz
q(t) = q(0) + q(1) , (51)

where the zeroth order solution is

q(0)(t) = A(t) cos Ψ Ψ(t) = −ω0t+ ϕ(t) . (52)

With the usual secular (slow roll) approximations we have

q̈(0) + ω2
0q

(0) ' 2ω0Aϕ̇ cos(Ψ) + 2ω0Ȧ sin(Ψ) . (53)

The peturbing tem is can be treated at lowest possible order in the slow roll approximation
where A and ϕ are treated as constants:

− κ

m
∂tq̇

3 ' κ

m

d

dt
(ω0 sin(Ψ))3 ' 3A3ω4

0

κ

m
sin(Ψ)2 cos(Ψ) . (54)

We can resolve this in fourier components:

sin(Ψ)2 cos(Ψ) =
1

4
cos Ψ︸ ︷︷ ︸

on resonance/0th order

− 1

4
cos(3Ψ)︸ ︷︷ ︸

1st

(55)

Putting together the ingrediants(
q̈(0) + ω2

0q
(0)
)

+
(
q̈(1) + ω2

0q
(1)
)

= 3A3ω4
0

κ

m

( 1

4
cos Ψ︸ ︷︷ ︸

on resonance/0th order

− 1

4
cos(3Ψ)︸ ︷︷ ︸

1st

)
(56)

So comparing the zeroth order terms in this expression

2ω0Aϕ̇ cos(Ψ) + 2ω0Ȧ sin(Ψ) = 3A3ω4
0

κ

m

1

4
cos Ψ . (57)

9



Or

Ȧ = 0 2ω0Aϕ̇ =
3

4
A3ω4

0

κ

m
(58)

So we find

ϕ =

(
3

8
A2ω2

0

κ

m

)
ω0t (59)

This is a simple frequency shift

Ψ = −ωt ω = ω0

(
1− 3

8
A2ω2

0

κ

m

)
(60)

For the first order terms we solve for the steady state oscillations of the driven harmonic
oscillator (

q̈(1) + ω2
0q

(1)
)

= 3A3ω4
0

κ

m

(
− 1

4
cos(3Ψ)︸ ︷︷ ︸

1st

)
(61)

And find

q(1) =
−3

4
κ
m
A3ω4

0

−(3ω0)2 + ω2
0

cos(3Ψ) (62)

=
3

32

κ

m
A2ω2

0 A cos(3Ψ) (63)

To summarize we have

q(t) ' A cos(Ψ) +

(
3

32

κ

m
A2ω2

0

)
A cos(3Ψ) (64)

with

Ψ = −ωt ω = ω0

(
1− 3

8
A2ω2

0

κ

m

)
(65)

We have from the initial conditions

x0 = A+

(
3

32

κ

m
A2ω2

0

)
A (66)

which is solved iteratively

A ' x0 −
(

3

32

κ

m
x20ω

2
0

)
x0 (67)

Leading to a final result

q(t) '
(

1−
(

3

32

κ

m
x20ω

2
0

))
x0 cos(Ψ) +

(
3

32

κ

m
x20ω

2
0

)
cos(3Ψ) (68)
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